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A delayed SEIRS epidemic model with pulse vaccination and nonlinear incidence rate is proposed.
We analyze the dynamical behaviors of this model and point out that there exists an infection-
free periodic solution which is globally attractive if R1 < 1, R2 > 1, and the disease is permanent.
Our results indicate that a short period of pulse or a large pulse vaccination rate is the sufficient
condition for the eradication of the disease. The main feature of this paper is to introduce time
delay and impulse into SEIRS model and give pulse vaccination strategies.
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1. Introduction

Infectious diseases are usually caused by pathogenic microorganisms, such as bacteria, viruses,
parasites, or fungi; the diseases can be spread directly or indirectly. The severe and sudden
epidemics of infectious diseases have a great influence on the human life and socioeconomy,
which compel scientists to design and implement more effective control and preparedness
pro- grams. Pulse vaccination is an effective method to use in attempts to control infectious
diseases.

In recent years, epidemic mathematical models of ordinary differential equations have
been studied by many authors (e.g., [1–3]). In most of the research literatures, authors always
assume that the disease incubation is negligible, therefore, once infected, each susceptible in-
dividual becomes infectious instantaneously and later recovers with a temporary acquired im-
munity. An epidemic model based on these assumptions is customarily called SIR (susceptible,
infectious, recovered) model. However, many diseases incubate inside the hosts for a period
of time before the hosts become infectious. We assume that a susceptible individual first goes
through a latent period after infection before becoming infectious. The resultingmodel is called
SEIRS (susceptible, exposed, infectious, recovered)model. The SEIRS infections disease model
is a very important biologic model and has been studied by many authors (e.g., [4–6]).
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Bilinear and standard incidence rates have been frequently used in classical epidemic
models [7]. Simple dynamics of these models seem related to such functions. These different
incidence rates have been proposed by researchers. Anderson et al. pointed out that standard
incidence ismore suitable than bilinear incidence [8–10]. Levin et al. have adopted an incidence
form like βSqIp or βSqIp/N which depends on different infective disease and environments
[11]. L. S. Chen and J. Chen [12] set forth transmission effect like the saturation effect βS(t)/(1+
aS(t)) as the infection rate. In this paper, we will adopt the infection rate βS(t)/(1 + aS(t))
because it includes the behavioral change and crowding effect of the infective individuals and
prevents the unboundedness of the contact rate by choosing suitable parameters.

On the one hand, the newborns of the infectiousmay already be infectedwith the disease
at birth such as hepatitis and phthisis, and so forth. This is called vertical transmission. On
the other hand, some diseases may be spread from one individual to another via horizontal
contacting transmission. Some epidemic models with vertical transmission were studied by
many authors. However, only a few literatures [13] deal with the analysis of disease with pulse
vaccination, vertical and horizontal transmissions.

Most of the research literature on these epidemic models are established by ODE, de-
layed ODE or impulsive ODE. However, impulsive equations with time delay are not many
[14, 15]. In this paper, we establish a delayed SEIRS epidemic disease model with pulse vac-
cination and nonlinear incidence rate. We study their dynamic behaviors, establish sufficient
condition for disease-eradication, as well as investigate the role of incubation in disease trans-
mission. The main feature of this paper is to introduce time delay and pulse vaccination into
epidemic model and obtain some important qualitative properties with valid pulse vaccination
strategy.

The organization of this paper is as follows. In the next section, we introduce the de-
layed SEIRS model with pulse vaccination. To prove our main results, we also give several
definitions, notations, and lemmas. In Section 3, we investigate the dynamic behavior of the
model with nonlinear incidence and the sufficient condition is obtained for the global attrac-
tivity of infection-free periodic solution and the permanence of the model. In the final section,
we try to interpret our mathematical results in terms of their ecological implication and also
point out some future research directions.

