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The method of spectral analysis is employed to research the spatial dynamics of urban population
distribution. First of all, the negative exponential model is derived in a new way by using
an entropy-maximizing idea. Then an approximate scaling relation between wave number and
spectral density is derived by Fourier transform of the negative exponential model. The theoretical
results suggest the locality of urban population activities. So the principle of entropy maximization
can be utilized to interpret the locality and localization of urban morphology. The wave-spectrum
model is applied to the city in the real world, Hangzhou, China, and spectral exponents can give
the dimension values of the fractal lines of urban population profiles. The changing trend of the
fractal dimension does reflect the localization of urban population growth and diffusion. This
research on spatial dynamics of urban evolvement is significant for modeling spatial complexity
and simulating spatial complication of city systems by cellular automata.
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1. Introduction

The greatest shortcoming of the human race is our inability to understand the exponential function.

Albert A. Bartlett

Simulating the spatial dynamics of urban population is an interesting but a difficult project.
Urban population density can be modeled by two types of functions: one is the exponential
function known as Clark’s law [1], the other is the power function proposed by Smeed [2].
Geographers used to employ the exponential model to characterize population density of
monocentric cities. However, Smeed’s model has been favored since fractal cities came to
front (see, e.g., [3–5]). In fact, if we reject Smeed’s model, we will be unable to interpret
the law of allometric growth on urban area and population in theory. On the other hand,
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if we avoid Clark’s model, we will not be able to describe many cities’ population density
empirically. Geographers are often placed in a dilemma when dealing with spatial dynamics
of urban evolution.

In fact, the exponential function implies translational symmetry, while the power
function denotes dilation symmetry or scaling symmetry; the exponential function implies
simplicity and randomness, while the power function indicates complexity and structure
[6, 7]. In fractal geometry, two exponential functions can often construct a power function,
while a power function can always be decomposed into two exponential functions [8]. It
is difficult for us to understand the exponential function, and it is especially difficult to
understand the relation between the exponential distribution and the power-law distribution.
A conjecture is that exponential law and power law represent, respectively, two modes of
urban evolvement which supplement each other.

Population is one of the two central variables which can be employed to explore the
dynamics of cities [9]. However, the underlying rationale of intraurban population growth
and diffusion is still a question pending further discussion. Clark’s law on urban density can
provide a window for us to apprehend the dynamics of urban morphology from the angle of
view of population. The negative exponential distribution seems to mean nonfractal structure
of urban population, but it can be associated with fractal structure by the Fourier transform.
In order to probe the mysteries of fractal cities and the related spatial dynamics, we must
research the essentials of negative exponential distribution.

In this paper, the exponential model of urban density will be explored by using the
wave-spectral analysis. The significance of studying the classical model is in three aspects.
The first is to reveal the locality and localization of urban population evolution, which is
very important for simulating spatial complexity of cities through computers. The second
is to find a new approach to evaluating a kind of fractal dimension of urban form, which
differs from but can make up box dimension and radial dimension. The third is to understand
spatial complexity of urban evolvement in the new perspective. The study of complexity
concerns emergence of fractals, localization, strange attractor, symmetry breaking, and so
on [10]. Fractal structure and localization can be brought to light to some extent from the
negative exponential distribution by means of spectral analysis.

The rest of this paper is structured as follows. Section 2 presents a new derivation
of the negative exponential model of urban population density by the entropy-maximizing
principle, which is actually one of the fundamental reasons of fractal cities [11]. Based on
the exponential function, an approximate power-law relation between wave number and
spectral density is derived by Fourier transform. Section 3 provides an empirical analysis,
including spectral analysis, correlogram analysis, and information entropy analysis, by
applying the theoretical models to the city of Hangzhou, China. The computations lend
support to the theoretical inferences given in Section 2. In Section 4, the differences and
relationships between the negative exponential distribution and the inverse power-law
distribution are discussed to distinguish the concept of locality from that of action at a
distance.

2. Mathematical models

2.1. New derivation of Clark’s law

A power law indicating fractal structure of urban systems can be decomposed into two
exponential laws [8], and the exponential laws can be derived by using the entropy-
maximizing method [12]. This suggests that fractal structure can be interpreted with the
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principle of entropy maximization, and exponential function is an important bridge between
entropy and power law. On the other hand, as complex spatial system, an urban phenomenon
can be modeled with different mathematical expressions under different conditions. Urban
population density can be described by a number of functions, among which the negative
exponential function is always valid in empirical analysis [1, 13, 14]. Since that the
exponential law can connect entropy maximization and fractal, we are naturally interested
in the cause and effect of the urban exponential distribution. It will be shown that Clark’s law
comes between entropy-maximizing process and special fractal structure.

As a theoretical study, this paper is focused on a monocentric city, and all the data
analyses are based on the idea from statistical average. In this instance, the growth of cities is
often regarded as a process of spatiotemporal diffusion [15], which can be abstracted as the
following partial differential equation

∂ρ(x, y, t)
∂t

= K

[
∂2ρ(x, y, t)

∂x2
+
∂2ρ(x, y, t)

∂y2

]
− aρ(x, y, t), (2.1)

where a denotes growth/decay coefficient or transfer coefficient, K is called “diffusivity”
or diffusion coefficient, and x and y refer to two directions of spatial diffusion. For an
isotropic diffusion, one direction (say, x) has no difference from the other direction (say,
y), we have x = y = r, where r represents the distance from the center of city (where
r = 0). In order words, we can substitute one-dimension diffusion process for two-dimension
process to analyze the isotropic city systems. Now, if ρ does not change with time, namely,
if ∂ρ/∂t = 0, then (2.1) reduces to the common differential equation characterizing one-
dimension diffusion such as d2ρ(r)/dr2−aρ(r)/K = 0 (the initial condition is ρ|r=0 = ρ0, while
the boundary condition ρ|r→∞ = 0), whose solution is just the exponential function known
as Clark’s law (see Appendix A). This suggests that the exponential law in fact reflects an
instantaneous equilibrium of urban population diffusion.

