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This paper is devoted to the study of a generalized modified version of the well-known Beverton-
Holt equation in ecology. The proposed model describes the population evolution of some species in
a certain habitat driven by six parametrical sequences, namely, the intrinsic growth rate (associated
with the reproduction capability), the degree of sympathy of the species with the habitat (described
by a so-called environment carrying capacity), a penalty term to deal with overpopulation levels,
the harvesting (fishing or hunting) regulatory quota, or related to use of pesticides when fighting
damaging plagues, and the independent consumption which basically quantifies predation. The
independent consumption is considered as a part of a more general additive disturbance which
also potentially includes another extra additive disturbance term which might be attributed to net
migration from or to the habitat or modeling measuring errors. Both potential contributions are
included for generalization purposes in the proposed modified generalized Beverton-Holt equation.
The properties of stability and boundedness of the solution sequences, equilibrium points of the
stationary model, and the existence of oscillatory solution sequences are investigated. A numerical
example for a population of aphids is investigated with the theoretical tools developed in the paper.

Copyright q 2008 M. De La Sen. This is an open access article distributed under the Creative
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1. Introduction

The use of mathematical models in ecology is nowadays of important research interest,
[1–10] because such models lead to a more precise study of the dynamics and interactions
of populations among them and with the habitat. This paper is devoted to the study of a
modified version of the well-known Beverton-Holt equation in ecology which describes the
population evolution of some species in a certain habitat. The associate dynamics evolves
subject to an intrinsic growth rate associated with the reproduction capability and the degree
of sympathy of the species with the habitat described by a so-called environment carrying
capacity, [2–6, 11, 12]. The standard Beverton-Holt equation becomes the so-called generalized
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Beverton-Holt equation [12], when extended by considering in the model two extra sequences,
namely, the harvesting (namely, fishing or hunting) quota, or regulation through the use of
pesticides and an additive disturbance sequence. Such a disturbance sequence consists of an
independent consumption sequence, which describes a predation of the species though which
it gains, develops, and grows plus a net migration sequence. The migration term plays a
close role to that of the independent consumption in the population evolution and it is due
to potential positive/negative migration towards/from the habitat under study. In general,
the joint contribution of independent consumption plus positive or negative migration (resp.,
immigration and emigration) towards or from the habitat could also potentially include other
extra effects of correction of contribution of population in the model. Some of those effects are,
for instance, unexpected accidental mortality not fixed through properly adjusting the intrinsic
growth rate, loss of population due to harvesting which has not been parameterized through
the harvesting quota or measuring modeling errors in general. The study in this paper adds
two more sequences to the generalized Beverton-Holt equation to conform a penalty term for
eventual overpopulation at intermediate sampling points. This is the main novelty of the paper
related to previous literature on the subject. The penalty term corrects the population evolution
so that large amounts of population translate into the decrease of the number of individuals
in the future. The motivation of the use of the penalty term is clear since it is well known
that large amount of individuals in a habitat makes the overall population decrease by natural
regulation, for instance, due to competition for food or difficulties for nesting. The properties of
boundedness and stability of the solution, existence of equilibrium points of the limit stationary
version of the equation, as well as the existence of oscillatory solutions are investigated. The
following basic notation is being used through the manuscript.

Notation 1.1. N and R are the sets of natural and real numbers, respectively.

N0 := N ∪ {0}; R+ := {z ∈ R : z > 0}; R0+ := R+ ∪ {0} = {z ∈ R : z ≥ 0}.
k := {1, 2, . . . , k}; k0 := k ∪ {0} = {0, 1, 2, . . . , k}.

(1.1)

g ′(x) denotes the first derivative with respect to x of the differentiable real function g(x).
The symbols “∧” and “∨” stand for logic conjunction and disjunction, respectively.
In is the identity matrix of the nth order.

The population evolution is supposed to be governed by a modified Beverton-Holt
equation,

xk+1 =
γkμkKkx

pk
k
e−αkxkxk−1

Kk +
(
μk − 1

)
xk−1

+ dk; k ∈ N (1.2)

subject to initial conditions x−1 > 0, x0 ≥ 0, which is parameterized by the following real
sequences.

γk := 1 − bk, k ∈ N, with bk ∈ [b1, b2] being the harvesting (fishing or hunting) quota
subject to 0 < b1 ≤ b2 ≤ 1. Thus, γk ∈ [ γ1, γ2], k ∈ N, is the harvesting quota excess subject to
0 < γ1 := 1 − b2 ≤ γ2 := 1 − b1 ≤ 1. If repopulation activity is incorporated to harvesting, then
b1 < 0 when repopulation dominates harvesting so that γ2 > 1.

μk ∈ [μ1, μ2], k ∈ N, with ∞ > μ2 ≥ μ1 > 1 is the intrinsic growth rate which is associated
to the population ability for reproduction.
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Kk ∈ [K1, K2], k ∈ N, with ∞ > K2 ≥ K1 > 0, is the environment carrying capacity
which is associated to the sympathetic degree, more or less favorable, of the habitat towards
the species.

dk ∈ [d1, d2], k ∈ N, with ∞ > d2 ≥ d1 > −∞, is the external disturbance
term which refers to joint effects of independent consumption plus migration contribution,
namely, immigration (i.e., positive net migration from outside towards the habitat), null,
or emigration (i.e., negative net migration from the habitat to outside) including atypical
mortality not included in the model by the growth rate: the disturbance. The additive
disturbance contribution has the generic form dk = d0k + dmk where d0k is the independent
consumption and dmk is the net migration contribution. The decomposition of dk = d0k + dmk
into the two separated parts d0k and dmk is irrelevant for the modified generalized Beverton-
Holt equation from an analysis point of view but it is quite relevant from a biological insight
point of view, as pointed out in detail by one of the reviewers. The reason is that it allows the
inclusion in the same evolution equation of two quite different effects, in nature, like predation
and net migration.

pk ∈ [p1, p2], αk ∈ [α1, α2], with αk = 0 ⇒ pk = 0, k ∈ N, are sequences which conform
a penalty term x

pk
k
e−αkxk to describe how the excess of population translates into a contributed

tendency to its decrease at the next sampling time. The sequences are assumed to be subject to
the constraints ∞ > p2 ≥ p1 ≥ 0, ∞ > α2 ≥ α1 ≥ 0, and α1 = 0 ⇒ p1 = 0.

A particular case of (1) is obtained with γk = 1 (no harvesting activity), pk = αk = 0
(no penalty correcting term for overpopulation control), dk = 0 (zero jointly net independent
consumption plus migration) resulting in the well-known standard Beverton-Holt equation,

xk+1 =
μkKkxk

Kk +
(
μk − 1

)
xk
, k ∈ N, (1.3)

which is a particular version of the Hassell model xk+1 = μkxk/(1 + (μk − 1)xk/Kk)
ck , k ∈ N,

for ck = 1 and where a double sampling period is used related to (1.2). In other words, only the
recruitment and storage measurements are relevant to describe the population evolution since
there is not necessary the evaluation at intermediate samples of a penalty term associated with
overpopulation. Another particular case of (1.2) is obtained with pk = αk = 0 resulting in the
so-called generalized Beverton-Holt equation,

xk+1 =
γkμkKkxk

Kk + (μk − 1)xk
+ dk, k ∈ N, (1.4)

also described equivalently as a two-stage evolution equation,

x−
k+1 =

μkKkxk

Kk +
(
μk − 1

)
xk
, xk+1 ≡ x+

k+1 = γkx−
k+1 + dk, k ∈ N, (1.5)

which includes discontinuities at sampling times due to harvesting and disturbance activities
associated with impulses in the corresponding logistic continuous-time differential equation.
Finally, note that the modified Beverton-Holt equation leads to the Ricker model (which is also
a limiting equation of the Hassell model and that of the Beverton- Holt one if ck = 1):