2. Model formulation and preliminary

In the following model, we study a population that is partitioned into four classes, the suscep-
tible, exposed, infectious, and recovered, with sizes denoted by S, E, I, and R, respectively, and
we consider pulse vaccination strategy in the delayed SEIRS epidemic model with nonlinear
incidence rate β(S/(1 + aS))I, the following mathematical model is formulated:

S′(t) = A − β
S(t)I(t)
1 + aS(t)

− μS(t) − (1 − p)μI(t) + αR(t), t /= nT,

E′(t) = β
S(t)I(t)
1 + aS(t)

− βe−μτ
S(t − τ)I(t − τ)
1 + aS(t − τ)

− μE(t) + (1 − p)μI(t), t /= nT,

I ′(t) = βe−μτ
S(t − τ)I(t − τ)
1 + aS(t − τ)

− (r + d + μ)I(t), t /= nT,

R′(t) = rI(t) − μR(t) − αR(t), t /= nT,
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S(t+) = (1 − θ)S(t), t = nT, n = 1, 2, . . .

E(t+) = E(t), t = nT, n = 1, 2, . . .

I(t+) = I(t), t = nT, n = 1, 2, . . .

R(t+) = R(t) + θS(t), t = nT, n = 1, 2, . . . .

(2.1)

Here, all coefficients are positive constants, A denotes the influx or recruitment of the
susceptible and the exposed. The death rate for disease and physical disease rate are d and μ,
respectively. r is the recovery rate of infectious individual. θ (0 < θ < 1) is the proportion of
those vaccinated successfully, which is called impulsive vaccination rate. τ is the latent period
of the disease. Consider the death of exposed individuals during latent period of disease, that
is, βe−μτ(S(t − τ)I(t − τ)/(1 + aS(t − τ))) term. The disease is propagated both vertically and
horizontally, pμI (0 < p < 1) is the number of newborns of infectious who transfer to the
susceptible class, and (1 − p)μI is the number of newborns of the infectious who are infected
vertically.

The total population sizeN(t) = S(t) +E(t) + I(t) +R(t) can be determined by the differ-
ential equation

N ′(t) = A − μN(t) − dI(t), (2.2)

which is derived by adding all equations in system (2.1). So we haveA− (μ+d)N(t) ≤ N ′(t) ≤
A − μN(t). It follows that

A

μ + d
≤ lim

t→∞
infN(t) ≤ lim

t→∞
supN(t) ≤ A

μ
. (2.3)

Before going to any detail, we simplify model (2.1) and mainly discuss the following
model:

S′(t) = A − β
S(t)I(t)
1 + aS(t)

− μS(t) − (1 − p)μI(t) + αR(t), t /= nT,

I ′(t) = βe−μτ
S(t − τ)I(t − τ)
1 + aS(t − τ)

− (r + d + μ)I(t), t /= nT,

R′(t) = rI(t) − μR(t) − αR(t), t /= nT,

N ′(t) = A − μN(t) − dI(t), t /= nT,

S(t+) = (1 − θ)S(t), t = nT, n = 1, 2, . . .

I(t+) = I(t), t = nT, n = 1, 2, . . .

R(t+) = R(t) + θS(t), t = nT, n = 1, 2, . . .

N(t+) = N(t), t = nT, n = 1, 2, . . . .

(2.4)

The initial condition of (2.4) is given as

φ(ξ) = (φ1(ξ), φ2(ξ), φ3(ξ), φ4(ξ)) ∈ C+, φi(0) > 0, i = 1, 2, 3, 4, (2.5)
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where C+ = C([−τ, 0], R 4
+). From biological considerations, we discuss system (2.4) in the

closed set

Ω =
{
(S, I, R,N) ∈ R 4

+ | 0 ≤ S + I + R ≤ A

μ
, N ≤ A

μ

}
, (2.6)

where R4
+ denotes the nonnegative cone of R4 including its lower dimensional faces. It is easy

to show that Ω is positively invariant with respect to (2.4).
Before starting our main results, we give the following lemmas.

Lemma 2.1 (see [16]). Consider the following delay differential equation:

x′(t) = ax(t − τ) − bx(t), (2.7)

where a, b, τ > 0 and x(t) > 0 for t ∈ [−τ, 0]. The following hold:

(i) if a < b, then limt→∞x(t) = 0,

(ii) if a > b, then limt→∞x(t) = +∞.