Assuming that population density ρ(r) at distance r from the city center declines
monotonically, Clark [1] proposed an empirical model that can be written as

ρ(r) = ρ0 exp(−br) = ρ0 exp
(
− r

r0

)
, (2.2)

where ρ0 is a constant of proportionality which is supposed to equal the central density, that
is, ρ0 = ρ(0), b denotes a rate at which the effect of distance attenuates, and r0 = 1/b refers to
a characteristic radius of urban population distribution. Thus we have r0 =

√
K/a. Clark [1]

fitted the log transform of (2.1) to more than 20 cities by using linear regression. The results
form the solid empirical foundation of the negative exponential law of monocentric urban
density.

In the real world, urban growth is often not isotropic, but in an average sense, we can
regard an anisotropic process as an isotropic process. Just based on this idea, Clark’s law
is propounded. An urban population density function is actually defined in one-dimension
space but it includes information of two-dimension space. Generally speaking, an exponential
distribution function can be derived from the entropy maximization principle. Bussiere
and Snickers [16] once showed that Clark’s model could be derived from Wilson’s [17]
spatial interaction models (see also Wilson [18]), which is based on the entropy-maximizing
principle. In fact, under ideal conditions, Clark’s model can be derived in a very simple
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way from several geographical assumptions by using entropy-maximizing methods. Now,
in order to reveal the physical essence of exponential distribution of urban population, a new
derivation of (2.2) is given in this subsection. The mathematical deduction is more graceful
and compendious than previous derivation presented by Bussiere and Snickers [16], and the
process is helpful for exploring the spatial dynamics of urban evolution.

Suppose that the total population in the urban field of a monocentric city is Pt, and the
urban growth is considered to be a continuous process in time and space. An urban field is
defined as a bounding circle based on the center of the urban cluster, marked by the maximum
radius R which contains the whole cluster [3, page 340]. Imagining that the urban map has
been digitalized with low resolution, we can “string” n+1 pixels, which may be called “cells,”
by drawing a straight line or a radial from the center of the city to the boundary (see Figure 1).
Further, suppose the population in the ith cell along the “line” is ρi (i = 0, 1, 2, . . . , n), and the
whole population along the line is P . The variable ρi has dual attributes. On the one hand, it
denotes the population size within the ith cell along the line, and on the other, it represents
just the average population density of the ith ring comprising a number of cells.

Since Clark’s law is just the solution to the one-dimension diffusion equation, we can
examine one-dimension population distribution based on the idea from statistical average.
The postulates of this study can be summarized as follows. (1) A monocentric city has no
strict boundary because of scaling invariance of urban form. (2) Population is dense enough
in urban field. The next step is to find the functional relationship between density ρi and
distance r. For this purpose, the entropy-maximizing method is employed. The number of
states of the population distributed in all the cells along the radial, W , can be expressed as an
ordered division problem

W =

(
P

ρ0, ρ1, . . . , ρn

)
=

P !∏n+1
i=0 ρi!

. (2.3)

We use the state in one-dimension urban space to represent the state in two-dimension urban
space in average sense. Then the entropy of population distribution profile, He, is given by

He = lnW = lnP ! −
n+1∑
i=0

ln ρi!. (2.4)

Suppose that the entropy approaches to maximization. We can define an objective function
such as

MaxHe = lnW. (2.5)

According to our assumptions stated above, the objective of city evolution is subject to two
constraint conditions as follows:

n∑
i=0

ρi = P, (2.6)

ρ0 +
n∑
i=1

2πiρi = Pt. (2.7)
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Figure 1: A sketch map of urban field with rings and cells.

Equation (2.6) can be understood easily, but (2.7) need be made clear. Here ρ0 refers to the
population number in the center of the city, and 2πiρi to the population number in the ith
ring that is measured with a circle of cells. In fact, if we measure the distance by the size of
the cells, namely, take the diameter of cells as length unit, then i is just the distance from the
centroid of the ith cell to the center of the city. That is, when the cells are very very small,
the ordinal number i can represent the radius of the ith ring, and 2πi is the corresponding
perimeter.

