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An SIR epidemic model with incubation time and saturated incidence rate is formulated, where the
susceptibles are assumed to satisfy the logistic equation and the incidence term is of saturated form
with the susceptible. The threshold value R0 determining whether the disease dies out is found.
The results obtained show that the global dynamics are completely determined by the values of
the threshold value R0 and time delay (i.e., incubation time length). If R0 is less than one, the
disease-free equilibrium is globally asymptotically stable and the disease always dies out, while
if it exceeds one there will be an endemic. By using the time delay as a bifurcation parameter, the
local stability for the endemic equilibrium is investigated, and the conditions with respect to the
system to be absolutely stable and conditionally stable are derived. Numerical results demonstrate
that the system with time delay exhibits rich complex dynamics, such as quasiperiodic and chaotic
patterns.

Copyright q 2008 Jin-Zhu Zhang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Epidemic models with nonlinear incidence have been studied by many authors, and related
literature of SIR disease transmission model is quite large, where S denotes the number of
individuals that are susceptible to infection, I denotes the number of individuals that are
infectious, and R denotes the number of individuals that have been removed with immunity.
For example, a detailed dynamical analysis of the nonlinear incidence rate βIpSq (where β
is the average number of contacts per infective per unit time) is given by Liu et al. [1, 2],
Hethcote and van den Driessche [3], Moghadas and Alexander [4], Korobeinikov and Maini
[5], and others. After a study of the cholera epidemic spread in Bari in 1973, Capasso and
Serio [6] introduced a saturated incidence rate g(I)S into epidemic models, the incidence rate
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seems more reasonable than βIpSq because the number of effective contacts between infective
individuals and susceptible individuals may saturate at high infective levels due to crowding
of infective individuals or due to the protection measures by the susceptible individuals [7],
such as the incidence rate β(IpS/(1 + αIq)) (see [1, 8] and references therein).

Zhang and Chen [9] investigated a class of SIR epidemiological models under
assumption that the susceptible satisfies the logistic equation and the incidence rate is of the
form βISq. More recently, Zhang et al. [10], serve as an extended version to [9], have carried
out a long-term qualitative analysis incorporating incubation time delay into incidence rate in
the case of q = 1, that is, with the force of infection βS(t)I(t−τ), which was proposed by Cooke
[11]. The incubation period τ (τ > 0) is a time, during which the infectious agents develop
in the vector, and only after that time the infected vector becomes itself infectious. The
detailed biological meanings and transmission mechanisms were given in [11]. The results
obtained in [10] represent that, if the epidemic is persistent, introducing time delay changes
the dynamical behaviors of the epidemic state. If the threshold value determining whether the
disease dies out is larger than one and less than three, the endemic equilibrium is absolutely
stable (in the sense that it is asymptotically stable for all values of the delays [12]); when
it exceeds three, the endemic equilibrium is conditionally stable (i.e., it is asymptotically
stable for the delays in some intervals), and limit cycles arise by Hopf-type bifurcation with
increasing time delay.

In 1978, May and Anderson [13] proposed the saturated incidence rate of the form
β(SI/(1 + αS)), and used by some authors [14–17], recently. The effect of saturation factor
(refer to α) stems from epidemical control. In the absence of effective therapeutic treatment
and vaccine, the epidemical control strategies are based on taking appropriate preventive
measures. For example, if transmission vector is mosquito, these measures include mosquito
reduction mechanisms and personal protection against exposure to mosquitos. Mosquito
reduction mechanisms entail the elimination of mosquito breeding sites (such as clearing
culverts, roadside ditches, eliminating standing water, etc.), larvaciding (killing of larvae
before they become adults) and adulticiding (killing of adult mosquitoes by spraying). On
the other hand, personal protection is based on preventing vector mosquitoes from biting
humans (by using mosquito repellents, avoiding locations where mosquitoes are biting, and
using barrier methods such as window screens and long-sleeved clothing) [18–20].

From a practical point of view, instead of the bilinear incidence rate in [10], we
consider saturation incidence rate in this paper and assume the force of infection is in this
version β(SI(t − τ)/(1 + αS)) which is saturated with the susceptible. The susceptible host
population is also assumed to have the logistic growth with carrying capacity K, with a
specific growth rate constant r. We can get a generalized SIR epidemiological model as
follows:

Ṡ(t) = r
(

1 − S(t)
K

)
S(t) − β S(t)

1 + αS(t)
I(t − τ),

İ(t) = β
S(t)

1 + αS(t)
I(t − τ) − μ1I(t) − γI(t),

Ṙ(t) = γI(t) − μ2R(t),

(1.1)

where K, r, α, γ, μ1, and μ2 are positive constants. α is the parameter that measures the
inhibitory effect, γ is the natural recovery rate of the infective individuals, μ1 and μ2 represent
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the per capita death rates of infectives and recovered, respectively. Notice that when α = 0,
the system (1.1) becomes the system of bilinear incidence rate in [10], throughout this paper,
we assume α /= 0.