Lemma 2.2. Consider the following impulsive differential equations:

u′(t) = a − bu(t), t /= nT,

u(t+) = (1 − θ)u(t), t = nT, n ∈ N,
(2.8)

where a > 0, b > 0, 0 < θ < 1. Then there exists a unique positive periodic solution of (2.8):

ũe(t) =
a

b
+
(
u∗ − a

b

)
e−b(t−kT), kT < t < (k + 1)T, (2.9)

which is globally asymptotically stable, where u∗ = a(1 − θ)(1 − e−bT)/b(1 − (1 − θ)e−bT).

3. Global attractivity of infection-free periodic solution

In this section, we study the existence of the infection-free periodic solution of system (2.4),
in which infectious individuals are entirely absent from the population permanently, that is,
I(t) = 0 for all t ≥ 0. Under this condition, system (2.4) becomes the following impulsive
system without delay:

S′(t) = A − μS(t) + αR(t), t /= nT,

R′(t) = μR(t) − αR(t), t /= nT,

N ′(t) = A − μN(t), t /= nT,

S(t+) = (1 − θ)S(t), t = nT, n = 1, 2, . . .

R(t+) = R(t) + θS(t), t = nT, n = 1, 2, . . .

N(t+) = N(t), t = nT, n = 1, 2, . . . .

(3.1)



C. Wei and L. Chen 5

From the third and sixth equations of system (3.1), we have limt→∞N(t) = A/μ. Further, if
I(t) = 0, it follows that limt→∞E(t) = 0 from the second and sixth equations of system (2.1).
In the following, we show that the susceptible population S and recovered population R oscil-
late with period T , in synchronization with the periodic impulsive vaccination. Consider the
following limit system of system (3.1):

R(t) =
A

μ
− S(t),

S′(t) = (α + μ)
(
A

μ
− S(t)

)
, t /= nT,

S(t+) = (1 − θ)S(t), t = nT, n ∈ N.

(3.2)

By Lemma 2.2, we know that the periodic solution of system (3.2),

S̃e(t) =
A

μ
+
(
S∗ − A

μ

)
e−(α+μ)(t−nT), nT < t ≤ (n + 1)T, (3.3)

is globally asymptotically stable, where S∗ = A(1 − θ)(1 − e−(α+μ)T)/μ(1 − (1 − θ)e−(α+μ)T).
Denote R1 = βe−μτδ/(1 + aδ)(r + d + μ),where δ = A(1 − e−(α+μ)T)/μ(1 − (1 − θ)e−(α+μ)T).

Theorem 3.1. IfR1 < 1, then the infection-free periodic solution (S̃e(t), 0, A/μ−S̃e(t), A/μ) of system
(2.4) is globally attractive.

Proof. Since R1 < 1, we can choose ε > 0 small enough such that

βe−μτ(δ + ε)
1 + a(δ + ε)

< r + d + μ. (3.4)

From the first equation of system (2.4), it follows that S′(t) ≤ (α + μ)((A/μ) − S(t)). Thus
consider the following comparison impulsive differential system:

z′(t) = (α + μ)
(
A

μ
− z(t)

)
, t /= nT,

z(t+) = (1 − θ)z(t), t = nT, n ∈ N.

(3.5)

By (3.2), we know that the periodic solution of system (3.5),

z̃e(t) = S̃e(t) =
A

μ
+
(
S∗ − A

μ

)
e−(α+μ)(t−nT), nT < t ≤ (n + 1)T, (3.6)

is globally asymptotically stable, where S∗ = A(1 − θ)(1 − e−(α+μ)T)/μ(1 − (1 − θ)e−(α+μ)T). Let
(S(t), I(t), R(t),N(t)) be the solution of system (2.4) with initial condition (2.5) and S(0+) =
S0 > 0, z(t) be the solution of system (3.5) with initial value z(0+) = S0. By the comparison
theorem for impulsive differential equations [17], there exists an integer n1 > 0 such that

S(t) < z(t) < z̃e(t) + ε, nT < t ≤ (n + 1)T, n > n1, (3.7)
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that is,