In this case, if we can find a mathematical expression to describe the relationship
between ρi and i, the problem will be solved immediately. Thus our question can be
turned into the process of finding conditional extremum because that the value of entropy
depends on the density of spatial distribution of urban population. A Lagrangian function is
constructed as

L
(
ρi
)
= lnP ! −

∑
i

ln ρi! + λ1

(
P −

∑
i

ρi

)
+ λ2

(
Pt − ρ0 −

∑
i

2πiρi

)
, (2.8)

where λ is the Lagrangian multiplier (LM). Theoretically ρi and P are both large
enough in terms of our postulates. According to the well-known Stirling’s formula N! =
(2π)1/2NN+1/2e−N , we have an approximate relation, ∂ lnN!/∂N = lnN, where N is
considerably big. So, differentiating (2.8) partially with respect to ρi yields

∂L
(
ρi
)

∂ρi
= − ln ρi − λ1 − 2πλ2i. (2.9)

Considering the condition of extremum ∂L(ρi)/∂ρi = 0, we have

ρi = e−λ1e−2πλ2i. (2.10)
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In theory, we can improve the resolution of digital map unlimitedly, and thus, the
cell/pixels become infinitesimal. That is to say, for simplicity, the discrete distance variable
represented by i can be replaced with a continuous one represented by r for the time being,
that is, i → r, ρi → ρ(r). Inserted with (2.10), the discrete (2.7) in which r is used as a
substitute for i can be rewritten as an integration expression

∫R

0
2πrρ(r)dr = e−λ1

∫R

0
2πre−2πλ2r dr = Pt, (2.11)

where R is the radius of urban field and it can be defined by R = F/2, here F is the Feret’s
diameter [3], (see Kaye [19]). Equation (2.11) is the continuous expression replacing (2.7).
In keeping with the first postulate, R is large enough. Using integration by decomposition
and taking l’Hospital’s rule into account, we can find the solution of (2.11) such as (see
Appendix B)

e−λ1 = 2πλ2
2Pt. (2.12)

Substituting (2.12) into (2.10) yields

ρ(r) = 2πλ2
2Pte

−2πλ2r . (2.13)

If r = 0 as given, then (2.13) collapses to

ρ(0) = 2πλ2
2Pt = ρ0. (2.14)

The characteristic radius of the city, r0, can be defined by

ρ0 = e−λ1 =
Pt

2πr2
0

. (2.15)

Inserting (2.15) into (2.14) gives

2πλ2 = b =
1
r0
. (2.16)

Substituting (2.14) and (2.16) into (2.13) immediately yields Clark’s law, that is, (2.2). Further,
inserting (2.2) into (2.6), we can derive r0 = P/ρ0. The maximum of entropy can be proved to
be Hmax = e ln r0, where e is the base of the natural system of logarithms, having a numerical
value of 2.7183 approximately.

Entropy maximization suggests the most probable distribution on some conditions.
The negative exponential distribution of urban population density is not inevitable, but it is
the most probable state for at least the monocentric city. This kind of distribution suggests
a special fractal profile, which can be brought to light by Fourier analysis and scaling wave-
spectrum relation.
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2.2. Wave-spectrum function of urban density

The negative exponential model of urban density is in essence a special spatial correlation
function. A power-law relation between wave number and spectrum density can be derived
from the exponential function. Considering the interaction between the cells along the radial
in Figure 1, we can construct a density-density correlation function as follows:

C(r) =
∫∞
−∞
ρ(x)ρ(x + r)dx = 2ρ2

0

∫∞
0
e−2x/r0−r/r0 dx, (2.17)

where ρ(x) denotes the population density of cell X at distance x from the city center, ρ(x+ r)
refers to the population density of another cell at distance r from X. Given x = 0, it follows
that one cell becomes the center of the city, and the spatial correlation function collapses to
an exponential function

C(r) = ρ(0)ρ(r) = ρ2
0e
−r/r0 . (2.18)

If the data are so normalized that ρ0 = 1, we have C(r) = ρ(r), and thus (2.18) is equivalent
to (2.2). In this case, Clark’s law is just a special density-density correlation function, which
indicates spatial correlating action between the city center and the location at distance r from
the center. The distance parameter, r0, is relative to the spatial correlation length. A larger
value of the characteristic radius (r0) suggests a longer correlation distance.

Note that the autocorrelation function and the energy spectrum can be converted to
each other through Fourier’s cosine transform:

S(k) =
∫∞
−∞
C(r)e−j2πkr dr = 2

∫∞
0
C(r)cos 2πkr dr, (2.19)

where j =
√
−1 is the unit of complex number, k denotes wave number, that is, the reciprocal

of the wavelength, S(k) represents corresponding energy spectral density. The concept of
energy spectrum comes from engineering mathematics. The product of Fourier transform of a
function and its conjugate bears an analogy with the mathematical form of energy in physics
[20]. In the light of the symmetry of correlation function, the Fourier transform of (2.18) can
be given in the form

F(k) = ρ2
0

∫∞
−∞
e−r/r0e−j2πkr dr =

2r0ρ
2
0

1 + j2πkr0
. (2.20)

As 2r0ρ
2
0 is large enough, we have

[
1

2r0ρ
2
0

]2

−→ 0. (2.21)
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Thus the energy spectral density can be gained according to energy integral such as [21]

S(k) =
∣∣F(k)∣∣2 =

(
2r0ρ

2
0

)2

1 + r2
0(2πk)

2
≈ 1

(πk)2/
(
ρ4

0

) ∝ k−2. (2.22)

In practice, the length of sample path, L, is generally limited, therefore the wave spectrum
density W(k) = |G(k)|2/L is always employed to substitute for the energy spectrum density
S(k). Then (2.22) can be rewritten as [22]

W(k) ∝ k−2. (2.23)

Equation (2.23) is an approximate expression based on ideal conditions, and it can be
generalized to the following scaling relation:

W(k) ∝ k−β, (2.24)

where β is called “spectral exponent” which usually ranges from 0 to 3. When β value is near
1, (2.24) indicates what is called 1/β noise (see, e.g., [23, 24]). In fact, the spectral exponent is
associated with a fractal dimension of urban population profiles.