By mathematical analysis, we derive a threshold value R0 and prove that the values of
R0 and incubation time length completely determine the global dynamics of system (1.1), that
is, this two factors determine whether the disease approaches an endemic value or whether
solutions oscillate. If R0 ≤ 1, the disease-free equilibrium is globally asymptotically stable
and the disease always dies out, whereas if R0 > 1, the disease persists if it is initially
present. By taking the incubation time delay as a bifurcation parameter, the local stability for
the endemic equilibrium is investigated, and the conditions with respect to the system to be
absolutely stable and conditionally stable are derived. Numerical simulations show that the
system with time delay admits rich complex dynamic, and a sequence of periodic solutions
will emanate with increasing time delay, which exhibits quite complex periodic and chaotic
patterns.

We arrange our paper as follows. In Section 2, results on positivity and boundedness
of solutions are presented. In addition, we also consider the equilibria of system (1.1)
and give the threshold for the existence of endemic equilibrium. In Section 3, we consider
the global stability of the disease-free equilibrium and obtain the necessary and sufficient
conditions for the permanence of endemic equilibrium. The local stability analysis of system
(1.1) is considered in Section 4. Some numerical results will be given as applications in
Section 5.

2. Preliminary results

The initial conditions φ = (φ1, φ2, φ3) of (1.1) are defined in the Banach space

C+ =
{
φ ∈ C([−τ, 0], R3

+
)

: φ1(θ) = S(θ), φ2(θ) = I(θ), φ3(θ) = R(θ)
}
, (2.1)

where R3
+ =

{
(S, I, R) ∈ R3 : S ≥ 0, I ≥ 0, R ≥ 0

}
. By a biological meaning, we assume that

φi(0) > 0 (i = 1, 2, 3).
It can be verified that the positive cone R3

+ is positively invariant with respect to (1.1)
from [21, Lemma 2.1].

Lemma 2.1. All feasible solutions of the system (1.1) are bounded and enter the region

Ωε =
{
(S, I, R) ∈ R3

+ : S + I + R ≤ (r + 1)
μm

M + ε, ∀ε > 0
}
, (2.2)

where μm = min
{

1, μ1, μ2
}
, lim supt→∞S(t) ≤M := max{S(0), K}.

Proof. From the first equation of (1.1), we get

Ṡ(t) ≤ r
(

1 − S(t)
K

)
S(t), (2.3)
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by comparison, we have lim supt→∞S(t) ≤ M. The total host population size N(t) can be
determined by N(t) = S(t) + I(t) + R(t), and

Ṅ(t) = r
(

1 − S(t)
K

)
S(t) − μ1I(t) − μ2R(t)

≤ (r + 1)S(t) − S(t) − μ1I(t) − μ2R(t)

≤ (r + 1)M − μmN.

(2.4)

Thus, we have 0 ≤ N ≤ ((r + 1)/μm
)
M, as t → ∞. Therefore, all feasible solutions of the

system (1.1) are bounded and enter the region Ωε. This completes the proof of Lemma 2.1.

Lemma 2.1 shows that the solutions of system (1.1) are bounded and, hence, lie in a
compact set and are continuable for all positive time.

Let R0 = K[β − α(μ1 + γ)]/(μ1 + γ). For system (1.1), there always exists the equilibria
E0 = (0, 0, 0), E1 = (K, 0, 0), if R0 > 1, there also exists an endemic equilibrium E+ =
(S∗, I∗, R∗), where

S∗ =
μ1 + γ

β − α(μ1 + γ)
, I∗ =

rS∗2

K(μ1 + γ)
(R0 − 1), R∗ =

γ

μ2
I∗. (2.5)

3. Permanence

Before starting our theorem, we give the following lemma.

Lemma 3.1 (see[22]). Consider the following equation:

u̇(t) = au(t − τ) − bu(t), (3.1)

where a, b, τ > 0; and u(t) > 0 for −τ ≤ t ≤ 0. One has

(i) if a < b, then limt→∞u(t) = 0;

(ii) if a > b, then limt→∞u(t) = +∞.

Theorem 3.2. If R0 ≤ 1, then the solutions of (1.1), with respect to Ωε for any ε, satisfy
(S(t), I(t), R(t)) → (K, 0, 0) as t → ∞.

