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1. Introduction

The following predator-prey system with Holling-type II functional response and delays

ẋ1(t) = x1(t)
[
r1(t) − a11(t)x1(t − τ1(t)) − a12(t)x2(t)

1 +mx1(t)

]
,

ẋ2(t) = x2(t)
[
− r2(t) − a21(t)x1(t − τ2(t))

1 +mx1(t − τ2(t))
− a22(t)x2(t − τ3(t))

]
,

(1.1)

and some generalized systems of general Holling-type functional response have been studied
by many scholars (see [1–3] and the references cited therein). It has been found that
the discrete time models governed by difference equations are more appropriate than the
continuous ones when the populations have non-overlapping generations. Discrete time
models can also provide efficient computational models of continuous models for numerical
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simulations (see [4–12]). In [4], Yang considered the following delayed discrete predator-prey
system with general Holling-type functional response:

N1(k + 1) =N1(k) exp
{
r(k) − b(k)Nθ

1 (k − [τ1(t)]) −
α(k)Np−1

1 (k)

1 +mNp

1 (k)
N2(k − [σ(t)])

}
,

N2(k + 1) =N2(k) exp
{
− d(k) − a(k)N2(k − [τ2(t)]) +

β(k)Np

1 (k − [τ3(t)])

1 +mNp

1 (k − [τ3(t)])

}
.

(1.2)

Sufficient conditions which guarantee the existence of at least one positive periodic solution
are obtained by using the continuation theorem of coincidence degree theory. But Yang did
not consider the permanence and globally attractivity of system (1.2), which are two of the
most important topics in the study of population dynamics.

On the other hand, as was pointed out by Huo and Li [13], ecosystem in the real
world is continuously distributed by unpredictable forces which can result in changes in the
biological parameters such as survival rates. Of practical interest in ecology is the question of
whether or not an ecosystem can withstand those unpredictable disturbances which persist
for a finite period of time. In the language of control variables, we call the disturbance
functions as control variables (for more discussion on this section, one could refer to [12–
16] for more details). Though much works dealt with the continuous time model. However,
to the best of the author’s knowledge, up to this day, there are still no scholars that propose
and study the system (1.2) with feedback control. Therefore, the main purpose of this paper
is to study the following delayed discrete predator-prey system with general Holling-type
functional response and feedback control:

x1(k + 1) = x1(k) exp
{
r1(k) − b1(k)xθ1(k − τ1) −

α1(k)x
p−1
1 (k)

1 +mxp

1 (k)
x2(k − τ3) − e1(k)u1(k)

}
,

x2(k + 1) = x2(k) exp
{
− r2(k) − b2(k)x2(k − τ2) +

α2(k)x
p

1 (k − τ4)

1 +mxp

1 (k − τ4)
− e2(k)u2(k)

}
,

Δu1(k) = −η1(k)u1(k) + q1(k)x1(k),

Δu2(k) = −η2(k)u2(k) + q2(k)x2(k),
(1.3)

where x1(k) is the density of prey species at kth generation, x2(k) is the density of
predator species at kth generation, u1(k) and u2(k) are control variables. Also, r1(k), b1(k)
denote the intrinsic growth rate and density-dependent coefficient of the prey, respectively,
r2(k), b2(k) denote the death rate and density-dependent coefficient of the predator,
α1(k) denote the capturing rate of the predator, α2(k)/α1(k) represent the rate of
conversion of nutrients into the reproduction of the predator. Further, τi (i = 1, 2, 3, 4) are
nonnegative constants and m, p are positive constants. In this paper, we always assume
that {ri(k)}, {bi(k)}, {α1(k)}, {ei(k)}, {ηi(k)}, {qi(k)}, i = 1, 2, are bounded nonnegative
sequences and

0 < ηLi ≤ ηMi < 1, i = 1, 2. (1.4)
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Here, for any bounded sequence {a(k)}, aM = supk∈N{a(k)}, and aL = infk∈N{a(k)}, where
N = {0, 1, 2, . . .}.

This paper is organized as follows. In Section 2, we will introduce some definition
and establish several useful lemma. The permanence of system (1.3) is then studied in
Section 3. In Section 4, based on the permanence result, under the assumption that all the
delays are equal to zero and the coefficients of the system are periodic sequences, we obtain
a set of sufficient conditions which guarantee the existence and stability of a unique globally
attractive positive periodic solution of the system.

By the biological meaning, we will focus our discussion on the positive solution of
system (1.3). So it is assumed that the initial conditions of (1.3) are of the form

xi(−k) ≥ 0, ui(−k) ≥ 0, k ∈N ∩ (0, τ], xi(0) > 0, ui(0) > 0, i = 1, 2, (1.5)

where τ = max{τ1, τ2, τ3, τ4}.
One can easily show that the solutions of (1.3) with the initial condition (1.5) are

defined and remain positive for all k ∈N.

2. Preliminaries

In this section, we will introduce the definition of permanence and several useful lemmas.