For a time series or spatial series, if the relation between spectral density and frequency
or wave number follows the scaling law defined by (2.24), a fractal structure can be revealed.
It has been demonstrated that, for dE = 1 dimension variables, the connection between β and
D is given by [25–27]

D = dE +
3 − β

2
=

5 − β
2

= 2 −H, (2.25)

where dE refers to the dimension of Euclidean space. Accordingly, β = 5 − 2D, where D is the
fractal dimension of urban population profiles (dE < D < dE + 1), and H denotes the Hurst
exponent (0 ≤ H ≤ 1). Further, the autocorrelation coefficients of the rate of changes can be
derived from the fractional Brownian motion as in [25]

CΔ(r) =

〈
− ρ(r − 1)ρ(r + 1)

〉
〈
ρ(r)2〉 = 22H−1 − 1. (2.26)

This is a special density-density correlation function, which can be understood by means of
the knowledge of time series analysis. Many methods of analyzing times series, including
autocorrelation analysis, autoregression analysis, and spectral analysis, can be employed to
deal with spatial series [28]. If D = 1.5 or β = 2, then we have H = 1/2, and thus CΔ = 0.
In this case, the ith cells act directly on and only on the (i ± 1)th cells, and do not act on the
(i±2)th cells or more. If D < 1.5 or β > 2, then we have H > 1/2, and thus CΔ > 0. In this case,
for u > 1, the ith cell can act directly on the (i ± u)th cells positively. If D > 1.5 or β < 2, then
we have H < 1/2, and thus CΔ < 0. In this case, the ith cell will act directly on the (i ± u)th
cells negatively.
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For the negative exponential function of urban population density, the expected result
of spectral exponent is β ≈ 2, thus the fractal dimension is D ≈ 3/2 = 1.5, and the Hurst
exponent is H = 2−D ≈ 0.5, which gives the autocorrelation coefficient CΔ ≈ 0. That suggests
a spatial locality of city systems. In physics, the principle of locality coming from Einstein [29]
is that distant objects cannot have direct influence on each another. In other words, an object
is influenced directly only by its immediate surroundings. The fact of spatial autocorrelation
coefficient CΔ → 0 implies that a population cell tends to interact only on the immediate
cells.

3. Empirical analysis

3.1. Study area and data resource

The city of Hangzhou is taken as an example to verify the wave-spectrum relation of
urban population density and related theory. Hangzhou is the capital of Zhejiang province,
China. The urban density data in 1964, 1982, 1990, and 2000 come from census, which is
processed by Feng [14]. The census tract data are based on jiedao, which bears an analogy
with the UK enumeration districts [30], or the US subdistricts [13], while the system of
jiedao has an analogy with the urban zonal system in Western literature (see [3, page
325]). In the demographic sense, a jiedao is a census tract. The data are processed by
means of spatial weighed average. The length of sample path is 26, and the maximum
urban radius is 15.3 km. The method of processing data is illuminated in detail by
Feng [14]. Some necessary explanations on sampling and data processing are made as
follows.

(1) Sampling area. The data cover the metropolitan area (MA) of Hangzhou, which is
greater than the urbanized area (UA). The spatial scopes of sampling in four years are same
in order to make it sure that the parameters from 1964 through 2000 are comparable. Because
of scaling invariance of urban form [3], we take no account of the borderline between the
urban and rural areas.

(2) Calculation method. A series of concentric rings are drawn around city center in
proportional spacing (see Figure 2). The ratio of each partial zone to the whole area between
two rings is taken as the weight of computing urban population density. A region between
two adjacent rings can be named a circular belt, which will be numbered as p = 0, 1, . . . , n,
where n is the number of circular belt. The zones can be numbered as q = 1, 2, . . . , m, where m
is the number of zones. Let Spq be the common area of the pth circular belt and the qth zone,
that is,

Spq = Bp
⋂
Zq, (3.1)

where Bp represents the pth belt, Zq denotes the qth zone, both of them are measured with
area; therefore, Sij is the area of the intersection of Bp and Zq. Defining a weighted coefficient
wpq as

wpq =
Spq

Sp
=

Spq∑
q Spq

=
Spq

π
(
r2
p+1 − r

2
p

) , (3.2)
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Figure 2: Study area and zonal system in the Hangzhou metropolis (from Feng [14]).

we have

ρp =
m∑
q=1

wpqρq =
1
Sp

m∑
q=1

Spqρq, (3.3)

in which ρq is the population density of the qth zone (jiedao), which can be known from the
census datum. Thus

Sp =
m∑
q=1

Spq = π
(
r2
p+1 − r

2
p

)
, (3.4)

where rp refers to the radius of the pth ring. It is evident that ρp denotes the average density

of the pth circular belt. The weighted arithmetic average can lessen the influence of zone’s
scope on the estimated results of population density as much as possible.

(3) Spatial scale. The radius difference between rings is 0.6 km, less than r0, that is, the
average distance of urban population activity. The parameter values of r0 can be estimated
with Clark’s model, namely, (2.2).

3.2. Data processing method and results

The population density of Hangzhou city will be analyzed from three angles of view:
spectral analysis, correlogram analysis, and information entropy analysis. Accordingly, we
will compute wave-spectral density, autocorrelation function, and information entropy. The
procedure of wave spectrum analysis based on fast Fourier transform (FFT) can be summed
up as five steps.
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Table 1: Wave number and spectral density of Hangzhou urban population density: 1964–2000.