Proof. We consider first the case when R0 < 1.
From the first equation of (1.1), then there exists a ε > 0 such that S(t) < K+ε for some

T1 > 0 when t ≥ T1. Since S/(1 + αS) is increasing function with respect to S, then from the
second equation of (1.1), we have

İ(t) ≤ β K + ε
1 + α(K + ε)

I(t − τ) − (μ1 + γ)I(t). (3.2)

Since R0 < 1, we have

β
K + ε

1 + α(K + ε)
< μ1 + γ. (3.3)
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By Lemma 3.1, we have lim supt→∞I(t) = 0. lim supt→∞S(t) = K in terms of S(t) = K is the
global attractivor of S(t) = r(1 − S(t)/K)S(t).

Next, we shall consider the case when R0 = 1.Noticing that R0 = 1 is equal to β(K/(1+
αK)) = μ1 + γ. Since S′(t) ≤ r(K − S(t))S(t), S(t) is always decreasing when above K. If S(t)
should ever get below K then S(t) must stay strictly below K for all subsequent time. This
implies there are two possible cases, either

(i) S(t) → K from above as t → ∞, or

(ii) there exists T such that S(t) < K for all t > T.

In the first of these cases, we have only to show that I(t) → 0. Integrating the first
equation for S from τ to t + τ in (1.1), we get

S(t + τ) − S(τ) =
∫ t+τ
τ

rS(u)
(

1 − S(u)
K

)
du −

∫ t+τ
τ

β
S(u)

1 + αS(u)
I(u − τ)du,

≤
∫ t+τ
τ

rS(u)
(

1 − S(u)
K

)
du −

∫ t+τ
τ

β
K

1 + αK
I(u − τ)du,

=
∫ t+τ
τ

rS(u)
(

1 − S(u)
K

)
du −

∫ t+τ
τ

(μ1 + γ)I(u − τ)du.

(3.4)

Then,

(μ1 + γ)
∫ t

0
I(u)du ≤

∫ t+τ
τ

rS(u)
(

1 − S(u)
K

)
︸ ︷︷ ︸

<0

du − S(t + τ) + S(τ) ≤ S(τ) ≤ S(0). (3.5)

Letting t → ∞, we conclude that I(t) ∈ L1(0,∞) and, therefore, I(t) → 0.
In the second of these cases, consider the functional

V = I(t) + (μ1 + γ)
∫ t
t−τ
I(u)du. (3.6)

Then, for all t > T + τ ,

V̇ (t)
∣∣
(1.1) = İ(t) +

(
μ1 + γ

)
[I(t) − I(t − τ)]

= β
S(t)

1 + αS(t)
I(t − τ) − (μ1 + γ

)
I(t − τ)

= β
[

S(t)
1 + αS(t)

− K

1 + αK

]
I(u − τ) < 0.

(3.7)

A direct application of Liapunov-LaSalle type theorem [22] shows that limt→∞I(t) = 0.
By the third equation of (1.1), we get that limt→∞I(t) = 0 implies limt→∞R(t) = 0. This proves
R0 ≤ 1 is the sufficient conditionfor limt→∞(S(t), I(t), R(t)) = (K, 0, 0).
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According to (1.1) and the definitions for permanence in [23], we have the following
lemma.

Lemma 3.3. Permanence of S(t), I(t) in system (1.1) implies that of R(t).

Next, we represent our main results in this section.

Theorem 3.4. System (1.1) is permanent if it satisfies R0 > 1.

In order to prove Theorem 3.4, we present uniform persistence theory for infinite
dimensional systems from [24]. Let X be a complete metric space. Suppose that X0 is open
and dense in X and X0 ∪ X0 = X, X0 ∩ X0 = ∅. Assume that T(x) is a C0 semigroup on X
satisfying

T(t) : X0 −→ X0, T(t) : X0 −→ X0. (3.8)

Let Tb(t) = T(t)|X0
and let Ab be the global attractor for Tb(t).

Lemma 3.5 (see[24]). Suppose that T(t) satisfies (3.8) and one has the following:

(i) there is a t0 ≥ 0 such that T(t) is compact for t > t0;

(ii) T(t) is point dissipative in X;

(iii) Ãb =
⋃
x∈Ab

ω(x) is isolated and thus has an acyclic covering M̂, where

M̂ =
{
M1,M2, . . . ,Mn

}
; (3.9)

(iv) Ws(Mi) ∩X0 = ∅ for i = 1, 2, . . . , n.

Then X0 is a uniform repeller with respect to X0, that is, there is an ε > 0 such that for any
x ∈ X0, lim inft→+∞d(T(t)x,X0) ≥ ε, where d is the distance of T(t)x from X0.