S(t) < z̃e(t) + ε ≤ A
(
1 − e−(α+μ)T

)
μ
(
1 − (1 − θ)e−(α+μ)T

) + ε
.= η. (3.8)

Further, from the second equation of system (2.4), we have that, for all t > nT + τ, n > n1,

I ′(t) ≤ βηe−μτ

1 + aη
I(t − τ) − (r + d + μ)I(t). (3.9)

Consider the following comparison equation:

y′(t) =
βηe−μτ

1 + aη
y(t − τ) − (r + d + μ)y(t). (3.10)

From (3.4), we have that

βηe−μτ

1 + aη
< (r + d + μ). (3.11)

According to Lemma 2.1, we obtain that limt→∞y(t) = 0.
Set (S(t), I(t), R(t),N(t)) be the solution of system (2.4) with initial condition (2.5) and

I(ξ) = φ(ξ) > 0 (ξ ∈ [−τ, 0]), y(t) be the solution of (3.10) with initial condition y(ξ) = φ(ξ) >
0 (ξ ∈ [−τ, 0]). By the comparison theorem in differential equation and the positivity of solution
(with I(t) ≥ 0), we have that

lim
t→∞

I(t) = 0. (3.12)

Therefore, for any ε1 > 0 (sufficiently small), there exists an n2 (n2T > n1T + τ) such that
0 < I(t) < ε1 for all t > n2T. By the fourth equation of system (2.4), we have

N ′(t) > A − μN(t) − dε1 for t > n2T. (3.13)

Consider the following comparison equation: z′1(t) = (A − dε1) − μz1(t).
It is clear that limt→∞z1(t) = (A−dε1)/μ; by the comparison theorem, we have that there

exists an integer n3 > n2 such that for all t > n3T, N(t) ≥ (A−dε1)/μ− ε1. Since ε1 is arbitrarily
small, we have

lim
t→∞

N(t) =
A

μ
. (3.14)

It follows from (3.12) and (3.14) that, there exists n4 > n3 such that

I(t) < ε1, N(t) >
A

μ
− ε1 for t > n4T. (3.15)

From the second equation of system (2.1), we have

E′(t) ≤
(

Aβε1
μ + aA

+ (1 − p)με1
)
− μE(t) for t > n4T. (3.16)

It is easy to obtain that there exists an n5 > n4 such that

E(t) < δ1 + ε1 for t > n5T, (3.17)
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where δ1 = (Aβε1 + (μ + aA)(1 − p)με1)/μ(μ +Aa). So from the first equation of system (2.4),
we have

S′(t) ≥
(
A +

αA

μ
− (1 − p)με1 − αδ1 − 3αε1

)
− (

βε1 + μ + α
)
S(t). (3.18)

Consider the following comparison impulsive differential equations for t > n5T and n > n5:

u′(t) =
(
A +

αA

μ
− (1 − p)με1 − αδ1 − 3αε1

)
− (

βε1 + μ + α
)
u(t), t /= nT,

u(t+) = (1 − θ)u(t), t = nT, n ∈ N.

(3.19)

By Lemma 2.2, we know that the periodic solution of system (3.19) is

ũe(t) = Θ + (u∗ −Θ)e−(α+μ+βε1)(t−nT), nT < t ≤ (n + 1)T, (3.20)

which is globally asymptotically stable, where

Θ =
A +Aα/μ − αδ1 − 3αε1 − (1 − p)με1

α + μ + βε1
,

u∗ = Θ
(1 − θ)

(
1 − e−(α+μ+βε1)T

)
1 − (1 − θ)e−(α+μ+βε1)T

.