Definition 2.1. System (1.3) is said to be permanent if there exist positive constants
x∗
i , u

∗
i , xi∗, ui∗, which are independent of the solution of the system, such that for any positive

solution (x1(k), x2(k), u1(k), u2(k)) of system (1.3) satisfies

xi∗ ≤ lim inf
k→∞

xi(k) ≤ lim sup
k→∞

xi(k) ≤ x∗
i ,

ui∗ ≤ lim inf
k→∞

ui(k) ≤ lim sup
k→∞

ui(k) ≤ u∗i ,
(2.1)

for i = 1, 2.

Lemma 2.2. Assume that x(k) satisfies

x(k + 1) ≤ x(k) exp
{
a(k) − b(k)xθ(k)} ∀ k ≥ k0, (2.2)

where {a(k)} and {b(k)} are positive sequences, x(k0) > 0, θ is a positive constant, and k0 ∈ N.
Then one has

lim sup
k→∞

x(k) ≤ D, (2.3)

where D = (1/θbL)1/θ exp(aM − 1/θ).

Lemma 2.3. Assume that x(k) satisfies

x(k + 1) ≥ x(k) exp
{
a(k) − b(k)xθ(k)} ∀ k ≥ k0, (2.4)
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where {a(k)} and {b(k)} are positive sequences, x(k0) > 0, θ is a positive constant, and k0 ∈ N.
Also, lim supk→∞ x(k) ≤ D and bMDθ/aL > 1. Then one has

lim inf
k→∞

x(k) ≥ C, (2.5)

where C = (aL/bM)1/θ exp(aL − bMDθ).

Proof. The proofs of Lemmas 2.2 and 2.3 are very similar to those of [6, Propositions 2.1 and
2.2], respectively. So we omit the detail here.

Lemma 2.4. Assume that x(k) satisfies

x(k + 1) ≤ x(k) exp
{
a(k) − b(k)xθ(k − τ)} ∀k ≥ k0 > τ, (2.6)

where {a(k)} and {b(k)} are positive sequences, x(k0) > 0, θ and τ are positive constants, and
k0 ∈N. Then one has

lim sup
k→∞

x(k) ≤ B, (2.7)

where B = (1/θβL)1/θ exp(aM − 1/θ) and β(k) = b(k) exp{−θ∑k−1
i=k−τa(i)}.

Proof. From the above equation, one has

x(k + 1) ≤ x(k) exp{a(k)} ∀ k ≥ k0. (2.8)

Sequently we can easily obtain that

x(k − τ) ≥ x(k) exp

{
−

k−1∑
i=k−τ

a(i)

}
. (2.9)

So one has

x(k + 1) ≤ x(k) exp

{
a(k) − b(k) exp

{
− θ

k−1∑
i=k−τ

a(i)

}
xθ(k)

}

= x(k) exp
{
a(k) − β(k)xθ(k)}.

(2.10)

By Lemma 2.2, we can complete the proof of Lemma 2.4.

Lemma 2.5. Assume that x(k) satisfies

x(k + 1) ≥ x(k) exp
{
a(k) − b(k)xθ(k − τ)} ∀k ≥ k0 > τ, (2.11)
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where {a(k)} and {b(k)} are positive sequences, x(k0) > 0, θ and τ are positive constants, and
k0 ∈ N. Also, lim supk→∞ x(k) ≤ B and γMBθ/aL > 1, where γ(k) = b(k) exp{−θ∑k−1

i=k−τ(a(i) −
b(i)Bθ)}. Then one has

lim inf
k→∞

x(k) ≥ A, (2.12)

where A = (aL/γM)1/θ exp(aL − γMBθ).

Proof. From the above equation, one has

x(k + 1) ≥ x(k) exp
{
a(k) − b(k)Dθ} ∀k ≥ k0. (2.13)

Sequently we can easily obtain that

x(k − τ) ≤ x(k) exp

{
−

k−1∑
i=k−τ

(a(i) − b(i)Dθ)

}
. (2.14)

So one has

x(k + 1) ≥ x(k) exp

{
a(k) − b(k) exp

{
− θ

k−1∑
i=k−τ

(a(i) − b(i)Dθ)

}
xθ(k)

}

= x(k) exp
{
a(k) − γ(k)xθ(k)}.

(2.15)

By Lemma 2.3, we can complete the proof of Lemma 2.5.

Lemma 2.6 is a direct corollary of [17, Theorem 6.2, page 125] by L. Wang and M. Q.
Wang.

Lemma 2.6. Consider the following first-order difference equation:

y(k + 1) = Ay(k) + B, k = 1, 2 . . . , (2.16)

where A,B are positive constants. Assuming A < 1, for any solution {y(k)} of the above system, one
has

lim
k→∞

y(k) =
B

1 −A. (2.17)

The following comparison theorem for the difference equation is of [17, Theorem 2.1,
page 241] by L. Wang and M. Q. Wang.
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Lemma 2.7. Let k ∈ {k0, k0 + 1, . . . , k0 + l, . . .}, r ≥ 0. For fixed k, g(k, r) is a nondecreasing
function with respect to r, and for k ≥ k0, the following inequalities hold:

y(k + 1) ≤ g(k, y(k)),
u(k + 1) ≥ g(k, u(k)).

