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1. Introduction

Formodeling the dynamics of an ecological system, Cushing [1] pointed out that it is necessary
and important to consider models with periodic ecological parameters or perturbations which
might be quite naturally exposed (e.g., those due to seasonal effects of wheatear, food supply,
mating habits, etc.). The periodic solution theory of dynamic equations has been developed
over the last decades.We refer the readers to [2–6] for infinite dimensional cases, and to [1, 7–9]
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for finite dimensional cases. Especially, there are many results of periodic solutions (such as
existence and stability) for impulsive periodic systems on finite dimensional spaces (see [7–
9]). There are also some relative results of periodic solutions for periodic systems with time-
varying generating operators on infinite dimensional spaces (see [5, 6, 10–12]).

On the other hand, the ecological system is often deeply perturbed by human exploit
activities such as planting and harvesting. Usually, these activities are considered continuously
by adding some items to [13–15], whereas this is not how things stand. It is often the case
that planting and harvesting of the species are seasonal or occur in regular pulses. These
perturbations may also naturally be periodic, for example, a fisherman may go fishing at the
same time once a day or once aweek. Systemswith short-term perturbations are often naturally
described by impulsive differential equations, which are found in almost every domain of
applied sciences. For the basic theory on impulsive differential equations on finite dimensional
spaces, the reader can refer to Lakshmikantham’s book and Yang’s book (see [9, 16]). For the
basic theory on impulsive differential equations on infinite dimensional spaces, the reader can
refer to Ahmed’s paper, Liu’s paper, and Xiang’s papers (see [17–19]).

In this paper, we will study the following generalized Logistic system with impulsive
perturbations:

∂

∂t
x(t, y) = A(y, t,D)x(t, y) + f(t, y), y ∈ Ω, t > 0, t /= τk, k ∈ Z+

0 ,

x(t, y) = 0, y ∈ ∂Ω, t > 0,

Δx(t, y) = Bkx(t, y) + ck, y ∈ Ω, t = πk, k ∈ Z+
0 ,

(1.1)

where x(t, y) denotes the population number of isolated species at time t and location y, Ω is
an open-bounded domain in R2, and ∂Ω is smooth enough. The operator

A(y, t,D) ≡
∑

1≤i,j≤2
aij(y, t)DiDj +

∑

1≤i≤2
bi(y, t)Di + c(y, t), (y, t) ∈ (Ω × [0,+∞)

)
, (1.2)

where all the coefficients are smooth functions enough and Di denotes the spatial derivative
with respect to yi. f is related to the periodic change of the resources maintaining the evolution
of the population. Time sequence 0 = τ0 < τ1 < · · · < τk · · · and τk → ∞ as k → ∞, Δx(τk, y) =
x(τ+

k
, y) − x(τk, y) = Bkx(τk, y) + ck denote mutation of the isolate species at time τk.
Suppose the first equation of (1.1) is T -periodic and the third equation of (1.1) is T0-

periodic, that is,A(y, t+T,D) = A(y, t,D), f(t+T, y) = f(t, y), t ≥ 0, and T0 is the least-positive
constant such that there are δ τks in the interval (0, T0) and τk+δ = τk +T0, Bk+δ = Bk, ck+δ = ck,
k ∈ Z+

0 .
The first equation of (1.1) describes the variation of the population number x of the

species in T -periodically changing environment. The second equation of (1.1) shows that the
species is isolated. The third equation of (1.1) reflects the possibility of impulsive effects on
the population. As we assumed, these impulsive perturbations are T0-periodic. Naturally, this
period is distinct from T , the period of the change of environment. Even when we want to
carry out the perturbations according to the period T , we cannot do it since we do not know
T exactly. Thus, it is interesting how the dynamics of the first equation of (1.1) are affected by
the periodic changing of environment together with the periodic impulsive perturbations.
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Define A(t)(y) = A(y, t,D), x(·)(y) = x(·, y), f(·)(y) = f(·, y), (1.1) can be abstracted
impulsive periodic evolution equations of the form

ẋ(t) = A(t)x(t) + f(t), t /= τk, (T -periodic)

Δx(t) = Bkx(t) + ck, t = τk, (T0-periodic)
(1.3)

on the Banach space X. It is obvious that the investigation of (1.3) cannot only be used to
discuss (1.1) but also provide a foundation for study of the general impulsive periodic systems.