(3.21)

By using the comparison theorem of impulsive differential equation [17], there exists an n6 > n5

such that

S(t) > ũe(t) − ε1, nT < t ≤ (n + 1)T, n > n6. (3.22)

Let ε1 → 0, then it follows from (3.8) and (3.22) that

S̃e(t) =
A

μ

(
1 − θe−(α+μ)(t−nT)

1 − (1 − θ)e−(α+μ)T

)
, nT < t ≤ (n + 1)T, (3.23)

is globally attractive, that is,

lim
t→∞

S(t) = S̃e(t). (3.24)

By the positivity of E(t) and sufficiently small ε1, it follows from (3.17) that

lim
t→∞

E(t) = 0. (3.25)

From the restrictionN(t) = S(t)+E(t)+I(t)+R(t),we have limt→∞R(t) = A/μ−S̃e(t). Therefore,
the infection-free periodic solution (S̃e(t), 0, A/μ − S̃e(t), A/μ) is globally attractive. This com-
pletes the proof.

Corollary 3.2. In system (2.4), the following states are true.

(i) If Aβe−μτ < (r + d + μ)(μ + Aa), then infection-free periodic solution (S̃e(t), 0, A/μ −
S̃e(t), A/μ) is globally attractive.
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(ii) If Aβe−μτ > (r + d + μ)(μ + Aa) and T < T ∗, then infection-free periodic solution
(S̃e(t), 0, A/μ − S̃e(t), A/μ) is globally attractive, where T ∗ = 1/(α + μ) ln(1 + (θ(r + d +
μ)μ)/(Aβe−μτ − aA(r + d + μ) − (r + d + μ)μ).

(iii) If θ > θ∗, then infection-free periodic solution (S̃e(t), 0, A/μ− S̃e(t), A/μ) is globally attrac-
tive, where θ∗ = (r+dμ)e−(α+μ)T −(r+d+μ)μ+(Aβe−μτ −a(r+d+μ)A)(1−e−(α+μ)T)/μ(r+
d + μ)e−(α+μ)T .

Theorem 3.1 determines the global attractivity of system (2.4) in Ω for the case R1 < 1.
From Corollary 3.2, we can see that a short pulse periodic (with T) or a large pulse vaccina-
tion rate (with θ) is the sufficient condition for the global attractivity of infection-free periodic
solution (S̃e(t), 0, A/μ − S̃e(t), A/μ).

4. Permanence

In this section, it is noted that the disease is endemic if the infectious population persists above
a certain threshold for sufficiently large time. The endemicity of the disease can be well cap-
tured and studied through the notion of uniform persistence and permanence.

Definition 4.1. System (2.4) is said to be uniformly persistent if there exists an m > 0 (indepen-
dent of the initial data) such that every solution (S(t), I(t), R(t),N(t)) with initial conditions
(2.5) of system (2.4) satisfies

lim
t→∞

infS(t) ≥ m, lim
t→∞

inf I(t) ≥ m, lim
t→∞

infR(t) ≥ m, lim
t→∞

infN(t) ≥ m. (4.1)

Definition 4.2. System (2.4) is said to be permanent if there exists a compact region Ω0 ∈ int Ω
such that every solution of system (2.4)with initial data (2.5)will eventually enter and remain
in region Ω0.

Denote

R2 =

(
βe−μτ/(r + d + μ) − a

)
A(1 − θ)

(
1 − e−μT

)
μ
(
1 − (1 − θ)e−μT

) ,

I∗ =
Aμ

(
R2 − 1

)
Aβ + (1 − p)μ2R2

.

(4.2)

Theorem 4.3. If R2 > 1, then there exists a positive constant m such that each positive solution
(S(t), I(t), R(t),N(t)) of system (2.4) satisfies I(t) ≥ m for t large enough.

Proof. Note that the second equation of system (2.4) can be rewritten as follows:

I ′(t) = I(t)
(
βe−μτ

S(t)
1 + aS(t)

− (r + d + μ)
)
− βe−μτ

d

dt

∫ t

t−τ

S(u)I(u)
1 + aS(u)

du. (4.3)

Define

V (t) = I(t) + βe−μτ
∫ t

t−τ

S(u)
1 + aS(u)

I(u)du. (4.4)
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According to (4.3), we calculate the derivative of V along the solution of (2.4):

V ′(t) = I(t)
(
βe−μτ

S(t)
1 + aS(t)

− (r + d + μ)
)

= (r + d + μ)I(t)
(

βe−μτS(t)
(r + d + μ)(1 + aS(t))

− 1
)
.