(2.18)

If y(k0) ≤ u(k0), then y(k) ≤ u(k) for all k ≥ k0.

3. Permanence

In this section, we establish a permanent result for system (1.3).

Proposition 3.1. In addition to (1.4), assume further that

(H1)

(
α2(k)
m

− r2(k)
)L

> 0; (3.1)

for any positive solution (x1(k), x2(k), u1(k), u2(k)) of system (1.3), one has

lim sup
k→∞

xi(k) ≤ x∗
i , lim sup

k→∞
ui(k) ≤ u∗i , i = 1, 2, (3.2)

where

x∗
1 =

(
1
θβL1

)1/θ

exp
(
rM1 − 1

θ

)
, β1(k) = b1(k) exp

{
− θ

k−1∑
i=k−τ1

r1(i)

}
,

x∗
2 =

1
βL2

exp
((

α2(k)
m

− r2(k)
)M

− 1
)
, β2(k) = b2(k) exp

{
−

k−1∑
i=k−τ2

(
α2(i)
m

− r2(i)
)}

,

u∗1 =
qM1 x∗

1

ηL1
, u∗2 =

qM2 x∗
2

ηL2
.

(3.3)

Proof. Let (x1(k), x2(k), u1(k), u2(k)) be any positive solution of system (1.3), from the first
equation of (1.3), it follows that

x1(k + 1) ≤ x1(k) exp
{
r1(k) − b1(k)xθ1(k − τ1)

}
. (3.4)

By applying Lemmas 2.4 and 2.7, we obtain

lim sup
k→∞

x1(k) ≤ x∗
1, (3.5)
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where

x∗
1 =

(
1
θβL1

)1/θ

exp
(
rM1 − 1

θ

)
, β1(k) = b1(k) exp

{
− θ

k−1∑
i=k−τ1

r1(i)

}
. (3.6)

Similarly, from the second equation of (1.3), it follows that

x2(k + 1) ≤ x2(k) exp
{
α2(k)
m

− r2(k) − b2(k)x2(k − τ2)
}
. (3.7)

Under the assumption (H1), by applying Lemmas 2.4 and 2.7, we obtain

lim sup
k→∞

x2(k) ≤ x∗
2, (3.8)

where

x∗
2 =

1
βL2

exp
((

α2(k)
m

− r2(k)
)M

− 1
)
, β2(k) = b2(k) exp

{
−

k−1∑
i=k−τ2

(
α2(i)
m

− r2(i)
)}

.

(3.9)

For any positive constant ε small enough, it follows from (3.5) and (3.8) that there
exists large enough K1 > τ such that

x1(k) ≤ x∗
1 + ε, x2(k) ≤ x∗

2 + ε ∀ k ≥ K1. (3.10)

Then the third equation of (1.3) leads to

Δu1(k) ≤ −η1(k)u1(k) + q1(k)(x∗
1 + ε). (3.11)

And so

u1(k + 1) ≤ (1 − ηL1 )u1(k) + qM1 (x∗
1 + ε) ∀k ≥ K1. (3.12)

By applying Lemmas 2.6 and 2.7, it follows from (3.12) that

lim sup
k→∞

u1(k) ≤
qM1 (x∗

1 + ε)

ηL1
. (3.13)

Setting ε→ 0 in the above inequality leads to

lim sup
k→∞

u1(k) ≤ u∗1, (3.14)
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where u∗1 = qM1 x∗
1/η

L
1 . Similarly, we can obtain

lim sup
k→∞

u2(k) ≤ u∗2, (3.15)

where u∗2 = qM2 x∗
2/η

L
2 . Thus we complete the proof of Proposition 3.1.

Proposition 3.2. In addition to (1.4), assume further that

(H2)

rL1 − αM1 (x∗
1)
p−1x∗

2 − eM1 u∗1 > 0, (3.16)

(H3)

−rM2 +
αL2x

p

1∗
1 +mxp1∗

− eM2 u∗2 > 0, (3.17)

for any positive solution (x1(k), x2(k), u1(k), u2(k)) of system (1.3), there exist positive constants
xi∗, ui∗, such that

lim inf
k→∞

xi(k) ≥ xi∗, lim inf
k→∞

ui(k) ≥ ui∗, i = 1, 2. (3.18)

Proof. Let (x1(k), x2(k), u1(k), u2(k)) be any positive solution of system (1.3). From (H2) and
(H3), there exists a small enough positive constant ε such that

rL1 − αM1 (x∗
1 + ε)

p−1(x∗
2 + ε) − eM1 (u∗1 + ε) > 0, (3.19)

