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1. Introduction

The stability analysis of interval system is very useful for the robustness analysis of nominally
stable system subject to model perturbations. Therefore, there has been considerable interest in
the stability analysis of interval system in literature ([1–15], and references therein). In general,
those approaches can be classified into two categories: the first is the polynomial and the sec-
ond is the matrix approach. However, due to information transmission between elements or
systems, data computation, natural property of system elements, and so forth, time delays also
inherently exist in controlled systems and therefore must be integrated into system models.
The stability analysis for interval systems with delays becomes more complicated. In [6], a suf-
ficient condition for the stability of discrete-time systems is given in terms of pulse-response
sequence matrix. In [11], based on the Gersgorin theorem, the stability testing problem for
continuous and discrete systems including a time delay is discussed.

The objective of this paper is to deal with the asymptotic stability of a discrete-time
interval system with delay. Based on the inequality techniques [16], a new sufficient condition
for preserving the asymptotic stability of the system is presented. By mathematical analysis,
the stability criterion is less conservative than that in previous result. An example is given to
compare the proposed method with one reported.
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2. System description and notations

Consider the discrete-time interval system with delay described by

x(k + 1) = AIx(k) + BIx(k − p), k = 0, 1, 2, . . . ,

x(k) = ϕ(k), k = −p, . . . , 0,
(2.1)

where delay p is a positive integer, x(k) = col{x1(k), x2(k), . . . xn(k)} ∈ Rn, AI , BI are the
interval matrices described as AI � [A,A] = {A = (aij) : aij ∈ [aij , aij]}, BI � [B, B] = {B =

(bij) : bij ∈ [bij , bij]}, i, j = 1, 2, . . . , n, ϕ(k), k = −p, . . . , 0, are bounded.
In the sequel, the following notations will be used: Rn(Rn

+): the space of n-dimensional
(nonnegative) real column vectors; Rn×m(Rn×m

+ ): the set of n × m (nonnegative) real matrices;
ρ(A): the spectral radius of matrix A ∈ Rn×n; A ≥ B(A > B): each pair of corresponding
elements of A and B satisfies the inequality “≥ (>),” where A,B ∈ Rn×m or A,B ∈ Rn; Wρ(A):
for A ∈ Rn×n

+ , Wρ(A) � {z ∈ Rn
+ | Az = ρ(A)z}; [·]+: the vector (or matrix) obtained by

replacing each entry of [·] by its absolute value; Z[a,b]: Z[a,b] ≡ {a, a + 1, . . . , b}, where a, b
are nonnegative integers; if a > b, we define Z[a,b] = ∅, where ∅ is the empty set; if b = ∞,
we write Z[a,b] as Z[a]; Ar(Br): the set of matrices obtained by exchanging corresponding r
column (s) of A (B) and A (B), so there are 2 × ( nr ) matrices in each Ar(Br), where r ∈ Z[0,n],
( nr ) = n!/r!(n − r)! and n! denotes the factorial of n.

3. Main result

In order to prove our main result, we first need the following technical lemmas.

Lemma 3.1 (see [17, Theorem 8.3.1]). If A ∈ Rn×n
+ , then there is a nonnegative vector z ≥ 0, z /= 0,

such that Az = ρ(A)z.

So it is clear that Wρ(A) is not empty by Lemma 3.1.

Lemma 3.2. Let P,Q ∈ Rn×n
+ , u(k) ∈ Rn

+ satisfy that

u(k + 1) ≤ Pu(k) +Qu(k − p), k ∈ Z[0]. (3.1)

If

ρ(P +Q) < 1, (3.2)

then there exists a constant λ > 0 such that

u(k) ≤ ze−λk, k ∈ Z[0], (3.3)

for some z = (z1, z2, . . . , zn)
T ∈Wρ(P +Qeλp).

Proof. Since ρ(P + Q) < 1, using continuity, there must be a sufficiently small constant λ > 0
such that

eλ(p+1)ρ
(
P +Qeλp

)
≤ 1. (3.4)
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Let

y(k) = u(k)eλk, k ∈ Z[0],

y(k) = u(k), k ∈ Z[−p,0],
(3.5)

so we have

u(k) = y(k)e−λk ≤ y(k)e−λ(k−p), k ∈ Z[0]. (3.6)

By (3.1), we have

y(k + 1) = u(k + 1)eλ(k+1) ≤
(
Pu(k) +Qu(k − p)

)
eλ(k+1), k ∈ Z[0]. (3.7)

Since P,Q ∈ Rn×n
+ , we derive that

y(k + 1) ≤
(
Py(k) +Qy(k − p)eλp

)
eλ(p+1), k ∈ Z[0]. (3.8)

We next show that for any k ∈ Z[0],

y(k) ≤ z. (3.9)

If this is not true, then there must be a positive constant l > 0 and some integer m such that

ym(l + 1) > zm, y(k) ≤ z for k ∈ Z[−p,l]. (3.10)

By using (3.4) and (3.8), we obtain that

y(l + 1) ≤ eλ(p+1)(P +Qeλp
)
z = eλ(p+1)ρ

(
P +Qeλp

)
z ≤ z (3.11)

which contradicts the first inequality of (3.10). Thus (3.9) holds for all k ∈ Z[0]. Therefore, we
have

u(k) ≤ ze−λk, k ∈ Z[0], (3.12)

and the proof is completed.