Assume that T -periodic evolution equation of the form ẋ(t) = A(t)x(t), x ∈ X, t > 0, is
well posed, that is, there exists a T -periodic evolutionary process {U(t, θ), t ≥ θ ≥ 0} which
satisfies, among other things, the conditions (1)–(5) of Definition 2.1 which follows. Once the
evolution equations ẋ(t) = A(t)x(t), x ∈ X, t > 0, and ẋ(t) = A(t)x(t) + f(t), x ∈ X, t > 0, are
well posed, the asymptotic behavior of solutions at infinity, such as stability and periodicity,
is of particular interest, which has been a central topic discussed for the past decade. We refer
the reader to the books [20, 21], and the surveys [22], and the references therein for more
complete information on the subject. Because (1.3) can be used to describe more social and
natural phenomena, it is naturally needed to study the stability and periodicity of solutions for
(1.3).

The aim of this paper is to study the existence and global asymptotical stability of
periodic PC-mild solution of (1.3) without compactness condition. We will show that (i) if
γ = T/T0 is rational, that is, T and T0 are rational dependent, then (1.3) may have a unique
periodic PC-mild solution which is globally asymptotically stable and (ii) if x(t, x) is a periodic
PC-mild solution of (1.3) with x(0) = x, then its period must be nT0 for some n ∈ N.

This paper is organized as follows. In Section 2, the properties of the impulsive evolution
operator are collected, two sufficient conditions that guarantee the exponential stability of the
impulsive evolution operator are given. In Section 3, the existence of periodic PC-mild solution
which is globally asymptotically stable for (1.3) is obtained. At last, the abstract results are
applied to a special case of (1.1). This work not only provides the theory basis for managing
some single species but is also fundamental for further discussion on the existence and stability
of periodic solution for nonlinear impulsive periodic system with time-varying generating
operators on infinite dimensional spaces.

2. Exponential stability of impulsive evolution operator

Let X be a Banach space, £(X) denotes the space of linear operators on X; £b(X) denotes
the space of bounded linear operators on X. Let £b(X) be the Banach space with the usual
supremum norm. Denote γ is rational, let γ = p/q, p, q ∈ N, p, q are relatively prime. Denote
T̃ = pT0 = qT , D̃ = {τ1, . . . , τpδ} ⊂ [0, T̃] and define PC ([0, T̃];X) ≡ {x : [0, T̃] → X | x is
continuous at t ∈ [0, T̃] \ D̃, x is continuous from left and has right-hand limits at t ∈ D̃} , and
PC1([0, T̃];X) ≡ {x ∈ PC ([0, T̃];X) | ẋ ∈ PC ([0, T̃];X)}. Set

‖x‖PC = max

{
sup
t∈[0,T̃]

∥∥x(t + 0)
∥∥, sup

t∈[0,T̃]

∥∥x(t − 0)
∥∥
}
, ‖x‖PC1 = ‖x‖PC +

∥∥ẋ
∥∥
PC. (2.1)

It can be seen that endowed with the norm ‖·‖PC (‖·‖PC1), PC ([0, T̃];X) (PC1([0, T̃];X)) is a
Banach space.
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In order to investigate periodic solution, introduce the following two spaces:

L1
T

(
[0,+∞);X

) ≡
{
f : [0,+∞) −→ X | f(t) = f(t + T),

∫T

0

∥∥f(t)
∥∥dt < ∞

}
,

PCT̃

(
[0,+∞);X

) ≡ {x ∈ PC
(
[0,+∞);X

) | x(t) = x
(
t + T̃

)
, t ≥ 0

}
.

(2.2)

Set

‖f‖L1
T
=
∫T

0

∥∥f(t)
∥∥dt < ∞, ‖x‖PCT̃

= max
{

sup
t∈[0,T̃]

∥∥x(t + 0)
∥∥, sup

t∈[0,T̃]

∥∥x(t − 0)
∥∥
}
. (2.3)

It can be seen that endowed with the norm ‖·‖L1
T
(‖·‖PCT̃

), L1
T([0,+∞);X) (PCT̃([0,+∞);X)) is a

Banach space.
The following notation will be used throughout the paper, we recall these concepts in

the following definitions.