−rM2 +
αL2 (x1∗ − ε)p

1 +m(x1∗ − ε)p
− eM2 (u∗2 + ε) > 0. (3.20)

Also, according to Proposition 3.1, for the above ε, there exists K2 > K1 such that for k ≥ K2,

x1(k) ≤ x∗
1 + ε, x2(k) ≤ x∗

2 + ε,

u1(k) ≤ u∗1 + ε, u2(k) ≤ u∗2 + ε.
(3.21)

Then from the first equation of (1.3), one has

x1(k + 1) ≥ x1(k) exp
{
r1(k) − b1(k)xθ1(k − τ1) − α1(k)x

p−1
1 (k)x2(k − τ3) − e1(k)u1(k)

}
,

≥ x1(k) exp
{
r1(k) − α1(k)(x∗

1 + ε)
p−1(x∗

2 + ε) − e1(k)(u∗1 + ε) − b1(k)xθ1(k − τ1)
}
.

(3.22)
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Let a1(k, ε) = r1(k) − α1(k)(x∗
1 + ε)

p−1(x∗
2 + ε) − e1(k)(u∗1 + ε), so the above inequality follows

that

x1(k + 1) ≥ x1(k) exp{a1(k, ε) − b1(k)xθ1(k − τ1)}. (3.23)

Consequently, let γ1(k, ε) = b1(k) exp{−θ∑k−1
i=k−τ1

(a1(i, ε) − b1(i)x∗
1
θ)}. Because γM1 > βL1 , one

has

γM1
aL1

(x∗
1)
θ =

γM1
aL1

exp(θrM1 − 1)

θβL1
> 1. (3.24)

Here we use the fact that exp(θrM1 − 1) > θrM1 > θaM1 > θaL1 . From (3.19) and (3.23), by
Lemmas 2.5 and 2.7, one has

lim inf
k→∞

x1(k) ≥
(
aL1 (ε)

γM1 (ε)

)1/θ

exp
{
aL1 (ε) − γM1 (ε)(x∗

1)
θ}. (3.25)

Setting ε→ 0 in the above inequality leads to

lim inf
k→∞

x1(k) ≥ x1∗, (3.26)

where

x1∗ =
(
aL1
γM1

)1/θ

exp
{
aL1 − γM1 (x∗

1)
θ},

a1(k) = r1(k) − α1(k)(x∗
1)
p−1x∗

2 − e1(k)u∗1,

(3.27)

and γ1(k) = b1(k) exp{−θ∑k−1
i=k−τ1

(a1(i) − b1(i)x∗
1
θ)}.

Similarly, from the second equation of (1.3), one has

x2(k + 1) ≥ x2(k) exp
{
− r2(k) +

α2(k)(x1∗ − ε)p
1 +m(x1∗ − ε)p

− e2(k)(u∗2 + ε) − b2(k)x2(k − τ2)
}
.

(3.28)

Let a2(k, ε) = −r2(k)+α2(k)(x1∗ − ε)p/(1+m(x1∗ − ε)p)− e2(k)(u∗2 + ε), so the above inequality
leads to

x2(k + 1) ≥ x2(k) exp{a2(k, ε) − b2(k)x2(k − τ2)}. (3.29)

Consequently, let γ2(k, ε) = b2(k) exp{−∑k−1
i=k−τ2

(a2(i, ε) − b2(i)x∗
2)}. Because γM2 > βL2 , one has

γM2
aL2

x∗
2 =

γM2
aL2

exp{(α2(k)/m − r2(k))
M − 1}

βL2
> 1. (3.30)
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Here we use the fact that exp{(α2(k)/m−r2(k))
M −1} > (α2(k)/m−r2(k))

M > aM2 > aL2 . From
(3.20) and (3.29), by Lemmas 2.5 and 2.7, one has

lim inf
k→∞

x2(k) ≥
aL2 (ε)

γM2 (ε)
exp

{
aL2 (ε) − γM2 (ε)x∗

2
}
. (3.31)

Setting ε→ 0 in the above inequality leads to

lim inf
k→∞

x2(k) ≥ x2∗, (3.32)

where

x2∗ =
aL2
γM2

exp
{
aL2 − γM2 x∗

2
}
,

a2(k) = −r2(k) +
α2(k)x

p

1∗
1 +mxp1∗

− e2(k)u∗2,

γ2(k) = b2(k) exp

{
−

k−1∑
i=k−τ2

(
a2(i) − b2(i)x∗

2
)}

.