Wave number (k) Spectral density W(k)
1964 1982 1990 2000

0 470847029 687015768 969469086 1494703196
0.03125 266735175 376124165 518629122 675108949
0.0625 163038091 231101694 283630373 294766651
0.09375 80198737 109872611 124617149 102574154
0.125 34091648 46787205 52487145 31878318
0.15625 11713224 17423260 24322424 24756703
0.1875 10527175 14968825 21343643 29845517
0.21875 12592259 18232629 22844713 24457983
0.25 11068578 17010714 15856897 11715162
0.28125 10257519 15964575 12434438 6237997
0.3125 10488070 16550655 14519617 8907607
0.34375 9395933 14802082 14191199 10727756
0.375 7431240 12355945 11425873 10425179
0.40625 6006155 9418308 8389117 9420298
0.4375 4840628 7937045 6060730 6493748
0.46875 5667641 8597673 6329055 4789005
0.5 6772368 9776351 7245194 4698112

Step 1 (sample path extension). The symmetrical rule of the FFT’s recursive algorithm
requires the length of time series to be an integer power of 2, that is, L = 2z (z = 1, 2, 3, . . .).
However, there are 26 data points in our spatial sample path (n = 26 ≈ 24.7). A process called
“zero-padding” can be used to bring the number up to the next power of 2. In this case, the
best way is to add 6 zeros at the end of the data series to bring the number to 32 (i.e., L = 25).

Step 2 (FFT of spatial series). Performing the FFT on the extended population density data of
Hangzhou city yields a complex data series F(k). The processing method is so accessible that
MS Excel can give the results conveniently.

Step 3 (spectrum density calculation). The formula is such as W(k) = |F(k)|2/L = |F(k)|2/32.
It is not difficult for us to compute the spectral density based on the FFT results (see Table 1).
The spectral density is just the product of FFT result and its conjugate divided by the extended
sample path length (L = 32).

Step 4 (making wave-spectra plots). As soon as the population density is transformed into
spectral density, a plot reflecting the relation between wave number and spectral density can
be given easily (see Figure 3). Let the circular belts be numbered as p = 0, 1, 2, . . . , L−1, where
L = 25 = 32. Thus the wave number will be defined by k = p/L.

Step 5 (modeling the wave-spectra relations). If the wave-spectra plots displayed in Figure 3
show some attenuation trend, we can fit the data of Table 1 to (2.24). A least square
computation will give the spectral exponent β, from which we can estimate the fractal
dimension D and Hurst exponent H by means of (2.25).

All the population density data of Hangzhou city in four years satisfy the power law
in the form stipulated by (2.24) to a great extent. A least squares calculation utilizing the data
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Figure 3: Wave-spectra plots of Hangzhou urban population density distribution: 1964–2000.

of Table 1 gives four spectral exponent β values. The fractal dimension D, Hurst exponent
H, and the autocorrelation coefficient CΔ can be evaluated consequently (see Table 2). From
1964 to 2000, the spectral exponent values become closer and closer to β = 2, the fractal
dimension values become closer and closer to D = 3/2, and the Hurst exponent values
become closer and closer to H = 1/2. All of these suggest a phenomenon of localization
of urban population evolution: a population cell is inclined towards acting directly on the
immediate cells, and not on the alternate cells, that is, nonimmediate cells. What is more, the
wave-spectrum relations and spectral exponent values indicating 1/f noise [23] remind us
of the self-organized criticality (SOC) of urban evolution [31–33].

It should be made clear that the fractal dimension used here is different from those
employed to characterize two-dimension urban form such as box dimension and radial
dimension ([34], White and Engelen [35]). Generally speaking, we need three kinds of fractal
dimensions at least to characterize the city form with fractal structure. The first is the box
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Table 2: Estimated values of model parameters and related statistics of Hangzhou urban density. The
characteristic radius (r0) values are estimated by means of least squares computation based on (2.2), and
using r0 values, we can compute the maximum entropy with the formulaHmax = e ln r0. The unit of entropy
is “nat.”

Year Characteristic
radius (r0)

Spectral
exponent

(β)

Goodness
of fit (R2)

Fractal
dimension

(D)

Hurst
exponent

(H)

Autocorrelation
coefficient (CΔ)

Maximum
entropy
(Hmax)

1964 3.564 1.489 0.925 1.756 0.245 −0.298 3.455
1982 3.671 1.435 0.920 1.783 0.218 −0.324 3.535
1990 3.628 1.664 0.966 1.668 0.332 −0.208 3.503
2000 3.946 1.798 0.949 1.601 0.399 −0.130 3.731

Table 3: Autocorrelation function (ACF) and partial autocorrelation function (PACF) values of
Hangzhou’s population density: 1964–2000. As the sample path is not too long, only the first five values
are really significant (261/2 ≈ 5). In time or spatial series analysis, we can judge the nature of series by
standard error or by Box-Ljung statistic including Q-statistic and corresponding significance. Generally, it
is easier and more visual to use the two standard-error bands shown in the histograms.