Proof of Theorem 3.4. We first prove that R0 > 1 leads to the permanence of system (1.1).
By Lemma 3.3, we only need to consider the following subsystem of (1.1) and prove

that (S(t), I(t)) in system (3.10) are permanent if and only if R0 > 1 holds

Ṡ(t) = r
(

1 − S(t)
K

)
S(t) − β S(t)

1 + αS(t)
I(t − τ),

İ(t) = β
S(t)

1 + αS(t)
I(t − τ) − μ1I(t) − γI(t),

(3.10)

where S(θ), I(θ) ≥ 0 are continuous on −τ ≤ θ ≤ 0, and S(0), I(0) > 0.
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We begin by showing that the boundary planes of R
2
+ = {(x, y) : x ≥ 0, y ≥ 0}

repel the positive solutions to system (3.10) uniformly. Let C+([−τ, 0],R2
+) denote the space

of continuous functions mapping [−τ, 0] into R
2
+. We choose

C1 =
{(
ϕ1, ϕ2

) ∈ C+([−τ, 0],R2
+
)

: ϕ1(θ) ≡ 0, θ ∈ [−τ, 0]},
C2 =

{(
ϕ1, ϕ2

) ∈ C+([−τ, 0],R2
+
)

: ϕ1(θ) > 0, ϕ2(θ) ≡ 0, θ ∈ [−τ, 0]}. (3.11)

Denote C0 = C1 ∪ C2, X = C+([−τ, 0],R2
+) and C0 = Int C+([−τ, 0],R2

+).
Next, we verify that the conditions of Lemma 3.5 are satisfied. By the definition of

C0 and C0 and system (3.10), it is easy to see that C0 and C0 are positively invariant.
Moreover, conditions (i) and (ii) of Lemma 3.5 are clearly satisfied. Thus, we only need
to verify conditions (iii) and (iv). Since system (3.10) possesses two constant solutions in
C0 : Ẽ0 ∈ C1, Ẽ1 ∈ C2 with

Ẽ0 =
{(
ϕ1, ϕ2

) ∈ C+([−τ, 0],R2
+
)

: ϕ1(θ) ≡ ϕ2(θ) ≡ 0, θ ∈ [−τ, 0]},
Ẽ1 =

{(
ϕ1, ϕ2

) ∈ C+([−τ, 0],R2
+
)

: ϕ1(θ) ≡ K, ϕ2(θ) ≡ 0, θ ∈ [−τ, 0]}, (3.12)

and we have Ṡ(t)|(ϕ1,ϕ2)∈C1
≡ 0, then we get S(t)|(ϕ1,ϕ2)∈C1

≡ 0 for all t ≥ 0, according to
the second equation of (3.10), we have İ(t)|(ϕ1,ϕ2)∈C1

= −(μ1 + γ)I(t) ≤ 0, hence all points

in C1 approach Ẽ0, C1 = Ws(Ẽ0). Similarly, we have all points in C2 approach Ẽ1, that is,
C2 = Ws(Ẽ1). This shows that invariant sets Ẽ0 and Ẽ1 are isolated invariant, then {Ẽ0, Ẽ1} is
isolated and is an acyclic covering, satisfying condition (iii) of Lemma 3.5.

Now, we show that Ws(Ẽi)∩C0 = ∅, i = 0, 1. We only need to prove Ws(Ẽ1)∩C0 = ∅,
since the proof for Ws(Ẽ0) ∩ C0 = ∅ is simple.

Assume the contrary, that is, Ws(Ẽ1) ∩ C0 /= ∅, then there exists a positive solution
(S(t), I(t)) to system (3.10) with limt→∞(S(t), I(t)) = (K, 0). Since R0 > 1, then for a
sufficiently small ε > 0 with μ1 + γ < β((K − ε)/(1+α(K − ε))), there exists a positive constant
T = T(ε) such that

S(t) > K − ε > 0, 0 < I(t) < ε ∀t ≥ T. (3.13)

By the second equation of (3.10) and noting that β(S/(1 + αS)) is an increasing function with
respect to S, then we have

İ(t) ≥ β K − ε
1 + α(K − ε)I(t − τ) − (μ1 + γ)I(t), t ≥ T + τ. (3.14)

According to the comparison principle, limt→∞I(t) = ∞ when R0 > 1, contradicting I(t) < ε.
Then we have Ws(Ẽ1)∩C0 = ∅. At this time, we are able to conclude from Lemma 3.5 that C0

repels the positive solutions of (3.10) uniformly. Incorporating the above results into Lemmas
3.3 and 3.5, we know that system (1.1) is permanent.