(3.33)

Then the third equation of (1.3) leads to

Δu1(k) ≥ −η1(k)u1(k) + q1(k)(x1∗ − ε). (3.34)

And so

u1(k + 1) ≥ (1 − ηM1 )u1(k) + qL1 (x1∗ − ε) ∀k ≥ K2. (3.35)

By applying Lemmas 2.6 and 2.7, it follows from (3.35) that

lim sup
k→∞

u1(k) ≥
qL1 (x1∗ − ε)

ηM1
. (3.36)

Setting ε→ 0 in the above inequality leads to

lim sup
k→∞

u1(k) ≥ u1∗, (3.37)

where u1∗ = qL1x1∗/ηM1 . Similarly, we can obtain

lim sup
k→∞

u2(k) ≤ u2∗, (3.38)

where u2∗ = qL2x2∗/ηM2 . Thus we complete the proof of Proposition 3.2.
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Theorem 3.3. In addition to (1.4), assume further that (H1), (H2), and (H3) hold, then system
(1.3) is permanent.

It should be noticed that, from the proofs of Propositions 3.1 and 3.2, we know that
under the conditions of Theorem 3.3, the set Ω = {(x1, x2, u1, u2) | xi∗ ≤ xi ≤ x∗

i , ui∗ ≤ ui ≤
u∗i , i = 1, 2} is an invariant set of system (1.3).

4. Existence and stability of a periodic solution

In this section, we consider the stability property of system (1.3) under the assumption τi =
0 (i = 1, 2, 3, 4), that is, we consider the following system:

x1(k + 1) = x1(k) exp
{
r1(k) − b1(k)xθ1(k) −

α1(k)x
p−1
1 (k)

1 +mxp

1 (k)
x2(k) − e1(k)u1(k)

}
,

x2(k + 1) = x2(k) exp
{
− r2(k) − b2(k)x2(k) +

α2(k)x
p

1 (k)

1 +mxp

1 (k)
− e2(k)u2(k)

}
,

Δu1(k) = −η1(k)u1(k) + q1(k)x1(k),

Δu2(k) = −η2(k)u2(k) + q2(k)x2(k),

(4.1)

which are similar to system (1.3) but do not include delays. In this section, we always assume
that {ri(k)}, {bi(k)}, {α1(k)}, {ei(k)}, {ηi(k)}, {qi(k)} are bounded nonnegative periodic
sequences with a common period ω and satisfy

0 < ηi(k) < 1, k ∈N ∩ [0, ω], i = 1, 2. (4.2)

Also it is assumed that the initial conditions of (4.1) are of the form

xi(0) > 0, ui(0) > 0, i = 1, 2. (4.3)

Using a similar way, under some conditions, we can obtain the permanence of system (4.1).
As above, still let x∗

i and u∗i , i = 1, 2, be the upper bound of {xi(k)} and {ui(k)}, xi∗ and
let ui∗, i = 1, 2, be the lower bound of {xi(k)} and {ui(k)}, where x∗

i , u
∗
i , xi∗, and ui∗ are

independent of the solution of system (4.1). Our first result concerns with the existence of
a periodic solution.

Theorem 4.1. In addition to (4.2), assume further that (H1), (H2), and (H3) hold, then system
(4.1) has a periodic solution denoted by {x1(k), x2(k), u1(k), u2(k)}.

Proof. Let Ω = {(x1, x2, u1, u2) | xi∗ ≤ xi ≤ x∗
i , ui∗ ≤ ui ≤ u∗i , i = 1, 2}, Ω is an invariant set of

system (4.1). Thus, we can define a mapping F on Ω by

F(x1(0), x2(0), u1(0), u2(0)) = (x1(ω), x2(ω), u1(ω), u2(ω)) (4.4)

for (x1(0), x2(0), u1(0), u2(0)) ∈ Ω.
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Obviously, F depends continuously on (x1(0), x2(0), u1(0), u2(0)). Thus F is continu-
ous and maps a compact set Ω into itself. Therefore, F has a fixed point (x1, x2, u1, u2). It is
easy to see that the solution {x1(k), x2(k), u1(k), u2(k)} passing through (x1, x2, u1, u2) is a
periodic solution of system (4.1). This completes the proof.

Now, we study the globally stability property of the periodic solution obtained in
Theorem 4.1.

Theorem 4.2. In addition to the conditions of Theorem 4.1, if system (4.1) satisfies

λ1 = max
{∣∣1 − θbL1xθ1∗

∣∣, ∣∣1 − θbM1 (x∗
1)
θ − αM1 W1x

∗
1

∣∣} + αM1 W2x
∗
2 + e

M
1 < 1, (4.5)

λ2 = max
{∣∣1 − bL2x2∗

∣∣, ∣∣1 − bM2 x∗
2

∣∣} + αM2 W3x
∗
1 + e

M
2 < 1, (4.6)

λ3 = 1 − ηL1 + qM1 x∗
1 < 1, (4.7)

λ4 = 1 − ηL2 + qM2 x∗
2 < 1, (4.8)

where the definition ofWi, i = 1, 2, 3 can be seen in the following proof, then the ω-periodic solution
(x1(k), x2(k), u1(k), u2(k)) obtained in Theorem 4.1 is globally attractive.