xk+1 = eμk(1−xk/Kk)xk, k ∈ N, (1.6)
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if dk = 0 and a harvesting quota γk = ((Kk + μk−1xk−1)/Kk(μk + xk−1))eμk , k ∈ N, is applied
provided that Kk > eμkμk−1/(1 + μk−1/xk−1), k ∈ N, in order to ensure that γk < 1. Thus,
the environment carrying capacity satisfies lim infxk−1 →∞Kk > eμkμk−1 and Kk ∈ (eμkμk−1 −
f(xk−1),∞), k ∈ N. The function f : R+ → R0+ is defined by f(x) = μ2eμ/(x + μ) which is
decreasing on R+ with limx→∞f(x) = 0 with R0+ := {z ∈ R : z ≥ 0} and R+ := {z ∈ R : z > 0} =
R0+\{0}. To investigate issues on the standard Beverton- Holt equation, it is useful to analyze the
solution sequence of its inverse [11]. The mathematical properties of the modified generalized
Beverton- Holt equation including boundedness properties, equilibrium points, and existence
of oscillations are investigated. A numerical example is proposed for the study of the evolution
of a population of aphids, a very resistive species of insects which causes considerable damage
and reproduces according to several reproduction cycles per year [13, 14].

2. Boundedness of the solutions

There is a wide variety of works concerning boundedness of the solutions, stability,
investigation of equilibrium points, and existence of oscillatory solutions in discrete recursive
sequences of several types (see, e.g., [15–23]). Parallel problems are also relevant in
continuous-time differential systems [16, 24–26]. To investigate those problems in the context
of the modified Beverton-Holt equation (1.2), define sk := x−1

k
, k ∈ N, being the solution

sequence of the inverse of the modified Beverton-Holt equation provided that xk /= 0, k ∈ N.
Thus, one gets directly from (1.2)

s−1
k+1 =

γkμk−1Kk−1ζks
−1
k−1

Kk−1 +
(
μk−1 − 1

)
s−1
k−1

+ dk =
γkμk−1Kk−1ζk

Kk−1sk−1 + μk−1 − 1
+ dk, k ∈ N, (2.1)

where ζk := xp
k
e−αxk , k ∈ N. Then,

sk+1 =
Kk−1 +

(
μk−1 − 1

)
xk−1

γkμk−1Kk−1ζkxk−1 +
(
Kk−1 +

(
μk−1 − 1

)
xk−1
)
dk
, k ∈ N (2.2)

=
Kk−1sk−1 + μk−1 − 1

γkμk−1Kk−1ζk +
(
Kk−1 + sk−1 + μk−1 − 1

)
dk
, k ∈ N (2.3)

which can be rewritten as

sk+1 =
Kk−1

γkμk−1Kk−1ζk
sk−1

+

(
μk−1 − 1

)
γkμk−1Kk−1ζk −Kk−1sk−1(Kk−1sk−1 + μk−1 − 1)dk

γkμk−1Kk−1ζk
(
γkμk−1Kk−1ζk +

(
Kk−1sk−1 + μk−1 − 1

)
dk
) , k ∈ N

(2.4)

for the standard Beverton-Holt equation (dk = αk = pk ≡ 0 implying ζk ≡ 1 and γk ≡ 1 and
double sampling rate; see (1.3)), (2.2)–(2.4) becomes in particular [11]

sk+1 = μ−1
k sk +

(
1 − μ−1

k

)
K−1
k , k ∈ N. (2.5)

The boundedness of the solutions for bounded initial conditions is a minimal
requirement in order that a biological model is well posed. The subsequent result is concerned
with boundedness and global Lyapunov’s stability of the solution sequences of (1.2) and (2.3)–
(2.4).
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Theorem 2.1. The following properties hold.

(i) d1 ≤ xk <∞, for all k ∈ N.

(ii) If d1 > 0, then {xk}∞0 and {sk}∞0 are positive bounded sequences. As a result, the modified
Beverton-Holt equation (1.2) is globally Lyapunov’s stable.

(iii) If d1 ≥ 0, then {xk}∞0 and {sk}∞0 are nonnegative sequences, the first one being bounded from
above. As a result, the modified Beverton-Holt equation (1.2) is globally Lyapunov’s stable.
Furthermore, {sk}∞0 is positive with lim supk→∞sk ≤ ∞.

(iv) If dk ≥ 0 and xk ≥ 0, then 0 ≤ xk+1 <∞, for all k ∈ N0.

Proof. (i) xk ≥ dk ≥ d1, for all k ∈ N follows directly from (1.2). Also, ζk = 1 if αk = pk = 0.
Otherwise, αk /= 0 so that

ζk ≤ max
k∈N
(
ζk : αkpk /= 0

)
= max

k∈N

(
ζ

(
pk
αk

)
: αkpk /= 0

)

= max
k∈N

((
pk
αke

)pk
: αkpk /= 0

)
≤
(
p2

α1e

)p2

(2.6)

since dζ(x)/dx = 0 for α/= 0 only at its relative maximum x = p/α so that ζ(p/α) = (p/αe)p =
maxx∈R0+ζ(x) since ζ(0) = 0 and limx→∞ζ(x) = 0 implying that the relative maximum is also
the absolute maximum. As a result, ζk ≤ max(1, (p2/α1e)p2) < ∞, for all k ∈ N. Then, from
(1.2)

xk+1 ≤ γ2μ2K2xk−1

K1 +
(
μ1 − 1

)
xk−1

max
(

1,
(
p2

α1e

)p2
)
+ d2 ≤ γ2μ2K2 max

(
1,
(
p2/α1e

)p2
)

μ1 − 1
+ d2 <∞,

(2.7)

for all k ∈ N and (i) has been proved.

If d1 > 0, then (i) implies 0 < d1 ≤ xk <∞ and 0 < sk ≤ d
−1
1 <∞, for all k ∈ N and (ii) has

been proved.
If d1 ≥ 0, then (i) implies 0 ≤ xk < ∞ and 0 < sk ≤ ∞, for all k ∈ N and, thus,

lim infk→∞xk ≥ 0, lim supk→∞xk < ∞, lim infk→∞sk > 0, and lim supk→∞sk ≤ ∞. Property
(iii) has been proved. Property (iv) follows directly from (1.2).

For formulation coherency, the population cannot be negative at any sample. This idea
motivates the following axiom and simple-related assertions which will be then useful for some
mathematical proofs concerning the case of the eventual negativity of the joint disturbance
contribution.

Axiom 2.2. xk ≥ 0 , for all k ∈ N.

Assertion 2.3. xk = 0 ⇒ dk ≥ 0 for any k ∈ N.

Assertion 2.4. d2 < 0 ⇒ xk > 0, for all k ∈ N.

Assertion 2.5. dk < 0 ⇒ ζk > 0 for any k ∈ N.
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Assertion 2.6. ζk = 0 only if xk = 0 and dk ≥ 0 for any k ∈ N.