Theorem 3.3. For any C ∈ A � ⋃n
r=0Ar , D ∈ B � ⋃n

r=0Br , if the inequality

ρ
(
[C]+ + [D]+

)
< 1 (3.13)

holds, then the discrete-time interval system (2.1) is asymptotically stable.

Proof. Let Γk = {i | xi(k) < 0} ≡ {i1, i2, . . . , im}, Λk = {j | xj(k − p) < 0} ≡ {j1, j2, . . . , jl} , where
m, l satisfying 0 ≤ m ≤ n, 0 ≤ l ≤ n, m + l = n are integers and m = 0 or l = 0 is equivalent to
that Γk or Λk is empty, respectively. Obviously,

⋃∞
k=1Γk and

⋃∞
k=1Λk are finite sets.

By the definitions of A and B, we can obtain matrices A1k,A2k ∈ A by exchanging the
corresponding i1th, i2th, . . . , imth columns of A and A (if m = 0, then A1k = A,A2k = A), and
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matrices B1k, B2k ∈ B by exchanging the corresponding j1th, j2th, . . . , jlth columns of B and B
(if l = 0, then B1k = B, B2k = B) such that the following inequalities hold:

A1kx(k) ≤ Ax(k) ≤ A2kx(k), A ∈ AI,

B1kx(k − p) ≤ Bx(k − p) ≤ B2kx(k − p), B ∈ BI.
(3.14)

So together with (2.1), we have

A1kx(k) + B1kx(k − p) ≤ x(k + 1) ≤ A2kx(k) + B2kx(k − p). (3.15)

From the above, we see that A1k,A2k and B1k, B2k depend only on the position of the negative
components of x(k) and x(k − p), respectively.

Then, from (3.15), we derive

[
x(k + 1)

]+ ≤ max
{[
A1kx(k) + B1kx(k − p)

]+
,
[
A2kx(k) + B2kx(k − p)

]+}

≤ max
{[
A1k

]+[
x(k)

]+ +
[
B1k

]+[
x(k − p)

]+
,
[
A2k

]+[
x(k)

]+ +
[
B2k

]+[
x(k − p)

]+}
.

(3.16)

So we have

[
x(k + 1)

]+ ≤
[
A1k

]+[
x(k)

]+ +
[
B1k

]+[
x(k − p)

]+ (3.17)

or

[
x(k + 1)

]+ ≤
[
A2k

]+[
x(k)

]+ +
[
B2k

]+[
x(k − p)

]+
. (3.18)

Since A1k,A2k ∈ A, B1k, B2k ∈ B, by the definitions of A and B again, (3.17) and (3.18),
for any k ∈ Z[0], we can find corresponding matrices Ai ∈ A, Bj ∈ B, i, j ∈ {1, 2, . . . , n}, such
that

[
x(k + 1)

]+ ≤
[
Ai

]+[
x(k)

]+ +
[
Bj
]+[

x(k − p)
]+
. (3.19)

In view of condition (3.13), we obtain that

ρ
([
Ai

]+ +
[
Bj
]+)

< 1, i, j ∈ {1, 2, . . . , n}. (3.20)

Thus, by Lemma 3.2 and (3.19), (3.20), for any k ∈ Z[0], there exist constants λij > 0 and some
zij ∈Wρ([Ai]

+ + [Bj]
+eλijp), i, j ∈ {1, 2, . . . , n}, such that

x(k) ≤ zije−λijk. (3.21)

Set λ = min1≤i,j≤n{λij}, zij = {z(1)ij , z
(2)
ij , . . . , z

(n)
ij }

T , z(h) = max1≤i,j≤n{z(h)ij }, h = 1, 2, . . . , n, z =

{z(1), z(2), . . . , z(n)}T , obviously, λ and z are independent of any choice of k, so by (3.21), we
derive that

x(k) ≤ ze−λk, k ∈ Z[0], (3.22)

which implies that the conclusion of the theorem holds.
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Remark 3.4. By the meanings of Ar and Br , we know that Ar = An−r , Br = Bn−r , r ∈ Z[0,n].
So there are (

∑n
r=02 × ( nr ))/2= 2n matrices in the sets A and B, respectively. Furthermore, if

number n is even, that is, n = 2k, k = 1, 2, . . ., then the equality Ar = An−r (Br = Bn−r) for r = k
is transformed to be Ak = Ak (Bk = Bk) and thenAk (Bk) contains only ( 2k

k ) different matrices.
Therefore, condition (3.13) can be verified easily and quickly by computer software (such as
MATLAB).