Next, we verify that permanence of system (1.1) indicates R0 > 1. Assume that the
contrary holds, that is, R0 ≤ 1, then by Theorem 3.2, (S(t), I(t), R(t)) → (K, 0, 0), as t → ∞,
contradicting permanence of system (1.1). This proves Theorem 3.4.
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4. Linearized analysis

The dynamics of model (1.1) are determined by the first two equations. Therefore, throughout
the remainder of this paper, we consider the subsystem (3.10), and rewrite it as follows:

Ṡ(t) = r
(

1 − S(t)
K

)
S(t) − β S(t)

1 + αS(t)
I(t − τ),

İ(t) = β
S(t)

1 + αS(t)
I(t − τ) − μ1I(t) − γI(t).

(4.1)

Let Ê = (Ŝ, Î) be any equilibrium of (4.1), linearized system of (4.1) at Ê = (Ŝ, Î), we
get

ẋ(t) =

[
r − 2r

K
Ŝ − β Î

(1 + αŜ)
2

]
x(t) − β Ŝ

1 + αŜ
y(t − τ),

ẏ(t) = β
Î

(1 + αŜ)
2
x(t) + β

Ŝ

1 + αŜ
y(t − τ) − (μ1 + γ)y(t).

(4.2)

Then the characteristic equation of (4.1) at Ê is given by

det

⎡
⎢⎢⎢⎢⎢⎣

r − 2r
K
Ŝ − β Î

(1 + αŜ)
2
− λ −β Ŝ

1 + αŜ
e−λτ

β
Î(

1 + αŜ
)2

β
Ŝ

1 + αŜ
e−λτ − (μ1 + γ

) − λ

⎤
⎥⎥⎥⎥⎥⎦

= 0. (4.3)

At the equilibrium Ê0 = (0, 0), characteristic equation (4.3) reduces to

(λ − r)(λ + μ1 + γ) = 0. (4.4)

Obviously, (4.4) has a positive root λ = r independent of any parameters. Hence, Ê0 is always
a unstable saddle point.

Theorem 4.1. For the system (4.1), the equilibrium Ê1 = (K, 0) is

(i) asymptotic stable if R0 < 1;

(ii) linearly neutrally stable if R0 = 1;

(iii) unstable if R0 > 1.

Proof. The characteristic equation at Ê1 is

(λ + r)
[
λ +

(
μ1 + γ

)(
1 − R0 + αK

1 + αK
e−λτ

)]
= 0. (4.5)
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Equation (4.5) has a negative real part characteristic root λ = −r and roots of

F(λ) = λ +
(
μ1 + γ

)(
1 − R0 + αK

1 + αK
e−λτ

)
= 0. (4.6)

(i) Assume that R0 < 1, (4.6) has characteristic root λ = (μ1+γ)((R0+αK)/(1+αK)−1) <
0 when τ = 0. If λ = iω is a root of (4.6), it must satisfy

ω2 =
(
μ1 + γ

)2
[(

R0 + αK
1 + αK

)2

− 1
]
. (4.7)

When R0 < 1, there are no positive real roots ω. This shows that all roots of F(λ) = 0 must
have negative real parts, therefore, Ê1 is an asymptotically stable equilibrium.

(ii) Assume that R0 = 1, then λ = 0 is a root of (4.6). It is easy to verify that λ = 0 is a
simple characteristic root. If the other roots are λ = α + iω, then they must satisfy

[
α +

(
μ1 + γ

)]2 +ω2 =
(
μ1 + γ

)2
e−2ατ , (4.8)

and we must have α ≤ 0. Therefore Ê1 is linearly neutrally stable.

(iii) Assume that R0 > 1, then F(0) < 0, and F(+∞) = +∞. Hence, F(λ) has at least one
positive root and Ê1 is unstable.

By the arguments to Theorems 3.2 and 4.1, we directly have the following corollary.

Corollary 4.2. The equilibrium E1 = (K, 0, 0) of system (1.1) is global asymptotically stable ifR0 ≤ 1
holds true in the feasible region Ωε for any ε > 0.