Proofs of Assertions 2.3–2.6. Assertion 2.4 is equivalent to prove that its contrapositive proposi-
tion xk ≤ 0 for some k ∈ N ⇒ d2 ≥ 0 is true. Assume that xk ≤ 0 for some k ∈ N. Then,
Axiom 2.2 implies that xk = 0 so that ζk = 0 and then xk+1 = dk ≥ 0 from (1.2) and Axiom 2.2
so that Assertion 2.3 is proved. Also, xk ≤ 0 ⇒ d2 ≥ maxj∈N(dj) ≥ dk ≥ 0 ⇔ d2 < 0 ⇒ xk >
0, for all k ∈ N what proves Assertion 2.4. Assertion 2.5 follows since Axiom 2.2 ∧dk < 0

=⇒ ζk =

(
Kk−1 +

(
μk−1 − 1

)
xk−1
)|dk|

γkμk−1Kk−1xk−1

(⇐⇒ xk+1 ≥ 0
)

≥
(
μ1 − 1

)∣∣dk
∣∣

γ2μ2K2

+
K1|dk|

γ2μ2Kxk−1

≥
(
μ1 − 1

)∣∣dk
∣∣

γ2μ2K2

> 0 for any k ∈ N.
(2.8)

Assertion 2.6 follows since for any k ∈ N, ζk = 0 ⇒ xk = 0 ∨ xk = ∞. xk = ∞ is impossible
from Theorem 2.1(i) so that for any k ∈ N, ζk = 0 ⇒ xk = 0. If xk = 0, then xk+1 ≥ 0 from Axiom
2.2 so that dk ≥ 0 which is Assertion 2.3.

The extinction of the standard Beverton-Holt equation is investigated in [27] when the
intrinsic growth rate is less then unity. Note that eventual extinction is also admitted by Axiom
2.2 for intrinsic growth rate exceeding unity and negative disturbance contribution. This situ-
ation includes as particular cases that of local emigration plus zero-independent consumption
and that of negative-independent consumption with no net migration contribution. However,
the axiom prevents against eventual negative levels of population which is not physically
possible.

Remark 2.7. Note that Assertion 2.5 together with an intermediate result in the proof of
Theorem 2.1 implies dk < 0 ⇒ ∞ > max(1, (p2/α1e)p2) ≥ ζk > 0 for any k ∈ N,

dk ≥ 0 =⇒ ∞ > max
(

1,
(
p2

α1e

)p2
)

≥ ζk ≥ 0 for any k ∈ N. (2.9)

Then, ∞ > ζk ≥ 0, for all k ∈ N, and ∞ > lim supk→∞ζk ≥ lim infk→∞ζk ≥ 0. Also, if d2 < 0
or if dk < 0 (although a nonnegative upper-bound be assumed), for all k ∈ N, then ∞ >
lim supk→∞ζk ≥ lim infk→∞ζk > 0.

Now, Axiom 2.2 and Assertions 2.3–2.6 extend the results of Theorem 2.1 concerning
positivity of the solutions and further stability results as follows.

Theorem 2.8. The following properties hold under Axiom 2.2.

(i) {xk}∞0 and {sk}∞0 are nonnegative sequences which are bounded and positive and bounded
from below, respectively, independently of the disturbance contribution. As a result, the
modified Beverton-Holt equation (1.2) is globally Lyapunov’s stable. Furthermore, if dk >
0, for all k ∈ N, both sequences are positive and bounded.
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(ii) Define ρk := 1/γkμk−1ζk, δk := Kk−1sk−1 + μk−1 − 1 = (Kk−1 + (μk−1 − 1)xk−1)/xk−1, ηk :=
vk − ωk, vk := (μk−1 − 1)/(ρ−1

k
+ δkdk), and ωk := Kk−1sk−1δkdk/ρ

−1
k
(ρ−1

k
+ δkdk). If

dk > 0, for all k ∈ N, then either

0 <
k∏

i=0

[
ρi
]
<∞; ∀k ∈ N

(

then 0 < lim inf
k→∞

k∏

i=0

[
ρi
] ≤ lim sup

k→∞

k∏

i=0

[
ρi
]
<∞

)

∧

0 ≤
k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ηi <∞

(

=⇒ 0 ≤
k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
vi ≤ ∞ ∧ 0 ≤

k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ωi ≤ ∞

)

, ∀k ∈ N,

or lim
k→∞

k∏

i=0

[
ρi
]
= − lim

k→∞

k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ηi = ∞ =⇒

(

lim
k→∞

k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ωi = ∞

)

.

(2.10)

(iii) If dk ≤ 0, for all k ∈ N, then either

0 <
k∏

i=0

[
ρi
] ≤ ∞; ∀k ∈ N

∧

0 ≤
k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ηi ≤ ∞

(

=⇒ 0 ≤
k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
vi ≤ ∞ ∧ 0 ≤

k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ωi ≤ ∞

)

, ∀k ∈ N,

or lim
k→∞

k∏

i=0

[
ρi
]
= lim

k→∞

k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ηi = ∞ =⇒

(

lim
k→∞

k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ωi = ∞

)

.

(2.11)

Proof. (i) Note from (1.2), Axiom 2.2, and Assertion 2.5 that, for dk < 0,

ζk > 0 ∧ ∣∣dk
∣∣ = −dk ≤

γk−1μk−1μk−1ζk

Kk−1 +
(
μk−1 − 1

)
xk−1

=
γk−1μk−1μk−1ζksk−1

Kk−1sk−1 +
(
μk−1 − 1

) > 0 (2.12)

so that from (2.4)

sk+1 ≥ Kk−1

γkμk−1Kk−1ζk
sk−1

+

(
μk−1 − 1

)
γkμk−1Kk−1ζk +Kk−1sk−1

(
Kk−1sk−1 + μk−1 − 1

)∣∣dk
∣∣

γkμk−1Kk−1ζk
(
γkμk−1Kk−1ζk −

(
Kk−1sk−1 + μk−1 − 1

)∣∣dk
∣∣)

≥ Kk−1

γkμk−1Kk−1ζk
sk−1 > 0 ⇐⇒ 0 ≤ xk+1 <∞

(2.13)

for any k ∈ N0 if dk < 0. On the other hand, dk ≥ 0 ⇒ 0 ≤ xk+1 < ∞ and 0 < sk+1 ≤ ∞ for any
k ∈ N0 from Theorem 2.1(iv). Furthermore, dk > 0 ⇒ 0 < xk+1 < ∞ and 0 < sk+1 < ∞ for any
k ∈ N0 from Theorem 2.1(ii). As a result, Property (i) has been fully proved.
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(ii) Recursive direct calculations from (2.4) yield taking (i) into account irrespective of
the value of the disturbance contribution:

0 < sk =
k∏

i=0

[
ρi
]
s0 +

k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ηi =

k∏

i=0

[
ρi
]
s0 +

k−1∑

i=0

k−1∏

j=i+1

[
ρj
](
vi −ωi

) ≤ ∞, ∀k ∈ N

(2.14)

and, furthermore, if dk > 0; for all k ∈ N then

0 < sk =
k∏

i=0

[
ρi
]
s0 +

k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ηi =

k∏

i=0

[
ρi
]
s0 +

k−1∑

i=0

k−1∏

j=i+1

[
ρj
](
vi −ωi

)
<∞, ∀k ∈ N

(2.15)

since {xk}∞0 is positive and bounded from Theorem 2.1. Thus, the first two con-
straints linked via logic conjunction follow directly from (2.14) since either

∏k
i=0[ρi] <

∞, for all k ∈ N, so that |∑k−1
i=0
∏k−1

j=i+1[ρj]ηi| < ∞, for all k ∈ N, or limk→∞
∏k

i=0[ρi] =

−limk→∞(
∑k−1

i=0
∏k−1

j=i+1[ρj]ηi) = ∞, or
∏k

i=0[ρi] = −(∑k−1
i=0
∏k−1

j=i+1[ρj]ηi) = ∞ for finite
k ∈ N. However, from the equivalent contrapositive logic proposition to Assertion 2.6,
xk > 0 (which holds from Theorem 2.1, since dk > 0) ⇒ ζk > 0 which implies
max(

∏k
i=0[ρi], |

∑k−1
i=0
∏k−1

j=i+1[ρj]ηi|) <∞ from (2.15) and then
∏k

i=0[ρi] = −(∑k−1
i=0
∏k−1

j=i+1[ρj]ηi) =
∞ for finite k ∈ N is impossible. Property (ii) has been proved.