(4.5)

Since R2 > 1, then I∗ > 0 and there exists sufficiently small ε > 0 such that

βe−μτσ
(r + d + μ)(1 + aσ)

> 1, (4.6)

where

σ =

(
A − (1 − p)μI∗

)
(1 − θ)

(
1 − e−(βI

∗+μ)T)
(βI∗ + μ)

(
1 − (1 − θ)e−(βI∗+μ)T

) − ε > 0. (4.7)

We claim that for any t0 > 0, it is impossible that I(t) < I∗ for all t ≥ t0. Otherwise, there is a
t0 > 0 such that I(t) < I∗ for all t ≥ t0. It follows from the first equation of (2.4) that we have

S′(t) >
(
A − (1 − p)μI∗

) − (βI∗ + μ)S(t). (4.8)

Consider the following comparison impulsive system for t ≥ t0:

v′(t) =
(
A − (1 − p)μI∗

) − (βI∗ + μ)v(t), t /= nT,

v(t+) = (1 − θ)v(t), t = nT, n ∈ N.
(4.9)

According to Lemma 2.2, we obtain that

ṽe(t) =
A − (1 − p)μI∗

βI∗ + μ
+
(
v∗ − A − (1 − p)μI∗

βI∗ + μ

)
e−(βI

∗+μ)(t−nT), nT < t ≤ (n + 1)T, (4.10)

is the unique globally asymptotically stable positive periodic solution, where v∗ = (A − (1 −
p)μI∗)(1 − θ)(1 − e−(βI

∗+μ)T)/(βI∗ + μ)(1 − (1 − θ)e−(βI
∗+μ)T).

By the comparison theorem for impulsive differential equation [17], we know that there
exists t1 > t0 + τ such that the following inequality holds for t > t1:

S(t) > ṽe(t) − ε. (4.11)

Thus

S(t) > v∗ − ε
.= σ > 0 for t ≥ t1. (4.12)

From (4.6), we have βe−μτσ/(r + d + μ)(1 + aσ) > 1. By (4.5) and (4.12), we have

V ′(t) > (r + d + μ)I(t)
(

βe−μτσ
(r + d + μ)(1 + aσ)

− 1
)

for t ≥ t1. (4.13)
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Let

Il = min
t∈[t1,t1+τ]

I(t). (4.14)

We will show that I(t) ≥ Il for all t ≥ t1. Otherwise, there is a T0 > 0 such that I(t) ≥ Il for
t ∈ [t1, t1 + τ + T0], I(t1 + τ + T0) = Il, and I ′(t1 + τ + T0) ≤ 0. However, the second equation of
systems (2.4) and (4.12) imply that

I ′
(
t1 + τ + T0

) ≥ (r + d + μ)Il
(

βe−μτσ
(r + d + μ)(1 + aσ)

− 1
)

> 0. (4.15)

This is a contradiction, thus, I(t) ≥ Il for all t ≥ t1. As a consequence, (4.13) leads to

V ′(t) > (r + d + μ)Il
(

βe−μτσ
(r + d + μ)(1 + aσ)

− 1
)

> 0 for t ≥ t1, (4.16)

which implies that V (t) → ∞ as t → ∞. This contradicts with V (t) ≤ (A/μ)(1 + Aτβe−μτ/μ).
Hence, for any t0 > 0, the inequality I(t) < I∗ cannot hold for all t ≥ t0. Next, we are left to
consider two cases:

(1) I(t) ≥ I∗ for t large enough;

(2) I(t) oscillates about I∗ for t large enough.

It is clear that if I(t) ≥ I∗ for t large enough, then our aim is obtained. So we only need
consider the case (2).