Proof. Assume that (x1(k), x2(k), u1(k), u2(k)) is any positive solution of system (4.1), let

xi(k) = xi(k) exp{yi(k)}, ui(k) = ui(k) + vi(k), i = 1, 2. (4.9)

To complete the proof, it suffices to show that

lim
k→∞

yi(k) = 0, lim
k→∞

vi(k) = 0, i = 1, 2. (4.10)

Since

y1(k+1)=y1(k)−b1(k)x
θ
1 (k)(exp{θy1(k)}−1)−e1(k)v1(k)

−α1(k)
[
x
p−1
1 (k) exp{(p − 1)y1(k)}
1 +mxp

1 (k) exp{py1(k)}
x2(k) exp{y2(k)} −

x
p−1
1 (k)

1 +mxp

1 (k)
x2(k)

]

= y1(k) − b1(k)x
θ
1 (k) exp{ξ1(k)θy1(k)}θy1(k) − e1(k)v1(k)

− α1(k)[f ′
1(ξ

′
2(k), x2(k))x1(k) exp{ξ4(k)y1(k)}y1(k)

+ f ′
2(x1(k), ξ′3(k))x2(k) exp{ξ5(k)y2(k)}y2(k)],

(4.11)

where

f(x, y) =
xp−1y

1 +mxp
,

ξ′2(k) = x1(k) + ξ2(k)(x1(k) − x1(k)),

ξ′3(k) = x2(k) + ξ3(k)(x2(k) − x2(k)),

(4.12)
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and ξi(k) ∈ (0, 1) for i = 1, 2, 3, 4, 5. Because of the boundedness of {x1(k)}, {x2(k)}, {x1(k)},
{x2(k)}, |f ′

1(ξ
′
2(k), x2(k))|, |f ′

2(x1(k), ξ′3(k))| are bounded, where f ′
1 and f ′

2 mean the partial
derivation of the function f(x, y). Let |f ′

1(ξ
′
2(k), x2(k))| < W1 and |f ′

2(x1(k), ξ′3(k))| < W2.
Similarly, we get

y2(k + 1) = y2(k) − b2(k)x2(k)(exp{y2(k)} − 1)

+ α2(k)
[

x
p

1 (k) exp{py1(k)}
1 +mxp

1 (k) exp{py1(k)}
− x

p

1 (k)

1 +mxp

1 (k)

]
− e2(k)v2(k)

= y2(k) − b2(k)x2(k) exp{ξ5(k)y2(k)}y2(k)

+ α2(k)g ′(ξ′6(k))x1(k)(exp{y1(k)} − 1) − e2(k)v2(k)

= y2(k) − b2(k)x2(k) exp{ξ5(k)y2(k)}y2(k)

+ α2(k)g ′(ξ′6(k))x1(k) exp{ξ4(k)y1(k)}y1(k) − e2(k)v2(k),

(4.13)

where

ξ′6(k) = x1(k) + ξ6(k)(x1(k) − x1(k)), ξ6(k) ∈ (0, 1). (4.14)

Because of the boundedness of {x1(k)}, {x2(k)}, {x1(k)}, {x2(k)}, g ′(ξ′6(k)) is bounded, where
g(x) = xp/(1 +mxp) and g ′ means the derivation of the function g(x). Let |g ′(ξ′6(k))| < W3.

Also, one has

v1(k + 1) = (1 − η1(k))v1(k) + q1(k)x1(k)(exp{y1(k)} − 1)

= (1 − η1(k))v1(k) + q1(k)x1(k) exp{ξ4(k)y1(k)}y1(k),

v2(k + 1) = (1 − η2(k))v2(k) + q2(k)x2(k){(exp{y2(k)} − 1})
= (1 − η2(k))v2(k) + q2(k)x2(k) exp{ξ5(k)y2(k)}y2(k).

(4.15)

In view of (4.5)–(4.8), we can choose a ε > 0 such that

λε1 = max
{∣∣1 − θbL1 (x1∗ − ε)θ

∣∣, ∣∣1 − θbM1 (x∗
1 + ε)

θ − αM1 W1(x∗
1 + ε)

∣∣} + αM1 W2(x∗
2 + ε) + e

M
1 < 1,

λε2 = max
{∣∣1 − bL2 (x2∗ − ε)

∣∣, ∣∣1 − bM2 (x∗
2 + ε)

∣∣} + αM2 W3(x∗
1 + ε) + e

M
2 < 1,

λε3 = 1 − ηL1 + qM1 (x∗
1 + ε) < 1,

λε4 = 1 − ηL2 + qM2 (x∗
2 + ε) < 1.