(iii) It is proved using similar techniques as those used in the proof of (ii) by noting that
|dk| is upper bounded with the bound of (2.12) for dk ≤ 0 and δk > 0, ρk > 0, ζk ≥ 0, ∞ ≥ ηk ≥
0, for all k ∈ N. The detailed proof is omitted.

Remark 2.9. Note that the use of the contrapositive logic proposition to Assertion 2.6 is not
feasible, as invoked in the last part of the proof of Theorem 2.8(ii), in order to prove some close
result concerned with Theorem 2.8(iii). This follows since dk < 0 ⇒ ζk > 0, for all k ∈ N from
Assertion 2.5.

3. Equilibrium points

Assume that limk→∞Kk = K, limk→∞μk = μ, limk→∞γk = γ, limk→∞αk = γ, limk→∞pk =
γ, limk→∞dk = d. It is well known that both the standard Beveron-Holt equation, driven
by two parameters, and the generalized one, driven by four parameters, have equilibrium
points. In particular, the equilibrium point under nonextinction condition of the standard
Beverton-Holt equation is the carrying capacity of the environment; see [2–6, 11–13, 27, 28].
The following result holds, which is concerned with the existence of equilibrium points in
the limit equation (1.2), that is, the stationary solutions limk→∞ xk = x ≥ 0 of (1.2) as the
parameters converge to those finite limits.

Theorem 3.1. The following properties hold.

(i) If d > 0, then it exists a unique equilibrium point x = x on R0+ which is, in addition, positive
being subject either to xM > x ≥ xb, which requires α ∈ [0, (p + 1)/d) as a necessary
condition, or xM ≤ x < xb, which requires α ≥ (p + 1)/d.
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(ii) If d < 0, then an equilibrium point x = x on R0+ can exist only if the following two necessary
conditions hold:

(i) |d| ≤ (1/K )((p + 1)/αe)p+1;

(ii) K + (μ − 1)|d| < γμK(p + 1)xpe−αx − (γμKαxpe−αx + 2(μ − 1))x
for x ∈ XM ⊂ [0, xM). If there exists such an equilibrium point, then at most two distinct
equilibrium points satisfying 0 < x1 ≤ xM ≤ x2 can exist.

(iii) If d = 0, then x1 = 0 is an equilibrium point of (1.2). Another equilibrium point might exist
only if K[γμKpxpe−αx(p + 1 − αx) − 1] > 2(μ − 1)x on some interval XM ⊂ [0, xM) .

Proof. The equilibrium points of (1.2), if any, are the (real) values of x ∈ R0+ such that

f(x) := (μ − 1)x2 +
(
K − d(μ − 1)

)
x − dK = g(x) := γμKζ(x)x. (3.1)

Note that f : R → R is a convex parabola satisfying f(0) = −Kd whose zeros are

xa, b =
(μ − 1)d −K ∓ ((K − (μ − 1)d

)2 + 4(μ − 1)Kd
)1/2

2(μ − 1)
=

⎧
⎪⎨

⎪⎩

− K

μ − 1
< 0

d
(3.2)

since ((K−(μ−1)d)2+4(μ−1)Kd)1/2 = K+(μ−1)d. Also, g : R → R satisfies g(0) = 0, g(∞) =
limk→∞g(x) = 0 and has a relative maximum, which is also the absolute maximum in R0+) at
xM = (p+1)/α which is gM = ((p+1)/αe)p+1 = max(g(x) : x ∈ R0+). Also, g(x) is increasing on
x ∈ [0, xM) and decreasing on x ∈ [xM,∞). Thus, the equilibrium points x = x, if any, related
to xb and xM satisfy the subsequent constraints.

(a) If d > 0, then f(0) = −Kd < g(0) = 0. Thus, there is a unique equilibrium point x = x
(i.e., f(x) = g(x)) on R0+ which is, in addition, positive which is subject either to
xM > x ≥ xb, which requires α ∈ [0, (p+1)/d) as a necessary condition, or xM ≤ x < xb,
which requires α ≥ (p + 1)/d.

(b) If d < 0, then f(0) = K|d| > g(0) = 0 and xa ≤ xb < 0. Thus, an equilibrium point x = x
(i.e., f(x) = g(x)) on R0+ can exist only if the following two necessary conditions hold:

(i) |d| ≤ (1/K)((p+1)/αe)p+1 implying f(0) ≤ gM since f(x) is increasing on [xb,∞)
so that it is also increasing on R0+ since R0+ ⊂ [xb,∞);

(ii) K+(μ−1)|d| < γμK(p+1)xpe−αx − (γμKαxpe−αx +2(μ−1))x for x ∈ XM ⊂ [0, xM)
since f(0) > g(0) and f(x) being increasing on [0,∞) implies that solutions to
f(x) = g(x) might exist only if f(0) ≤ gM and the continuous function h(x) :=
g(x) − f(x) is monotonically strictly increasing (i.e., h′(x) = g ′(x) − f ′(x) > 0 on
some interval XM ⊂ [0, xM).
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If there exists such an equilibrium point, then it can exist at most two distinct equilibrium
points satisfying 0 < x1 ≤ xM ≤ x2.

(c) If d = 0, then f(0) = g(0) = 0 so that x1 = 0 is an equilibrium point of (1.2). Another
equilibrium point might exist only if K[γμKpxpe−αx(p + 1 − αx) − 1] > 2(μ − 1)x in
order that h(x) := g(x) − f(x) be monotonically strictly increasing on some interval
XM ⊂ [0, xM).

Remark 3.2. Particular cases of equilibrium points of interest are the following.

(i) The case p = α = d = 0. Thus, the constraint (3.1) becomes f(x) = (μ − 1)x2 + Kx =
g(x) = γμKx which yields an equilibrium point at x = K(γμ−1)/(μ−1), provided that
1 > γ > μ−1. If γ = 1, one obtains the equilibrium point of the standard Beverton-Holt
equation x = K.

(ii) The case p = α = 0; d > 0. Thus, x = γμKx/(K + (μ − 1)x) holds for x = x1 =
K(γμ − 1)/(μ − 1) provided that 1 > γ > μ−1, and which implies that limk→∞x−

k
= x1.

Also, x = γx+d holds for x = x2 = d/(1−γ) > 0 since d > 0 and 1 > γ > 0, which implies
that limk→∞xk = limk→∞x+

k
= x2. Then, x = x1 = x2 is an equilibrium point of (1.2),

provided that 1 > γ > μ−1, implying that limk→∞xk = limk→∞x+
k
= limk→∞x−

k
= x if

x = K(γμ − 1)/(μ − 1) = d/(1 − γ) if d = (1 − γ)(γμ − 1)K/(μ − 1).

Lower and upper bounds for the equilibrium points of the limit stationary equation (1.2) are
investigated in the subsequent result. The use of those bounds is important when the exact
equilibrium point cannot be calculated by imprecise knowledge of the model parameterization
or computational difficulties.

Theorem 3.3. The following properties hold.

(i) The equilibrium points x1, 2 of the limit stationary modified Beverton-Holt equation (1.2)
satisfy the following properties:

0 ≤ d = x22 ≤ x2 ≤ x12 ≤
√

dK

μ − 1
(3.3)

provided that K > d(μ − 1) so that x2 = 0 if and only if d = 0. If d < 0 and has a sufficiently
small modulus, then 0 > −|d| = x22 ≤ x2 ≤ x12 < 0. Also,

−
√

dK

μ − 1
≥ x11 ≤ x1 ≤ x21 = − K

(μ − 1)
< 0 if d ≥ 0,

min
(
x11, x12

) ≤ x1 ≤ max
(
− K

(μ − 1)
,−|d|

)
< 0, if d < 0.