In the following, we will study the linear stability of the positive equilibrium Ê+ =
(S∗, I∗) of (4.1). We can see that the characteristic roots of (4.3) at positive equilibrium Ê+ are
the roots of

det

⎡
⎢⎢⎢⎢⎢⎣

r

(
1 − 2

R0

)
− r

1 + αŜ

(
1 − 1

R0

)
− λ −(μ1 + γ

)
e−λτ

r

1 + αŜ

(
1 − 1

R0

) (
μ1 + γ

)
e−λτ − (μ1 + γ

) − λ

⎤
⎥⎥⎥⎥⎥⎦

= 0. (4.9)

Since β(I∗/(1 + αS∗)) = r(1 − 1/R0) and β(S∗/(1 + αS∗)) = μ1 + γ at (S∗, I∗), we have

P(λ, τ) +Q(λ, τ)e−λτ = 0, (4.10)
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where

P(λ, τ) = λ2 + λ
[
− r
(

1 − 2
R0

)
+
(
μ1 + γ

)
+

r

1 + αS∗

(
1 − 1

R0

)]

+
(
μ1 + γ

)[ − r
(

1 − 2
R0

)
+

r

1 + αS∗

(
1 − 1

R0

)]
,

Q(λ, τ) = −λ(μ1 + γ
)
+ r
(
μ1 + γ

)(
1 − 2

R0

)
.

(4.11)

When τ = 0, the DDE (4.1) becomes ODE which has the same equilibria Ê as follows:

Ṡ(t) = r
(

1 − S(t)
K

)
S(t) − β S(t)

1 + αS(t)
I(t),

İ(t) = β
S(t)

1 + αS(t)
I(t) − μ1I(t) − γI(t),

(4.12)

and (4.10) becomes

λ2 + λ
[
− r
(

1 − 2
R0

)
+

r

1 + αS∗

(
1 − 1

R0

)]
+
(
μ1 + γ

) r

1 + αS∗

(
1 − 1

R0

)
= 0. (4.13)

Define Rcc = 2 + 1/αS∗.
If −r(1 − 2/R0) + (r/(1 + αS∗))(1 − 1/R0) > 0, that is, 1 < R0 < Rcc = 2 + 1/αS∗, the

system (4.12) is locally asymptotically stable. If R0 > Rcc, the unique positive equilibrium of
(4.12) is unstable, system (4.12) becomes oscillatory in a stable limit cycle [25], and this limit
cycle is unique [26, 27].

If λ = iω(ω > 0) is a root of (4.10), then by separating the real and imaginary parts, we
get

−ω2 +
(
μ1 + γ

)[ − r
(

1 − 2
R0

)
+

r

1 + αS∗

(
1 − 1

R0

)]

= −r
(

1 − 2
R0

)(
μ1 + γ

)
cosωτ +ω

(
μ1 + γ

)
sinωτ,

ω

[
− r
(

1 − 2
R0

)
+
(
μ1 + γ

)
+

r

1 + αS∗

(
1 − 1

R0

)]

= ω
(
μ1 + γ

)
cosωτ + r

(
1 − 2

R0

)(
μ1 + γ

)
sinωτ.

(4.14)

Squaring and adding both equations, then we have

ω4 +ω2
[
− r
(

1 − 2
R0

)
+

r

1 + αS∗

(
1 − 1

R0

)]2

+
r

1 + αS∗

(
1 − 1

R0

)(
μ1 + γ

)2
[
− 2r

(
1 − 2

R0

)
+

r

1 + αS∗

(
1 − 1

R0

)]
= 0.

(4.15)
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Table 1: Compare DDE (4.1) with ODE (4.12).

Case 0 < R0 ≤ 1 1 < R0 ≤ Rc Rc < R0 < Rcc R0 > Rcc

ODE Ê1 GAS Ê+ LAS Ê+ LAS stable periodic solution
DDE Ê1 GAS Ê+ ALASa Ê+ CLASb complex dynamic phenomena

a
absolutely stable

bconditionally stable

Define Rc = 2 + 1/(1 + 2αS∗).
If −2r(1− 2/R0) + (r/(1+ αS∗))(1− 1/R0) ≥ 0, that is, 1 < R0 ≤ Rc, there is no positive

real ω satisfying (4.15), thus eigenvalues of (4.10) do not approach the imaginary axis for any
τ > 0. This shows that Ê+ is absolutely stable when 1 < R0 ≤ Rc.

If R0 > Rc, there is a unique positive ω0 satisfying (4.15). That is, (4.10) has a unique
pair of purely imaginary roots ±iω0.