Let

m = min
{
I∗

2
, I∗e−(r+d+μ)τ

}
. (4.17)

In the following, we will show that I(t) ≥ m for t large enough, let t∗ > 0 and ι > 0 satisfy
I(t∗) = I(ι + t∗) = I∗, and I(t) < I∗ for t∗ < t < t∗ + ι, where t∗ is sufficiently large such that
S(t) > σ for t∗ < t < t∗ + ι, we can conclude that I(t) is uniformly continuous since the positive
solution of (2.4) is ultimately bounded and I(t) is not affected by impulsive effects. Hence there
exists a constant T1 (0 < T1 < τ, and T1 is independent of the choice if t∗) such that I(t) > I∗/2
for t∗ ≤ t ≤ t∗ + T1. If ι ≤ T1, our aim is obtained. If T1 < ι ≤ τ , since I ′(t) > −(r + d + μ)I(t), and
I(t∗) = I∗, it is obvious that I(t) ≥ I∗e−(r+d+μ)τ for t∗ < t < t∗+ ι. If ι > τ ; by the second equation of
(2.4), we obtain I(t) ≥ I∗e−(r+d+μ)τ for t∗ < t < t∗ + τ. The same arguments can be continued, we
can obtain I(t) ≥ I∗e−(r+d+μ)τ for t∗+τ < t < t∗+ι. Since the interval [t∗, t∗+ι] is arbitrarily chosen,
we can conclude that I(t) ≥ m for t large enough. Based on the above discussions, the choice
of m is independent of the positive solution of (2.4), and we have proved that any positive
solution of (2.4) satisfies I(t) ≥ m for all sufficiently large t. This completes the proof.

Theorem 4.4. If R2 > 1, then the system (2.4) is permanent.

Proof. Suppose that (S(t), I(t), R(t),N(t)) be any solution of (2.4). From the first equation of
(2.4), we have

S′(t) ≥ pA −
(
βA

μ
+ μ

)
S(t). (4.18)
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Similarly, we have

lim
t→∞

S(t) ≥ q, (4.19)

where

q =
pAμ

βA + μ2

(1 − θ)
(
1 − e−(β(A/μ)+μ)T)

1 − (1 − θ)e−(β(A/μ)+μ)T
− ε. (4.20)

By Theorem 4.3, the third equation of (2.4) becomes

R′(t) ≥ rm − (μ + α)R(t). (4.21)

It is easy to obtain that

R(t) ≥ rm

μ + α
− ε

.= ω. (4.22)

Set

Ω0 =
{
(S, I, R,N) | q ≤ S, m ≤ I, ω ≤ R, S + I + R ≤ A

μ
,

A

μ + d
− ε ≤ N ≤ A

μ

}
. (4.23)

By Theorem 3.1 and above discussions, we know that the set Ω0 is a global attractor in Ω and,
of course, every solution of system (2.4) with initial condition (2.5) will eventually enter and
remain in region Ω0. Hence system (2.4) is permanent. This completes the proof.

Denote

T∗ = − 1
μ
ln

1
1 − θ

(
1 − θ

(
βe−μτ/

(
r + d + μ

) − a
)
A(

βe−μτ/
(
r + d + μ

) − a
)
A − μ

)
,

θ∗ = 1 − μeμT

A
(
βe−μτ/

(
r + d + μ

) − a
)(
eμT − 1

)
+ μ

.

(4.24)

Corollary 4.5. The following results are true.

(1) If T > T∗, then system (2.4) is permanent.

(2) If θ < θ∗, then system (2.4) is permanent.

5. Discussion

In this paper, we introduce the delayed SEIRS epidemic model with pulse vaccination and
nonlinear incidence rate of the form β(S(t)I(t)/(1 + aS(t))). As a result, it is observed that
nonlinear incidence, the latent period of disease, pulse vaccination rate, and pulse vaccination
period bring effects on the dynamics of our model. Theorems 3.1 and 4.4 show that R1 < 1, θ >
θ∗, or T < T ∗ implies that the disease will be eradicated, whereas R2 > 1, θ < θ∗, or T > T∗
implies that the disease will be epidemic. Our results indicate that a short pulse time or a
large pulse vaccinate rate will lead to eradication of the disease. In this paper, we only discuss
R1 < 1 and R2 > 1, but for closed interval [R1, R2], the dynamical behaviors of system (2.4)
have not been studied, that is, the threshold parameter for the reproducing number between
the eradication and the permanence of the disease has not been studied, which will be left in
the future research.
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