(3.4)

(ii) Define the real functions ψ(x) = γKμx/(K + (μ − 1)x) and ζ(x) = xpe−αx. Then,
any equilibrium point x of the limit stationary Beverton-Holt equation (1.2) is locally
asymptotically stable if the two constraints below jointly hold:

1 + ζ
(
x
)
ψ ′(x

)
> 0,

∣∣ψ
(
x
)
ζ′
(
x
)∣∣ + ζ

(
x
)
ψ ′(x

)
< 1. (3.5)
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Proof. Note from (3.1) that

h2(x) := (μ − 1)x2 +
(
K − d(μ − 1)

)
x − dK

≥ h(x) := f(x) − g(x) = (μ − 1)x2 +
(
K − d(μ − 1) − γμKζ(x))x − dK

≥ h1(x) := (μ − 1)x2 +
(
K − d(μ − 1) − γμK

(
p

αe

)p)
x − dK

(3.6)

since ζ(x) ≤ (p/αe)p, for all x ∈ R0+. From (3.1), the equilibrium points are the nonnegative
real solutions to h(x) = 0, if any. The zeros of the convex parabola h1(x) are

x11 =
d(μ − 1) + γμK(p/αe)p −K − ((d(μ − 1) + γμK(p/αe)p −K)2 + 4(μ − 1)dK

)1/2

2(μ − 1)

≤ −
√

dK

μ − 1
≤ 0

(3.7)

if d ≥ 0, x11 > 0 if d < 0 of sufficiently small modulus, and x11 < 0 if d < 0 of sufficiently large
modulus

x12 =
d(μ − 1) + γμK(p/αe)p −K +

((
d(μ − 1) + γμK(p/αe)p −K)2 + 4(μ − 1)dK

)1/2

2(μ − 1)

≤
√

dK

μ − 1

(3.8)

if d ≥ 0 and x12 < 0 if d < 0 of sufficiently small modulus or complex if d < 0 of sufficiently
large modulus.

The zeros of the convex parabola h2(x) are

x21 =
d(μ − 1) −K − ((d(μ − 1) +K

)2)1/2

2(μ − 1)
= − K

(μ − 1)
< 0,

x22 =
d(μ − 1) −K +

((
d(μ − 1) +K

)2)1/2

2(μ − 1)
= d.

(3.9)

In view of (3.6), since h1(x), h2(x), and h(x) are convex parabolas, subject to (3.6), the zeros
x1, 2 of h (x), which are the equilibrium points of the limit stationary (1.2), satisfy

0 ≤ d = x22 ≤ x2 ≤ x12

=
d(μ − 1) + γμK(p/αe)p −K +

((
γμK(p/αe)p + d(μ − 1) −K)2 + 4(μ − 1)dK

)1/2

2(μ − 1)

≤
√

dK

μ − 1

(3.10)
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provided that d ≥ 0 and K > d(μ − 1) so that x2 = 0 if and only if d = 0. If d < 0 of sufficiently
small modulus, then

0 > −|d| = x22 ≤ x2 ≤ x12

=
γμK(p/αe)p − |d|(μ − 1) −K +

((
γμK(p/αe)p − |d|(μ − 1) −K)2 − 4(μ − 1)|d|K)1/2

2(μ − 1)
< 0,

−
√

dK

μ − 1
≥ x11 ≤ x1 ≤ x21 = − K

(μ − 1)
< 0 if d ≥ 0,

min
(
x11, x12

) ≤ x1 ≤ max
(
− K

(μ − 1)
,−|d|

)
< 0 if d < 0,

(3.11)

so that Property (i) has been proved. To prove Property (ii), first note that the modified limit
Beverton-Holt equation (1.2) may be written more compactly as

xk+1 − d = ψ
(
xk−1
)
ζ
(
xk
)
, (3.12)

where

ψ(x) =
γKμx

K + (μ − 1)x
, ζ(x) = xpe−αx, (3.13)

which implies

ψ ′(x) =
γK2μ

(
K + (μ − 1)x

)2
; ζ′(x) = xp−1e−αx(p − αx). (3.14)

The equilibrium points x, if any, satisfy x − d = limk→∞xk − d = ψ(x)ζ(x). The linearized
dynamics of (3.12) about the equilibrium points are [19]

zk+1 = ζ
(
x
)
ψ ′(x

)
zk−1 + ψ

(
x
)
ζ′
(
x
)
zk (3.15)

whose associated characteristic equation in the complex indeterminate λ is

λ2 − ψ(x)ζ′(x)λ − ζ(x)ψ ′(x
)
= 0 (3.16)

so that the equilibrium point is locally asymptotically stable if both zeros of (3.16) have
modulus less than unity, namely,

1 > −ζ(x)ψ ′(x
)
>
∣∣ψ
(
x
)
ζ′
(
x
)∣∣ − 1 (3.17)

or, equivalently,

1 + ζ
(
x
)
ψ ′(x

)
> 0;

∣∣ψ
(
x
)
ζ′
(
x
)∣∣ + ζ

(
x
)
ψ ′(x

)
< 1. (3.18)
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For d ≥ 0, since, x = x2 ≤ x12, it follows that ψ(x) ≤ γμx ≤ γμx12 ≤ γμ
√
dK/(μ − 1) and also

that ψ(x) ≤ γKμ/(μ − 1), for all x ∈ R 0+ directly from (3.13) so that

ψ(x) ≤ min
(

γKμ

(μ − 1)
, γμ

√
dK

μ − 1

)
,

dpe−α
√
dK/(μ−1) ≤ ζ(x) ≤ max

(
ζ(x) : x ∈ R0+

)
=
(
p

αe

)p
(3.19)

if d ≥ 0 from the constraint. From that constraint and 0 ≤ d = x22 ≤ x2 ≤ x12 and (3.13)-(3.14),

γK2μ
(
K +

√
dK(μ − 1)

)2
≤ ψ ′(x

) ≤ γμ min
(

1,
K2

(μ − 1)2d2

)
. (3.20)

ζ′(x) defined in (3.14) has a derivative (d/dx)ζ′(x) = xp−2e−αx[(p − 1)p − (p + 1)αx] which
has a relative extremum at x = (p − 1)p/(p + 1)α. Thus, taking into account also (3.14) and
0 ≤ d = x22 ≤ x2 ≤ x12 for d ≥ 0, one gets

dp−1e−α
√
dK/(μ−1)

(
p − α

√
dK

μ − 1

)

≤ ζ′(x)

≤ min
((

dK

μ − 1

)(p−1)/2

e−dα(p − αd), 2p
p + 1

(
(p − 1)p
(p + 1)α

)p−1

e(p−1)p/(p+1)
)
.

(3.21)

Thus, from (3.18), sufficient conditions for the equilibrium point x = x2 to be locally stable if
p ≥ αd are from (3.19) to (3.21):

dpe−α
√
dK/(μ−1) γK2μ

(
K +

√
dK(μ − 1)

)2
> −1,

∣
∣∣∣min

(
γKμ

(μ − 1)
, γμ

√
dK

μ − 1

)
min

((
dK

μ − 1

)(p−1)/2

e−dα(p−αd), 2p
p + 1

(
(p−1)p
(p+1)α

)p−1

e(p−1)p/(p+1)
)∣∣∣∣

+ γμ
(
p

αe

)p
min

(
1,

K2

(μ − 1)2d2

)
< 1.

(3.22)

Theorem 3.1(i)-(ii) establish that there is a unique equilibrium point on R+ for d > 0 of the
limit stationary equation (1.2) and that at most two equilibrium points might exist on R+ for
d < 0 being of small absolute value. Those results are obtained by investigating the zeros of the
upper-bounding and lower-bounding parabolas to h(x). The subsequent result gives explicit
conditions of the existence of two equilibrium points in such a situation provided that extra
sufficiency-type conditions on the remaining limit parameters are fulfilled.
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Theorem 3.4. The following properties hold.