(4.16)

Also, from Propositions 3.1 and 3.2, there exist K3 > K2 such that

xi∗ − ε ≤ xi(k), x∗
i (k) ≤ x∗

i + ε ∀k ≥ K3, i = 1, 2. (4.17)
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Then from (4.11), for k > K3, one has

|y1(k + 1)| ≤ max
{∣∣1 − θbL1 (x1∗ − ε)θ

∣∣, ∣∣1 − θbM1 (x∗
1 + ε)

θ − αM1 W1(x∗
1 + ε)

∣∣}
·∣∣y1(k)

∣∣ + αM1 W2(x∗
2 + ε)

∣∣y2(k)
∣∣ + eM1 ∣∣v1(k)

∣∣. (4.18)

So from (4.13), for k > K3, one has

|y2(k + 1)| ≤ max
{∣∣1 − bL2 (x2∗ − ε)

∣∣, ∣∣1 − bM2 (x∗
2 + ε)

∣∣}|y2(k)|
+ αM2 W3(x∗

1 + ε)|y1(k)| + eM2 |v2(k)|.
(4.19)

Also, for k > K3, one has

|v1(k + 1)| ≤ (1 − ηL1 )|v1(k)| + qM1 (x∗
1 + ε)|y1(k)|, (4.20)

|v2(k + 1)| ≤ (1 − ηL2 )|v2(k)| + qM2 (x∗
2 + ε)|y2(k)|. (4.21)

Let λ = max{λε1, λε2, λε3, λε4}, then 0 < λ < 1. In view of (4.18)–(4.21), one has

max{|y1(k + 1)|, |y2(k + 1)|, |v1(k + 1)|, |v2(k + 1)|} ≤ λmax{|y1(k)|, |y2(k)|, |v1(k)|, |v2(k)|}
(4.22)

for k > K3. This implies

max{|y1(k)|, |y2(k)|, |v1(k)|, |v2(k)|} ≤ λk−K3 max{|y1(K3)|, |y2(K3)|, |v1(K3)|, |v2(K3)|}.
(4.23)

Therefore

lim
k→∞

yi(k) = 0, lim
k→∞

vi(k) = 0, i = 1, 2. (4.24)

This completes the proof.

5. Examples

The following two examples show the feasibility of our main results.

Example 5.1. Consider system (1.3) with

r1(k) = 0.14 + 0.01 cos(k), b1(k) = 0.1, α1(k) = 0.001, e1(k) = 0.03 + 0.01 sin(k),

r2(k) = 0.18 + 0.02 cos
(√

2k
)
, b2(k) = 1.8 + 0.1 sin(k), α2(k) = 1.4,

e2(k) = 0.008 + 0.002 sin(k), η1(k) = 0.7, q1(k) = 0.2 + 0.1 sin(k), η2(k) = 0.8,

q2(k) = 0.1, τ1 = τ2 = τ3 = τ4 = 1, p = 1.3, θ = 1.2, m = 0.8,
(5.1)
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Figure 1: Dynamics behaviors of system (1.3) with initial condition (x1(p), x2(p), u1(p), u2(p)) = (1.4, 0.8,
0.3, 0.03) (P = −1, 0).

for all k ∈N. One can easily see that

x∗
1 ≈ 3.7945, x1∗ ≈ 0.2882, x∗

2 ≈ 5.2037, u∗1 ≈ 1.6262, u∗2 ≈ 0.6505, (5.2)

which means that

rL1 − αM1 (x∗
1)
p−1x∗

2 − eM1 u∗1 ≈ 0.0872, (5.3)

−rM2 +
αL2x

p

1∗
1 +mxp1∗

− eM2 u∗2 ≈ 0.0333. (5.4)

Also, one has

(
α2(k)
m

− r2(k)
)L

≈ 1.55. (5.5)

Inequalities (5.3)–(5.5) show that (H1)–(H3) are fulfilled. From Theorem 3.3, system (1.3)
is permanent. Figure 1 is the numeric simulation of the solution of system (1.3) with initial
condition (x1(p), x2(p), u1(p), u2(p)) = (1.4, 0.8, 0.3, 0.03) (P = −1, 0).

Example 5.2. Consider system (4.1) with

r1(k) = 0.13 + 0.02 cos(k), b1(k) = 0.1, α1(k) = 0.01, e1(k) = 0.03 + 0.01 sin(k),

r2(k) = 0.16 + 0.02 cos(k), b2(k) = 0.7, α2(k) = 0.6, e2(k) = 0.015 + 0.005 sin(k),

η1(k) = 0.7, q1(k) = 0.2 + 0.1 sin(k), η2(k) = 0.8, q2(k) = 0.2 + 0.1 sin(k),
(5.6)
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Figure 2: Dynamics behaviors of system (4.1) with initial values (x1(0), x2(0), u1(0), u2(0)) = (0.9, 0.7, 0.6,
0.05), (1.2, 0.5, 0.3, 0.2), and (1, 0.2, 0.25, 0.1).

for all k ∈N. One can easily see that

x∗
1≈1.2808, x1∗ ≈0.8195, x∗

2≈0.9672, x2∗ ≈0.1157, u∗1≈0.5489, u∗2≈0.3627,
(5.7)

which means that

rL1 − αM1 (x∗
1)
p−1x∗

2 − eM1 u∗1 ≈ 0.0801, (5.8)