From (4.14), τn corresponding to ω0 can be obtained as follows:

τn =
1
ω0

arccos

{
ω2

0Z − C

(
μ1 + γ

)
r
(
1 − 2/R0

)
ω2

0

(
μ1 + γ

)
+
[
r
(
1 − 2/R0

)]2(
μ1 + γ

)
}
+

2nπ
ω0

, n = 0, 1, 2, . . . , (4.16)

where Z denotes
[(
r/(1+αS∗)

)(
1− 1/R0

)
+
(
μ1 + γ

)]
and C denotes

[− r(1− 2/R0
)
+
(
r/(1+

αS∗)
)(

1 − 1/R0
)]

.
Further ,

dRe(λ)
dτ

∣∣∣∣
λ=iω0

= Re
(
dλ

dτ

)−1∣∣∣∣
λ=iω0

= Re

{
λ2 − (μ1 + γ

)[ − r(1 − 2/R0
)
+
(
r/
(
1 + αS∗))(1 − 1/R0

)]
−λ2P(λ, τ)

}
λ=iω0

+ Re
[−r(1 − 2/R0

)(
μ1 + γ

)
λ2Q(λ, τ)

]
λ=iω0

=
ω4

0 −
(
μ1 + γ

)2[ − r(1 − 2/R0
)
+
(
r/
(
1 + αS∗))(1 − 1/R0

)]2 +
[
r
(
1 − 2/R0

)(
μ1 + γ

)]2

(
μ1 + γ

)2 +
[
r
(
1 − 2/R0

)(
μ1 + γ

)]2

=
ω4

0 −
(
μ1 + γ

)2(
r/
(
1 + αS∗))(1 − 1/R0

)[ − 2r
(
1 − 2/R0

)
+
(
r/
(
1 + αS∗))(1 − 1/R0

)]
(
μ1 + γ

)2 +
[
r
(
1 − 2/R0

)(
μ1 + γ

)]2
.

(4.17)

Under the condition R0 > Rc, that is, −2r(1 − 2/R0) + (r/(1 + αS∗))(1 − 1/R0) < 0, then we
have dRe(λ(τ))/dτ |λ=iω0

> 0.
If Rc < R0 < Rcc, there exists a critical value τ0, when τ < τ0, Ê+ is stable; when

τ > τ0, Ê+ is unstable.
Summarizing the discussion above, we have the following conclusion.
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Figure 1: Temporal behavior of the infected and corresponding three-dimensional phase are plotted for
the system (1.1) subject to R0 > Rcc (R0 = 4.00, Rcc = 3.00). The parameters are r = 0.1, K = 80, β = 0.1,
μ1 = 0.5, μ2 = 0.1, α = 0.05, γ = 0.5, and τ = 0.001 with initial value (28, 3, 7).
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Figure 2: The parameters like in Figure 1 but τ = 30.

Theorem 4.3. For system (4.1), one has

(i) if 1 < R0 ≤ Rc holds true, then Ê+ is absolutely stable;

(ii) if Rc < R0 < Rcc holds true, then Ê+ is conditionally stable, that is, there is a critical delay
value τ0 such that Ê+ is asymptotically stable when τ ∈ [0, τ0) and unstable when τ > τ0.
Furthermore, system (4.1) undergoes Hopf bifurcation at Ê+ when τ = τn, n = 0, 1, 2, . . .;

(iii) if R0 > Rcc, then there is also a critical delay value τ0 such that the periodic solution is still
stable when τ ∈ [0, τ0), however, there are a sequence of periodic solutions emanate when
τ = τn, n = 0, 1, 2, . . . .

These results are summarized in Table 1.

Remark 4.4. In fact, in the case of R0 > Rcc, we have known that ODE (4.12) has a stable
periodic solution [25]. If we consider the impact of the incubation time on ODE (4.12), that is,
DDE (4.1), from above discussion, we can see that there are a sequence of periodic solutions
bifurcate from the positive equilibrium Ê+ when the time delay takes the critical delay τn such
that previous stable periodic solution losses stability, which will lead to complex dynamic
phenomena. This can be seen from the simulation results Section 5.

In addition, we want to mention that Theorem 4.3(ii) cannot determine the direction
and stability of bifurcation periodic solutions, this can be done by analyzing the high-order
terms in terms of [28]. The method is very complex and trivial, here we omit it.

From the point of biology, in comparison with the results of [10], we see that if there
is the inhibition effect from the behavioral change of the susceptible individuals when the
infective increases (i.e., we take use of the saturation incidence rate), then the threshold Rc
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Figure 3: Bifurcation diagram of system (1.1): successive maxima of the infected are plotted for increasing
values of the time delay τ , with parameters r = 0.1, K = 80, β = 0.1, μ1 = 0.5, μ2 = 0.1, α = 0.05, and γ = 0.5.
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Figure 4: Temporal behavior of the infected and corresponding three-dimensional phase are plotted for the
system (1.1) subject to 1 < Rc < R0 < Rcc (Rc = 2.23, R0 = 2.40, Rcc = 2.6). The parameters are r = 0.1,
K = 80, β = 0.1, μ1 = 0.5, μ2 = 0.1, α = 0.05, γ = 0.75, and τ = 0.001 with initial value (35, 10, 15).

decline and less than 3. It is crucial for the government to take the corresponding control
measures and policies against the disease when the epidemic outbreaks.