(i) The limit equation (1.2) has two positive equilibrium points if d < 0 and satisfies |d| <
((γμ(p/αe)p − 1)K − (μ − 1)(p/α)/((μ − 1)p + αK))p, provided that 1 > γ > (((μ − 1)p +
Kα)/μKα)(αe/p)p, K > max(0, (μ − 1)p/μα[(p/αe)p − 1/μ]).

(ii) If d = 0, then the limit equation (1.2) has a zero equilibrium point and another positive
equilibrium points, and K > (μ − 1 )(p/α)/(γ μ (p/αe)p − 1) .

Proof. (i) One gets from (3.6) for d < 0 that

h(x) = (μ − 1)x2 +
(
K + (μ − 1)|d| − γμKζ(x))x +K|d|. (3.23)

For x = p/α > 0 where ζ(x) reaches its maximum value (p/αe)p, and

h

(
p

α

)
=
(
(μ − 1)

p

α
+K
)
p

α
+
(
(μ − 1)

p

α
+K
)
|d| − γμK

ep

(
p

α

)p+1

< 0, (3.24)

if 1 > γ > (((μ − 1)p + Kα)/μKα)(αe/p)p subject to (p/αe)p > ((μ − 1)p + Kα)/μKα = (μ −
1)p/μKα + 1/μ for K > 0 ⇔ K > max (0, (μ − 1)p/μα[(p/αe)p − 1/μ]). Since h(0) = K|d| >
0, h(∞) = limx→∞h(x) = ∞, h(p/α) = ((μ − 1)(p/α) + K)(p/α) + ((μ − 1)(p/α) + K)|d| −
(γμK/ep)(p/α)p+1 < 0 for x = p/α ∈ R0+ and h : R0+ → R is a real continuous function, there
exist x 1, 2 ∈ R+ with x2 > x1 such that h(xi) = 0, i = 1, 2 which are equilibrium points of the
limit equation (1.2) and the proof is complete.

(ii) The proof is similar to that of (i) by noting that the particular condition |d| = 0 <
(((γμ(p/αe)p − 1)K − (μ− 1)(p/α))/((μ − 1)p + αK))p is guaranteed by the given constraint on
K.

The following result proves that if there is only one equilibrium point (d > 0) of the
limit equation, then it is a globally stable attractor. Also, if there are two equilibrium points
(d ≤ 0 with sufficiently small |d| plus extra conditions on the parameters), then the smaller
equilibrium point is locally unstable while the largest one is a globally stable attractor.

Theorem 3.5. The following properties hold.

(i) If d > 0, then the unique positive equilibrium point is a global stable attractor.

(ii) If d ≤ 0 and of sufficiently small modulus, satisfying the constraints of Theorem 3.4, then
there are two nonnegative distinct equilibrium points. The smallest one is locally unstable if
p = 0, and locally stable if p > 0 while the largest one is a global stable attractor.

Proof. (i) Consider the initial value problem xi = x̂ i ≥ 0 (i = 0, 1). Thus, one has for d > 0

0 < d ≤ xk+1 =
μKe−αxkxk−1

K + (μ − 1)xk−1
+ d ≤ x̂k+1 ≤ μKe−αx̂k

μ − 1
+ d ≤ lim sup

k→∞
x̂k ≤

μK

μ − 1
+ d <∞. (3.25)

Thus,

0 < d ≤ lim inf
k→∞

xk ≤ lim sup
k→∞

xk ≤
μK

μ − 1
+ d <∞. (3.26)
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The equilibrium point is positive and unique from Theorem 3.1(i) and within
[d,
√
dK/(μ − 1)] ⊂ [d, μK/(μ − 1) + d] from Theorem 3.3(i). Assume that the equilibrium

point is locally unstable. Then, the stability constraints (3.18) do not jointly hold. Since
(3.26) holds and the equilibrium is locally unstable, a stable limit oscillatory solution
has to exist subject to (3.26). Then, there is θ ∈ N (the oscillation period) such that
0 < d ≤ limk→∞xk+k1 = xk+k1 ≤ μK/(μ − 1) + d < ∞, for all k1 ∈ θ. Now, build the real vector
x
(0)
k

:= (xk, xk−1, . . . , xk−θ+1)
T → x

(0)
k

as k → ∞. The linearization about the limit oscillation
(limit cycle) is defined by the dynamics z(0)

k+1 = Az
(0)
k

where A ∈ Rθ×θ is block-partitioned

as A :=
[ ζ(x) ψ ′(x) ψ(x) ζ′(x) 0 · · · 0

0 Iθ−1

]
. It is direct to see that A has an eigenvalue with

modulus greater than unity if and only if (3.16) has a zero with modulus greater than unity
since they coincide. Therefore, the limit cycle is unstable which leads to a contradiction to the
fact that it should exist and be stable. Then, the unique equilibrium point is locally stable and
there is no stable limit cycle. Since the equilibrium point is stable and unique, it is also a global
stable attractor and Property (i) has been proved.

(ii) If d = 0, then x = 0 is an equilibrium point. For any small perturbation population
at sampled time k, which has to be positive if p = 0, xj > 0 for j ∈ J \ k for some finite
integer J > k from inspection of the limit equation (1.2). Then, the zero equilibrium is locally
unstable. An alternative proof is the test of the stability conditions (3.18) for p = x = 0. The
second condition |ψ(0)ζ′(0)| + ζ(0)ψ ′(0) = ζ(0)ψ ′(0) = γμ > 1 is violated so that x = 0 is locally
unstable. For x = 0 and p > 0, both stability conditions are fulfilled as 1 + ζ(0)ψ ′(0) = 1 > 0,
|ψ(0)ζ′(0)| + ζ(0)ψ ′(0) = 0 < 1 so that the zero equilibrium point is locally stable. The largest
equilibrium point is a positive global stable attractor from Property (i). If d ≤ 0 and satisfies
the conditions of Theorem 3.4, then there are two positive equilibrium points. The largest one
is a stable global attractor proved under similar considerations as those used to prove Property
(i).

4. Existence of oscillatory solutions of the nonstationary-modified
Beverton-Holt equation

The main motivation of the study of this section is that very commonly the evolution
equation of populations in biology problems follows oscillatory seasonal patterns according
to reproduction needs, food supply from the environment, or metabolic cycles of the species
[13]. In Theorem 2.8, it has been proved that

0 < sk =
k∏

i=0

[
ρi
]
s0 +

k−1∑

i=0

k−1∏

j=i+1

[
ρj
]
ηi

=
k∏

i=0

[
ρi
]
s0 +

k−1∑

i=0

k−1∏

j=i+1

[
ρj
](
vi −ωi

) ≤ ∞, ∀k ∈ N,

(4.1)

where ρi := 1/γi μi−1ζi, ωi := Ki−1si−1δidi/ρ
−1
i (ρ−1

i + δidi) and δ i := Ki−1si−1 + μi−1 − 1, which
implies and it is implied by xk ∈ [0,∞); for all k ∈ N . Furthermore, if dk > 0; for all k ∈ N
then the above upper-bound is finite which implies and it is implied by xk ∈ [0,∞); for all
k ∈ N . It is of interest to investigate when the solution of the modified Beverton-Holt equation
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is oscillatory equivalent to the solution of its inverse to be oscillatory. It has to be pointed out
that the generation of limit oscillatory solutions being independent of the initial conditions is
very important in some engineering problems, like, for instance, all those associated with the
synthesis of electronic oscillators (see, e.g., [28]). To that end in the context of the modified
Beverton-Holt equation (1.2), define the discrete functions χx : N2

0 → R and χx : N0 ×N2 → R
as follows:

χx(j, k) := xk − xj,
χx(k, k + j, k + j + 
) := χx(k, k + j)χx(k, k + j + 
) =

(
xk+j − xk

)(
xk+j+
 − xk

)
,

(4.2)

respectively. Thus, precise definitions of what is meant by oscillatory solution of (1.2) are given.