Distance (r) Lag (l) 1964 1982 1990 2000
ACF PACF ACF PACF ACF PACF ACF PACF

0.9 1 0.882 0.882 0.878 0.878 0.892 0.892 0.903 0.903
1.5 2 0.757 −0.093 0.753 −0.075 0.773 −0.110 0.796 −0.105
2.1 3 0.626 −0.099 0.622 −0.099 0.656 −0.058 0.683 −0.084
2.7 4 0.496 −0.073 0.486 −0.099 0.532 −0.107 0.571 −0.066
3.3 5 0.365 −0.090 0.359 −0.057 0.410 −0.065 0.462 −0.052
3.9 6 0.253 −0.014 0.246 −0.028 0.292 −0.072 0.339 −0.152
4.5 7 0.142 −0.084 0.142 −0.050 0.177 −0.071 0.216 −0.091

dimension Db, which can be estimated by the box-counting method [36]; the second is radial
dimensionDf , which is defined by the area-radius scaling [3, 5]; and the third is the dimension
of fractal lines [26, 27], the author of this paper calls it profile dimension Ds when it is applied
to urban morphology. The third type of dimension can be estimated easily through the wave-
spectrum relation (see Appendix C).

Spectral analysis and correlation analysis represent different sides of the same coin in
theory, while empirically correlation analysis and spectral analysis supplement each other.
Therefore, a correlogram analysis of Hangzhou urban density should be made to consolidate
the results of wave-spectra analysis. A spatial autocorrelation function can be based on the
relationship between ρ(r) and ρ(r + l), where l refers to displacement analogous to time lag
in time series analysis. Part of the autocorrelation function (ACF) and partial autocorrelation
function (PACF) values is listed in Table 3, and the results in 2000 are shown in Figure 4. The
ACF attenuates gradually when the displacement becomes long and displays some damped
oscillation. What interests us is the PACF, which cuts off at a displacement of 1. That is,
partial autocorrelation coefficients (PACCs) are not significantly different from 0 when the
displacement l > 1 (see Table 3 and Figure 4(b)). The cutoff of PACF at a displacement of
1 suggests a possible locality in spatial activities of urban population: a population cell acts
directly on and only on the proximate population cells, not on alternate cells. Evidently, the
correlogram analysis lends further support to the conclusion drawn from the wave-spectrum
analysis.
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Figure 4: Histograms of spatial ACF and PACF of Hangzhou’s population density (2000). The two lines
in the histograms are called “two standard-error bands,” according to which we can know whether or not
there is significant difference between ACF or PACF values and zero.

There exists a mathematical relation between fractal dimension and information
entropy. In a sense, Hausdorff dimension can be proved to be equivalent to Shannon’s
information entropy [37]. It is hard to evaluate the population distribution entropy by using
(2.4), we can only estimate the maximum entropy by using the formula Hmax = e ln r0, which
is based on one-dimensional continuous measure (see Table 2). However, it is easy to calculate
the one-dimensional discrete information entropy of population profile along the radial (see
Figure 1). Defining a probability such as

Pi =
ρi∑n
i=0 ρi

, (3.5)

where variables ρ and n fulfill the same roles as in (2.3) or (2.4), then we have an information
entropy

He = −
n∑
i=0

Pi lnPi, (3.6)

in which He refers to the Shannon’s entropy. The results of spatial entropy for Hangzhou’s
population distribution in four years are as follows: He = 2.459 nat in 1964, He = 2.484 nat in
1982, He = 2.549 nat in 1990, and He = 2.725 nat in 2000. The maximum information entropy
based on discrete measure is Hm = ln(26) = 3.258 nat. The redundancy Z measuring the ratio
of actual entropy to the maximum entropy and subtracting this ratio from 1 can be applied to
spatial entropy statistics [38]. Using the formula Z = 1−H/Hm, the redundancy is computed
as follows: Z1964 = 0.245, Z1982 = 0.237, Z1990 = 0.218, Z2000 = 0.164. The information entropy
values become larger and larger, and the redundancy values approach the minimum value 0.
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Entropy maximization

Exponential distribution

The first-order
cutoff of PACF

β → 2, D → 3/2,
H → 1/2, C2 → 0

Localization Locality

Figure 5: Entropy maximization suggesting localization of urban population distribution.

This trend gives further weight to the viewpoint that the dynamics of urban population
evolvement in Hangzhou is actually a process of entropy maximization.

As stated above, information entropy maximization implies negative exponential
distribution of urban population density, and the exponential distribution denotes spectral
exponent β = 2 and thus fractal dimensionD = 1.5. On the other hand, the PACF based on the
exponential function shows a cutoff at a displacement of 1. All of these suggest a localization
tendency of urban population distribution in Hangzhou. The reasoning process from entropy
maximization to localization of spatial distributions of urban population is illustrated as
Figure 5. In physics, localization is a phenomenon according to which the stationary quantum
states of electrons in an extended system are localized due to disorder [39]. As for cities,
localization can be defined as follows: a system of nonlocality changes gradually to that of
locality.

4. Questions and discussion

As indicated above, urban population density can be modeled by different functions under
different conditions. The diversity or variability of urban models suggests asymmetry or
symmetry breaking of geographical systems, which thus suggests spatial complexity of city
systems and complication of urban evolution. Besides the negative exponential function, the
inverse power function is also very important in modeling urban form. The relations between
the exponential function and the power function were expounded by Batty and Kim [40].
Two questions will be discussed and answered here. The first is the difference between the
negative exponential distribution and the inverse power-law distribution where the spatial
dynamics is concerned, and the second is the locality and localization of urban population
evolution.