5. Numerical results

The main goal of the previous section was to qualitatively characterize the dynamic behaviors
of system (1.1) at long term. In this section, we confirm our previous theoretical analysis in
Section 4 and demonstrate that the local behaviors in the regions of the parameters space
correspond to complex population dynamics to system (1.1). The objective is to explore the
possibility of chaotic behavior in system (1.1). It is difficult to test whether there exists chaos
in a time-delayed system, but numerical simulation analysis is a valid method for such a
system. Extensive numerical simulations are carried out for different values of saturation
parameter α and recover rate γ . The quality results are as follows.

First, we consider the property of system (1.1) in the regions of the parameter space
corresponds to complex population dynamics in the case of R0 > Rcc. To illustrate the
transition from the periodic pattern to chaotic pattern, we concentrate on the regions of small
and large time delay as an example. We consider the set of parameter values as r = 0.1,
K = 80, β = 0.1, μ1 = 0.5, μ2 = 0.1, α = 0.05, and γ = 0.5. By calculating, there exists the relation
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Figure 5: Temporal behavior of the infected and corresponding three-dimensional phase are plotted for the
system (1.1) subject to 1 < Rc < R0 < Rcc (Rc = 2.23, R0 = 2.40, Rcc = 2.6). The parameters are r = 0.1,
K = 80, β = 0.1, μ1 = 0.5, μ2 = 0.1, α = 0.05, γ = 0.75, and τ = 0.5 with initial value (40, 3, 7).
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Figure 6: The parameters like in Figure 5 but τ = 27.

of R0 > Rcc (R0 = 4.00, Rcc = 3.00) for system (1.1). Then, from Theorem 4.3(iii), the system
(1.1) has a stable period solution if the time delay is less than the critical delay τ0

.= 0.23 (see
Figure 1), and the periodic solution will lost stability when the time delay is greater than the
critical delay τ0

.= 0.23, and then a typical chaos was observed with increasing the time delay
(see Figure 2). This phenomenon has been verified by the bifurcation diagram via delay τ , as
shown in Figure 3.

We increase the recovery rate γ , let γ = 0.75, and fix the other parameters as above. By
calculating, the system (1.1) satisfies Rc < R0 < Rcc (Rc = 2.23, R0 = 2.40, Rcc = 2.6). In this
context, by Theorem 4.3(ii), system (1.1) is conditionally stable at unique positive equilibrium
E+ = (33.33, 1.56, 11.67), that is, there exists a critical delay τ0

.= 0.31 such that E+ is stable if
τ < τ0 (see Figure 4), E+ will lose stability by an Hopf bifurcation if τ > τ0, as shown in
Figure 5. We find that the periodic solution, quasiperiod, and chaos patterns emerge with
increasing time delay. This may be clear from the bifurcation diagram (see Figure 7).

Now, we fix the parameter γ = 0.75, change α, and let α = 0.055 (i.e., we take
some measures to protect on susceptibles), and the other parameters are also as above. By
calculating, system (1.1) always exists a relationship 1 < R0 < Rc (R0 = 2.00, Rc = 2.19). By
Theorem 4.3(i), we know that system (1.1) is absolutely stable at unique positive equilibrium
E+ = (40, 1.60, 12) for any value of the time delay, as shown in Figure 8. Our numerical
simulations have demonstrated the validity of our theoretical analysis, that is, the values
of threshold value R0 and incubation time τ length completely determine the dynamics of
system (1.1).

It is necessary to indicate that the system (1.1) is realistic at the initial phase of the
disease emergence since the number of the infected is rare. However, when the number of
the infected is large, it is more reasonable that one should replace the term r(1−S/K)S in the
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Figure 7: Bifurcation diagram of system (1.1): successive maxima of the infected are plotted for increasing
time delay τ , with parameters r = 0.1, K = 80, β = 0.1, μ1 = 0.5, μ2 = 0.1, α = 0.05 m, and γ = 0.75.
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Figure 8: Temporal behavior of the infected and corresponding three-dimensional phase are plotted for the
system (1.1) subject to 1 < R0 < Rc. The parameters like in Figure 5 but α = 0.055, γ = 0.75, and τ = 1.5
with initial value (25, 4, 20).

first equation of (1.1) by r(1− (S+ I +R)/K)S. Hence, a profound understanding for this case
is still desirable and could motivate further investigations.
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