Definition 4.1. A particular solution of (1.2) is strongly oscillatory if for any k ∈ N0, there exist
two finite natural numbers Ni(k); i = 1, 2, depending on k, such that

χx
(
k, k +N1(k), k +N1(k) +N2(k)

)
< 0. (4.3)

Definition 4.2. A particular solution of (1.2) is weakly oscillatory if for any k ∈ [k1, k2] = k2 \
k1 − 1 ⊂ N0 and some k1 ∈ N0 and k2 (≥ k1) ∈ N0, there exist two finite natural numbers
Ni(k); i = 1, 2, depending on k, such that

χx
(
k, k +N1(k), k +N1(k) +N2(k)

)
< 0. (4.4)

It turns out that any oscillation of the Beverton-Holt equation implies, and is implied by, an
oscillation of the solution of its inverse. Definitions 4.1 and 4.2 imply two alternate changes
of sign at some three samples everywhere for the solution sequence (strong oscillation) or
within some finite interval (weak oscillation), respectively. For each interval [k, k +N1(k), k +
N1(k) + N2(k)], only one oscillation test is needed. If xk = 0, then either the population is
extinguished and remains at the zero equilibrium point or it is recovering positive values at the
next samples generated by immigration so that the oscillation existence text can be performed
later on formally.

Assertion 4.3. χx
(
k, k + N1(k), k + N1(k) + N2(k)

)
< 0 for k ∈ N0, Ni(k) ∈ N (i = 1, 2) ⇔

χs
(
k, k +N1(k), k +N1(k) +N2(k)

)
< 0 for k ∈ N0, Ni(k) ∈ N (i = 1, 2).

Proof. It is direct from sk = x−1
k

, for all k ∈ N0 if xk > 0. If xk = 0, either the population is
extinguished for all samples and no test for oscillation applies or some population is recovered
from immigration (positive disturbance) at future samples and the inverse Beverton-Holt
equation can be defined.

Assertion 4.4. The subsequent technical result holds:

χx
(
k, k +N1(k), k1

)
< 0 ∧ χx

(
k1(k), k1(k) +N1

(
k1(k)

)
, k1(k) +N1

(
k1(k)

)
+N2

(
k1(k)

))
< 0
(4.5)

with k1(k) := k +N1(k) +N2(k) for some k ∈ N0, Ni(k) ∈ N, Ni(k1) ∈ N (i = 1, 2)

⇐⇒ ∃Ni(k + j) ∈ N (i = 1, 2) : χx
(
k + j, k +N1(k + j) +N2(k + j)

)
< 0, (4.6)

for all j (≤N1(k) +N2(k)) ∈ N such that xk+j > 0, Ni(k) ∈ N.
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Proof. Note that

sign
(
xk+N1(k) − xk

)
/= sign

(
xk+k1(k) − xk

)
,

sign
(
xk+N1(k) − xk

)
/= sign

(
xk+k1(k) − xk+N1(k)

)
,

sign
(
xk1(k)+N1(k1(k)) − xk1(k)

)
/= sign

(
xk1(k)+N1(k1(k))+N2(k1(k)) − xk1(k)+N1(k1(k))

)
,

sign
(
xk1(k)+N1(k1(k)) − xk1(k)

)
/= sign

(
xk1(k)+N1(k1(k))+N2(k1(k)) − xk1(k)+N1(k1(k))

)
.

(4.7)

Thus, it is obvious that there existNi(k+j) ∈ N (i = 1, 2) : χx(k+j, k+N1(k+j)+N2(k+j)) < 0,
for all j ∈ N such that xk+j > 0, for all j (≤ N1(k) + N2(k)) ∈ N, since it always exist by
construction at least one N1(k + j) ≤ N1(k1(k)) and at least one N2(k + j) ≤ N2(k1(k)), for all
j ∈ N such that xk+j > 0. If xk+j = 0, for all j /= k, k + N1(k), k + N1(k) + N2(k), then there
are always at least three sign changes in the interval [k, k +N1(k) +N2(k)] and the proof also
follows.

Assertions 4.3-4.4 imply directly the following result which is concerned with the
simplification of the test for strong oscillatory solutions.

Assertion 4.5. Assume that there exists a subset of infinite cardinal of the set of natural numbers
Sj := {kj ∈ N0 : 1 ≤ kj+1 − kj <∞} ⊂ N0 such that

χx
(
k, k +N1(k), k +N1(k) +N2(k)

)
< 0 ∀k ∈ Sj for some Ni(k) ∈ N (i = 1, 2)

⇐⇒ χs
(
k, k +N1(k), k +N1(k) +N2(k)

)
< 0 for k ∈ N0, Ni(k) ∈ N (i = 1, 2)

(4.8)

and some solution {xk}∞1 generated by initial conditions x−1 ≥ 0, x0 > 0. Then, such a solution
is strongly oscillatory. The converse is also true.

The main result of this section follows.

Theorem 4.6. A solution of the modified Beverton-Holt equation (1.2), subject to initial conditions
x−1 ≥ 0, x0 > 0, is strongly oscillatory if and only if there exists an infinite sequence of triples
{ki,N1(ki),N2(ki)}i∈N0

∈ N3, where ki+1 = ki +N1(ki) +N2(k i) ∈ S ⊂ N for some finite k0 ∈ N0,
for all i ∈ N0 with N �Nj(ki) <∞ (j = 1, 2) such that

skiski+N1(ki)ski+N1(ki)+N2(ki) > 0 (4.9)

and, furthermore,

ski+N1(ki)+N2(ki) <
ski
(
ski+N1(ki) − ski

)

ski+N1(ki) − ski
=
ski+N1(ki) − ski

κi − 1

⇐⇒ xki+N1(ki)+N2(ki) >
xki − xki+N1(ki)

xki
(
xki − xki+N1(ki)

)

⇐⇒ (ski+N1(ki)+N2(ki) < ski < ski+N1(ki)
) ∨ (ski+N1(ki)+N2(ki) > ski > ski+N1(ki)

)

⇐⇒ (xki+N1(ki)+N2(ki) > xki > xki+N1(ki)
) ∨ (xki+N1(ki)+N2(ki) < xki < xki+N1(ki)

)
,

(4.10)

where κi := ski+N1(ki)/ski .
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Proof. Expand χs(ki, ki +N1(ki), ki +N1(ki) +N2(ki)) using Definition 4.1 to obtain

χs
(
ki, ki +N1

(
ki
)
, ki +N1

(
ki
)
+N2

(
ki
))

= ski
(
ski − ski+N1(ki) − ski+N1(ki)+N2(ki)

)
+ ski+N1(ki)ski+N1(ki)+N2(ki) < 0.

(4.11)

Then, the proof follows directly from Assertions 4.4-(4.5) and direct computations since
(4.11) is equivalent to the four equivalent propositions for the existence of strong oscillatory
solution.