−rM2 +
αL2x

p

1∗
1 +mxp1∗

− eM2 u∗2 ≈ 0.1387. (5.9)

Also, one has

(
α2(k)
m

− r2(k)
)L

≈ 0.5700. (5.10)

Inequalities (5.8)–(5.10) show that (H1)–(H3) are fulfilled. We can obtain that

W1 ≈ 0.7258, W2 ≈ 0.6630, W3 ≈ 0.075, (5.11)

which means that

λ1 ≈ 0.8861, λ2 ≈ 0.9966, λ3 ≈ 0.6842, λ4 ≈ 0.4902. (5.12)

So (4.5)–(4.8) are fulfilled. From Theorem 4.2, system (4.1) is globally attractive. Figure 2
is the numeric simulation of the solution of system (4.1) with initial condition (x1(0),
x2(0), u1(0), u2(0)) = (0.9, 0.7, 0.6, 0.05), (1.2, 0.5, 0.3, 0.2), and (1, 0.2, 0.25, 0.1).



Lijuan Chen et al. 17

Acknowledgment

This work was supported by the Foundation of Fujian Education Bureau (JB05042).

References

[1] C. S. Holling, “The components of predation as revealed by a study of small mammal predation of
the European pine sawfly,” Canadian Entomologist, vol. 91, pp. 293–320, 1959.

[2] C. S. Holling, “Some characteristics of simple types of predation and parasitism,” Canadian
Entomologist, vol. 91, pp. 385–398, 1959.

[3] M. Fan and K. Wang, “Global existence of positive periodic solutions of a predator-prey system with
Holling type II functional response,” Acta Mathematica Scientia, vol. 21, no. 4, pp. 492–497, 2001.

[4] L. Yang, “Periodic solutions of a delayed discrete predator-prey system with general functional
response,” Journal of Systems Science and Mathematical Sciences, vol. 27, no. 4, pp. 488–498, 2007
(Chinese).

[5] M. Fan and K. Wang, “Periodic solutions of a discrete time nonautonomous ratio-dependent predator-
prey system,” Mathematical and Computer Modelling, vol. 35, no. 9-10, pp. 951–961, 2002.

[6] F. Chen, L. Wu, and Z. Li, “Permanence and global attractivity of the discrete Gilpin-Ayala type
population model,” Computers
Mathematics with Applications, vol. 53, no. 8, pp. 1214–1227, 2007.

[7] Y. Li, “Positive periodic solutions of discrete Lotka-Volterra competition systems with state dependent
and distributed delays,” Applied Mathematics and Computation, vol. 190, no. 1, pp. 526–531, 2007.

[8] Y. Chen and Z. Zhou, “Stable periodic solution of a discrete periodic Lotka-Volterra competition
system,” Journal of Mathematical Analysis and Applications, vol. 277, no. 1, pp. 358–366, 2003.

[9] Z. Zhou and X. Zou, “Stable periodic solutions in a discrete periodic logistic equation,” Applied
Mathematics Letters, vol. 16, no. 2, pp. 165–171, 2003.

[10] Y.-H. Fan and W.-T. Li, “Permanence for a delayed discrete ratio-dependent predator-prey system
with Holling type functional response,” Journal of Mathematical Analysis and Applications, vol. 299, no.
2, pp. 357–374, 2004.

[11] H.-F. Huo and W.-T. Li, “Existence and global stability of periodic solutions of a discrete ratio-
dependent food chain model with delay,” Applied Mathematics and Computation, vol. 162, no. 3, pp.
1333–1349, 2005.

[12] Y. Li and L. Zhu, “Existence of positive periodic solutions for difference equations with feedback
control,” Applied Mathematics Letters, vol. 18, no. 1, pp. 61–67, 2005.

[13] H.-F. Huo and W.-T. Li, “Positive periodic solutions of a class of delay differential system with
feedback control,” Applied Mathematics and Computation, vol. 148, no. 1, pp. 35–46, 2004.

[14] Y. Li, “Positive periodic solutions for a periodic neutral differential equation with feedback control,”
Nonlinear Analysis: Real World Applications, vol. 6, no. 1, pp. 145–154, 2005.

[15] F. Chen, “Positive periodic solutions of neutral Lotka-Volterra system with feedback control,” Applied
Mathematics and Computation, vol. 162, no. 3, pp. 1279–1302, 2005.

[16] F. Chen, “The permanence and global attractivity of Lotka-Volterra competition system with feedback
controls,” Nonlinear Analysis: Real World Applications, vol. 7, no. 1, pp. 133–143, 2006.

[17] L. Wang and M. Q. Wang, Ordinary Difference Equation, Xinjiang University Press, Xinjiang, China,
1991.


	Introduction
	Preliminaries
	Permanence
	Existence and stability of a periodic solution
	Examples
	Acknowledgment
	References