Corollary 3.5 (see [11, Theorem IV]). The discrete-time interval system (2.1) is asymptotically stable
if the following condition is satisfied:

ρ(K + F) < 1, (3.23)

where matrices K and F are defined as K = (kij), kij = max{|aij |, |aij |}, F = (fij), fij =

max{|bij |, |bij |}, i, j = 1, 2, . . . , n.

Proof. Clearly, for any C ∈ A =
⋃n
i=1Ai, D ∈ B =

⋃n
i=1Bi, the inequality

[C]+ + [D]+ ≤ K + F (3.24)

holds, then from [18] (i.e., for A,B ∈ Rn×n
+ , if A ≤ B, then ρ(A) ≤ ρ(B)) and associated with

(3.23), we have

ρ
(
[C]+ + [D]+

)
≤ ρ(K + F) < 1. (3.25)

Therefore, system (2.1) is asymptotically stable in terms of Theorem 3.3.

4. Illustrative examples

Example 4.1. Consider the discrete-time interval system (2.1) with delay and

A =

⎛

⎜⎜
⎝

−1
2
−1

4

0
1
4

⎞

⎟⎟
⎠ , A =

⎛

⎜⎜
⎝

−1
3

0

1
4

1
2

⎞

⎟⎟
⎠ , B =

⎛

⎜⎜
⎝

−1
4
−1

6

−1
4
−1

8

⎞

⎟⎟
⎠ , B =

⎛

⎜⎜
⎝

−1
5

0

0
1
10

⎞

⎟⎟
⎠ . (4.1)

For this case,A1 =
{
A1 =

( −1/3 −1/4
1/4 1/4

)
, A2 =

( −1/2 0
0 1/2

)}
,

A2 =

⎧
⎪⎪⎨

⎪⎪⎩
A3 =

⎛

⎜⎜
⎝

−1
3

0

1
4

1
2

⎞

⎟⎟
⎠ , A4 =

⎛

⎜⎜
⎝

−1
2
−1

4

0
1
4

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
,

B1 =

⎧
⎪⎪⎨

⎪⎪⎩
B1 =

⎛

⎜⎜
⎝

−1
5
−1

6

0 −1
8

⎞

⎟⎟
⎠ , B2 =

⎛

⎜⎜
⎝

−1
4

0

−1
4

1
10

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
,

B2 =

⎧
⎪⎪⎨

⎪⎪⎩
B3 =

⎛

⎜
⎝
−1

5
0

0
1
10

⎞

⎟
⎠ , B4 =

⎛

⎜⎜
⎝

−1
4
−1

6

−1
4
−1

8

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

(4.2)
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Figure 1: Stability for discrete-time interval system.

By simple calculation, we have ρ([Ai]
+ + [Bj]

+) ≤ ρ([A1]
+ + [B4]

+) for i, j = 1, 2, 3, 4, and

[
A1

]+ +
[
B4

]+ =

⎛

⎜
⎜
⎝

1
3

1
4

1
4

1
4

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

1
4

1
6

1
4

1
8

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

7
12

5
12

1
2

3
8

⎞

⎟
⎟
⎠ . (4.3)

So we have

ρ
([
Ai

]+ +
[
Bj
]+) ≤ ρ

([
A1

]+ +
[
B4

]+) = 0.9473 < 1, i, j = 1, 2, 3, 4. (4.4)

Therefore, the system (2.1) is asymptotically stable by means of Theorem 3.3.
In what follows, the simulation result is illustrated in Figure 1.

Remark 4.2. If [11, Theorem IV] is applied to Example 4.1, we obtain

K =

⎛

⎜⎜
⎝

1
2

1
4

1
4

1
2

⎞

⎟⎟
⎠ , F =

⎛

⎜⎜
⎝

1
4

1
6

1
4

1
8

⎞

⎟⎟
⎠ , (4.5)

where K, F are defined by Corollary 3.5, that is, [11, Theorem IV]. Then

ρ(K + F) = 1.1482 > 1, (4.6)

that is, [11, Theorem IV] cannot be applied. So the sufficient condition (3.13) proposed in this
paper is less conservative than condition (3.23) proposed by [11].

5. Conclusion

In this paper, we have investigated the asymptotic stability of discrete-time interval system
with delay. A new sufficient condition for preserving the asymptotic stability of the system is
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developed. By mathematical analysis, the presented criterion is to be less conservative than that
proposed by [11]. So, the result of this paper indeed allows us to have more freedom for check-
ing the stability of the discrete-time interval systems with delay. From the proposed example,
it is easily seen that the criterion presented in this paper for the stability of the discrete-time
interval system with delay is very helpful. We believe that the present scheme is applicable to
robust control design.
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