The negative exponential function known as Clark’s model and the inverse power
function known as Smeed’s model are two types of special spatial correlation functions.
Exponential correlation function implies simple structure, while power-law correlation
function suggests complex dynamics. If and only if a system falls into the self-organized
critical state, the spatial correlation will follow a power law. Otherwise it follows an
exponential law [22, 23]. In urban studies, the exponential function is always used to
characterize urban population density, while the power function can be used to model urban
land use density. Research into the relation between exponential law and power law is
instructive for us to explore deeply the spatial dynamics of urban morphology.
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Figure 6: Histograms of spatial ACF and PACF based on the exponential distribution.

The negative exponential distribution indicates locality in theory, while the power
law implies action at a distance. This viewpoint can be verified by the correlogram analysis
based on simple simulation computation. Both the ACF and PACF can provide a summary
of a time or spatial series’ dynamics [41]. The ACF based on the standard exponential
distribution displays a gradual one-sided damping (see Figure 6(a)), while the PACF of
the exponential distribution cuts off at a displacement of 1—the partial autocorrelations
drop abruptly to 0 beyond displacement 1 (see Figure 6(b)). The PACF seems to suggest
a property of locality associated with the exponential distribution of urban density. As for
Hangzhou city, the PACF is consistent with the result based on the standard exponential
distribution, but the ACF differs in the damping way just because that the exponential
distribution in the real world is not often very standard. In other words, the urban population
dynamics of Hangzhou from 1964 to 2000 is only gradual localization without proper
locality.

It is revealing to compare the correlogram of the exponential distribution with that of
the power-law distribution. The ACF and PACF based on the standard power-law function
differ from those based on the standard exponential function in an important way. The ACF
of the power-law distribution displays a slow one-sided damping (see Figure 7(a)), while
the corresponding PACF displays rapid one-sided damping without cutoff (see Figure 7(b)).
In short, both the ACF and PACF of the power-law distribution are trailing, and this
phenomenon reminds us of the action at a distance of spatial activities.

The differences of ACF and PACF between the exponential distribution and the power-
law distribution are obvious and interesting. The ACF of the power-law distribution decays
more slowly than that of the exponential distribution. In particular, the PACF of the power-
law distribution is trailing, while the PACF of the exponential distribution cuts it off at the
displacement of 1. The former suggests an action at a distance, while the latter reminds
us of locality of spatial interaction (see Figure 8). The similarities and differences between
the correlograms of the exponential distribution and that of the power-law distribution are
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Figure 7: Histograms of spatial ACF and PACF based on the power-law distribution.

Cell1 Cell2 Cell3

(a) Locality

Cell1 Cell2 Cell3

(b) Action at a distance

Figure 8: Sketch maps of locality and action at a distance of urban dynamics. In (a) indicative of locality,
Cell1 only acts on Cell2, not on Cell3, while in (b) indicating action at a distance, Cell1 not only acts on
Cell2, but also on Cell3, Cell4, and so on.

tabulated as follows (see Table 4). The correlograms of population density distributions of
Hangzhou are more similar to those of the exponential distribution than those of the power-
law distribution.

As indicated above, the exponential distribution has a characteristic length, r0,
which indicates simple geometrical patterns, while the power-law distribution has no
characteristic length, which indicates complex patterns associated with fractal form and
structure. Revealing the relationship between locality and action at a distance of urban
evolution is very important for modeling spatial complexity by using cellular automata (CA).
The original CA model possesses locality. In urban simulation, the CA’s locality is gradually
replaced by action at a distance [35, 42, 43]. For urban-land dynamics, the CA model with
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Table 4: Autocorrelation function (ACF) and partial autocorrelation function (PACF) values.

Distribution Function Correlogram Suggestion

Exponential distribution ACF Tailing: gradual one-sided damping
PACF Cutoff at a displacement of 1 Locality

Power-law distribution ACF Tailing: slow one-sided damping
PACF Tailing: rapid one-sided damping Action at a distance

Urban density of Hangzhou city ACF Damped oscillation
PACF Cutoff at a displacement of 1 Locality

action at a distance is suitable, but for urban population dynamics, the things may be more
complicated because that urban population models are not one and only.

The scaling wave-spectrum relation and fractal properties of urban density suggest a
dual character of urban evolution. On the one hand, the growth of cities look like particle
motion, which can be simulated by means of CA technique, including diffusion-limited
aggregation (DLA) and dielectric breakdown model (DBM), and so forth [3]. On the other
hand, the statistical average of urban population distribution reminds us of the wave motion,
or a ripple spreading from the center to the periphery. A city seems to be a set of dynamic
particles indicating chaos or disorder distributed on the ripple indicative of order. In fact,
intuitively, the spatial complexity displayed by city seems to express a struggle between
order and chaos. An urban model of ripple-particle duality should be proposed to address
temporal-spatial evolution of cities. As space is limited, the related questions will be made
clear in the future work.

5. Conclusions

The study of this paper may be of revelation for modeling spatial complexity and simulating
the urban growth and form. Geographers used to rely heavily on the rules associated
with action at a distance, but neglect the rules based on the locality of urban population
activity. However, urban spatial dynamics seems to be the unity of opposites of locality
and action at a distance. The keys of comprehending this paper rest with three aspects.
(1) Density is a zero-dimension measure, but urban density function is defined in one-
dimension space, from which we can learn the information of two-dimension space. (2)
Urban density models are in essence spatial correlation function, which can be converted
into energy spectrum by Fourier transform and vice versa. Energy spectral density divided by
sample path length is the wave spectral density. (3) If the relation between wave-spectrum
density and wave number shows scaling invariance, fractal dimension can be estimated
indirectly through the spectral exponent. The main points of the paper can be summarized as
follows.