Remark 4.7. Note that the statement after the disjunction symbol in the third proposition in
Theorem 4.6 for existence of strong oscillation may be expanded as follows:

1
γki+N1(ki)−1μki+N1(ki)−2ζki+N1(ki)−2

(
ki+N1(ki)−2∏

k=ki

[
ρj
]
)

+
ki+N1(ki)−1∑

j=0

ki+N1(ki)−1∏


=j+1

[
ρ

]
(
ηj

ski

)
> 1 > ski+N1(ki)+N2(ki)

=
1

γki+N1(ki)+N2(ki)−1μki+N1(ki)+N2(ki)−2ζki+N1(ki)+N2(ki)−2

=

(
ki+N1(ki)+N2(ki)−2∏

k=ki

[
ρj
]
)

+
ki+N1(ki)+N2(ki)−1∑

j=0

ki+N1(ki)+N2(ki)−1∏


=j+1

[
ρ

]
(
ηj

ski

)

(4.12)

since ζ(x) varies from zero to infinity, it is always possible to have strong oscillatory solutions
by accomplishing with the inequalities with appropriate parameterizations of combinations
of the harvesting quota and intrinsic growth rate at certain samples sufficiently far away
from each former test for oscillation (see also Assertion 4.4). Similar considerations apply
for the reverse inequalities guaranteeing also strong oscillatory solutions conditions for weak
oscillatory solutions are similar but they only apply on some finite interval.

5. Numerical example

In this section, the evolution of a population of aphids is investigated under the modified
generalized Beverton-Holt equation through a numerical tested example. A brief empirical
description of those species follows. Aphids, or plant lice, are small, soft-bodied, pear-shaped
insects which are commonly found on nearly all indoor and outdoor plants, as well as
vegetables, field crops, and fruit trees. Most of them are about 1/10 inch long. They feed
on plants by piercing them with syringe-like mouths pars and sucking the sap. Their diet
is rich in carbohydrates and deficient in amino acids. Some of these amino acids cannot be
synthesized by the insect but are supplied by the intracellular symbiont bacteria Buchnera
aphidicola. Such a symbiont lives inside huge host cells (bacteriocytes) of which there are about
60–80 per individual and are transmitted to eggs through generations. Aphids have unusual
and complex life cycles which allow them to build up huge levels of population in very short
periods of time. Furthermore, they overwinter as fertilized eggs. Nymphs which hatch from
these eggs become wingless females (stem mothers) which reproduce without mating holding
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Figure 1: μ = 2, K = 200, d = 0, p = 0.01, α = 0.002, and γ = 0.8.
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Figure 2: μ = 2, K = 200, d = 0, p = 0.01, α = 0.001, and γ = 0.8.

new amounts of eggs in their bodies until hatching born alive youths. This pattern continues
for as long as conditions are favorable. When the days get shorter in the fall and there are
cooler temperatures, a generation appears which includes both males and females which are
the production of fertilized eggs which overwinter [14]. As a short summary of the above
description, it can be emphasized that the populations grow very fast in short periods of time
during the same year and they also decrease fast to reach low survival thresholds but not up
to extinction.

A common mathematical model for the population evolution of aphids is given in [13]
as follows:

ak+1 = fr(1 −m)ak =
[
fr(1 −m)

]k+1
a0, (5.1)

where ak is the number of adult female aphids in the kth generation, pk = fak is the number
of progeny in the kth generation, m is the fractional mortality of the young aphids, f is the
number of progeny per female aphid and r is the ratio of female aphids to total adult aphids.
The above parameters are all nonnegative by nature. The model might be generalized to extend
the above parameters to be varying sequence. From standard stability results the model is
globally asymptotically stable (and also exponentially stable) if and only if g := fr(1 −m) < 1,
globally stable with the population being constant if g = 1 and unstable (with the solution
diverging at exponential rate) if g > 1. It turns out that such a description does not fix
properly the above empirical description from biology knowledge. Exhaustive simulation
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Figure 3: μ = 2, K = 200, d = 0, p = 0.01, α = 0.001, and γ = 0.8.

via the modified generalized Beverton-Holt equation shows that the nontrivial solutions are
always bounded and positive as expected. They have equilibrium points which depend on
parameters. For instance, for zero harvesting quota, zero disturbance contribution, and very
small or zero powers p of the penalty term, the solutions reach an equilibrium which lies
below that reached by the standard Beverton-Holt model, defined by the carrying capacity.
However, there are several cycles of alternate fast increase/decrease of the populations during
the transients. This model property is useful to describe the above biological behavior during
one year of population evolution. If the parameters are readjusted, the solution changes
accordingly while keeping a similar shape. For instance, the upper limit is smaller as the
penalty term increases which also produces more abrupt cycles of increase/decrease of the
population.

Figure 1 describes the population evolution for constant parameterizations μ = 2, K =
200, d = 0, p = 0.01, α = 0.002, and γ = 0.8. It is seen that the upper limit is smaller
than the level of 200 corresponding to a standard Beverton-Hold equation, governed by μ
and K, and also smaller than the level of 160, corresponding to a (unmodified) generalized
Beverton-Holt equation, governed by μ, K, γ , and d = 0. The reason is that a penalty term
is introduced for the overpopulation of aphids. The penalty term translates into a certain
level of population control since the population individuals compete in their habitat. The
transient shows alternate cycles of increase/decrease of population levels. If α = 0.001, with
the remaining parameters being identical, then the upper limit increases as expected since
both the standard and unmodified generalized Beverton-Holt equations are parameterized
by a carrying capacity of 200. The population evolution is displayed in Figure 2 where the
existence of the upper limit is obvious and a zoom for the first part of transient exhibiting the
alternate cycles is given in Figure 3. Finally, Figure 4 shows the sample-to-sample ratio between
the population evolution of the modified generalized Beverton-Holt equation to the standard
one over a transient of 30 samples for zero harvesting quota.

On the other hand, Figures 5 and 6 display the population evolution under moderate
disturbance contribution consisting of joint independent consumption plus net migration fixed
to 1/10 of the initial population with harvesting quotas of 20% and 60%, respectively. Those
quotas can be interpreted in the plagues context as the use of pesticides to fight the plague.
In the first case, the population grows slightly for each cycle, but exhaustive simulation for
more samples demonstrates that the population remains bounded to smaller values than the
carrying capacity, as expected. In the second case, it is shown that the levels of population
decrease at each successive life cycle.
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Figure 4: Relative comparison with the standard Beverton-Holt equation.
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Figure 5: μ = 2, K = 200, γ = 0.8, d = 0.1x (0), α = 0.1, p = 10.

6. Conclusions

This paper has been devoted to the study of stability and equilibrium point of a proposed
modified generalized Beverton-Holt equation in ecology. Such an equation is governed, in
general, by six parametrical sequences, namely,

(i) the intrinsic growth rate and the environment carrying capacity which define the
standard Beverton-Holt equation,

(ii) the harvesting quota and the disturbance contribution which, in addition, to the two
former ones parameterize the generalized Beverton-Holt equation,

(iii) a penalty term for the eventual overpopulation which includes, in general, the
product of a potential term and a decreasing exponential one of the previous
population.

It has been proved that the proposed model is Lyapunov stable and possesses stable equilib-
rium points. It has also been proved that even under constant parameterizations the model
can exhibit an oscillatory behavior to describe the alternative cycles of increasing/decreasing
levels of population evolution. In this sense, it can be useful to correct the foreseen evolution
through the standard Beverton-Holt equation which, under nonextinction conditions obtained
from a carrying capacity greater than unity, leads to the population convergence to a finite set
point limit defined by the environment carrying capacity. It can also be useful to introduce
a correction of the behavior foreseen by its limiting equation, which is the Ricker model,
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Figure 6: μ = 2, K = 200, γ = 0.4, d = 0.1x (0), α = 0.1, p = 10.

which leads also to a limit set point being typically smaller than that associated with the
standard Beveerton- Holt equation. The modified generalized Beverton-Holt equation is also
shown to be useful to describe during its transient alternate cycles of the population levels for
certain populations of insects since the solution is bounded and extinction-free under standard
parameterization conditions so that it exhibits an oscillatory behavior within finite positive
lower and upper bounds. In this context and in order to show its usefulness the proposed
model has been applied to study a population of aphids which exhibit alternate cycles of
increase and decrease of population and which state in latent levels of populations against
very adverse conditions of their habitat.
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