Firstly, one of the important physical mechanisms of urban growth and population
diffusion is information entropy maximization indicating spatial optimization. From the
viewpoint of statistical average, urban population density distributions of monocentric cities
always satisfy the negative exponential function, which can be derived by using entropy-
maximizing methods. Entropy maximization actually implies minimum cost when benefit is
certain, or maximum benefit when cost is determinate. In other words, entropy maximizing
in human systems suggests a process of optimization. Urban population density tends to
evolve into an optimum distribution through self-organization.
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Secondly, the negative exponential distribution implies locality or localization of urban
population activities. Entropy maximization interprets the negative exponential distribution,
and the scaling wave-spectrum relation coming from the negative exponential function
predicts a locality of urban population activities in theory. In terms of the empirical evidences,
the wave spectral analysis shows a localization process of urban population evolution, while
the spatial autocorrelation analysis associated with wave spectral analysis demonstrates a
locality of spatial interaction of population cells.

Thirdly, urban evolution seems to possess a dual nature of locality and action at a
distance. The concept of locality should be as important as the idea of action at a distance
for urban modeling and simulation. Locality is to urban population what action at a distance
is to urban land use. The former relates to the negative exponential distribution, while the
latter to the inverse power-law distribution. The power law indicates fractal structure, and
the exponential law can be connected with fractals by Fourier transform. A conjecture is that
if a city evolves into a self-organized critical state, the negative exponential distribution may
change to the inverse power distribution.

Appendices

A. How to derive (2.2) from (2.1)

Substituting polar coordinates for Cartesian coordinates, we can also derive the negative
exponential function from the diffusion model. Let us consider a Laplacian equation such
as

∇2ρ =
∂2ρ

∂x2
+
∂2ρ

∂y2
− a

K
ρ = 0, (A.1)

where ∇2 is the Laplacian operator, other notations fulfill the same roles as in (2.1). For the
anisotropic diffusion in two-dimension space, the relation between Cartesian coordinates and
polar coordinate is x = r cos θ and y = r sin θ. Thus (A.1) can be converted into

1
r

∂

∂r

(
r
∂ρ

∂r

)
+

1
r2

∂2ρ

∂θ2
− a

K
ρ = 0, (A.2)

in which r = (x2 + y2)1/2 refers to polar radius and θ to polar angle. However, if we
examine the isotropic diffusion in one-dimension space, we will have θ = 0, then x =
r cos(0) = r, y = r sin(0) = 0, thus (A.1) in which y is of inexistence can be changed
to

∇2ρ =
∂2ρ

∂r2
− a

K
ρ = 0. (A.3)

The initial condition is ρ|r=0 = ρ0, while the boundary condition is ρ|r→∞ = 0. A special
solution to (A.3) is just Clark’s model, namely (2.2) in the text.
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B. How to derive (2.12) from (2.11)

We can derive (2.12) from (2.11) as follows. According to the l’Hospital’s rule, when r =
R → ∞, we have

lim
r→∞

re−2πλ2r = lim
r→∞

1
2πλ2e2πλ2r

= 0. (B.1)

Using integration by decomposition yields

∫R

0
re−2πλ2rdr = − 1

2πλ2

∫R

0
r de−2πλ2r

= − 1
2πλ2

{[
re−2πλ2r

]R
0 −

∫R

0
e−2πλ2rdr

}

= − 1(
2πλ2

)2

[
e−2πλ2r

]R
0

=
(

1
2πλ2

)2

.

(B.2)

Please note that the R → ∞ in (B.2). Therefore, we get

2πe−λ1

∫R

0
re−2πλ2rdr =

e−λ1

2πλ2
2

= Pt, (B.3)

which is just equivalent to (2.12) in the text.

C. Box dimension, radial dimension, and profile dimension

Suppose that a three-axis coordinate system is constructed by x (latitude), y (longitude),
and z (altitude). We use the three-axis coordinate to describe the Euclidean space in which a
city exists. Then the box dimension Db and the radial dimension Dfare defined in the space
described by axes x and y, while the profile dimension Ds is defined in the space described
by axes x and z, or by axes y and z. This paper is mainly involved with the profile dimension
Ds, which is derived from the fractional Brownian motion (fBm) and dimensional analysis. In
the course of urban development, the values of box dimension and radial dimension always
increase over time. However, the profile dimension values of urban density decreases with
the lapse of time, approaching to 1.5.

Actually, radial dimension Df can reflect the information of the three-dimension space
in the sense of average. The author has derived a relation between the radial dimension
and profile dimension of urban morphology by using Fourier transform. The result is
Df + Ds = 7/2, where Df refers to the radial dimension, and Ds to the profile dimension.
According to the fractal dimension equation, the radial dimension of Hangzhou’s population,
Df , can be estimated as follows: Df = 1.744 in 1964, Df = 1.717 in 1982, Df = 1.832
in 1990, and Df = 1.899 in 2000. This kind of fractal dimension value increases with the
passage of time and approaches to d = 2. The related problems will be discussed in detail in
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the companion paper “Exploring fractal parameters of urban growth and form with wave-
spectrum analysis” (forthcoming).
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