Definition 2.1. A family of bounded linear operators {U(t, θ), t ≥ θ ≥ 0} from a Banach spaceX
to itself is called strongly continuous evolutionary process if the following conditions (1)–(4)
are satisfied:

(1) U(t, t) = I, t ≥ 0,

(2) U(t, r)U(r, θ) = U(t, θ), t ≥ r ≥ θ ≥ 0,

(3) the map (t, θ) → U(t, θ)x is continuous for every fixed x ∈ X,

(4) ‖U(t, θ)‖ ≤ Meω(t−θ) for some M ≥ 1, ω ∈ R independent of t ≥ θ ≥ 0,

further, if

(5) U(t + T, θ + T) = U(t, θ) for all t ≥ θ ≥ 0.

Then the strongly continuous evolutionary process {U(t, θ), t ≥ θ ≥ 0} is called T -
periodic.

Definition 2.2. The evolutionary process {U(t, θ), t ≥ θ ≥ 0} is called exponentially bounded if

	(U) = inf
{
ω ∈ R : ∃M ≥ 1 with

∥∥U(t, θ)
∥∥ ≤ Meω(t−θ) for t ≥ θ ≥ 0

}
< ∞. (2.4)

Definition 2.3. The linear equation

ẋ(t) = A(t)x(t), x ∈ X, t ≥ 0 (2.5)

is said to be well posed if there exists an evolutionary process {U(t, θ), t ≥ θ ≥ 0}, which
satisfies the conditions (1)–(4) in Definition 2.1, such that for every θ ≥ 0 and x ∈ D(A(θ)),
the function x(t) = U(t, θ)x is the uniquely determined classical solution of (2.5) satisfying
x(θ) = x.

Definition 2.4. The function x ∈ X is said to be a mild solution to the linear equation (2.5) if and
only if

x(t) = U(t, θ)x(θ), t ≥ θ ≥ 0. (2.6)

We introduce the following assumption (H1):
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(H1.1) A(t) : D(A(t)) → X, t ≥ 0, is a family of linear unbounded operators on X, A(t) is
T -periodic, that is, for t ≥ 0, A(t + T) = A(t);

(H1.2) the linear equation ẋ(t) = A(t)x(t), x ∈ X, t ≥ 0, is well posed;

(H1.3) there exists δ ∈ N such that τk+δ = τk + T0;

(H1.4) for each k ∈ Z+
0 , Bk ∈ £b(X) and Bk+δ = Bk.

By (H1.1) and (H1.2), {U(t, θ), t ≥ θ ≥ 0} is T -periodic strongly continuous evolutionary
process.

Under (H1), consider

ẋ(t) = A(t)x(t), t /= τk,

Δx(t) = Bkx(t), t = τk,
(2.7)

and Cauchy problem

ẋ(t) = A(t)x(t), t ∈ [0, T̃] \ D̃,

Δx(τk) = Bkx
(
τk
)
, k = 1, 2, . . . , pδ,

x(0) = x.

(2.8)

For every x ∈ X, D(A(t)), t ≥ 0, is an invariant subspace of Bk; and step by step, one
can verify that the Cauchy problem (2.7) has a unique classical solution x ∈ PC1([0, T̃];X)
represented by x(t) = Φ(t, 0)x, where

Φ(·, ·) : Δ =
{
(t, θ) ∈ [0, T̃] × [0, T̃] | 0 ≤ θ ≤ t ≤ T̃

} −→ £(X), (2.9)

given by

Φ(t, θ)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

U(t, θ), τk−1 ≤ θ ≤ t ≤ τk,

U
(
t, τ+

k

)(
I+Bk

)
U
(
τk, θ
)
, τk−1 ≤ θ < τk < t ≤ τk+1,

U
(
t, τ+

k

)[ ∏

θ<τj<t

(
I+Bj

)
U
(
τj , τ

+
j−1
)](

I+Bi

)
U
(
τi, θ
)
, τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.

(2.10)

The operator {Φ(t, θ), (t, θ) ∈ Δ} is called impulsive evolution operator associated with
{U(t, θ), (t, θ) ∈ Δ} and {Bk; τk}∞k=1.

The following lemma on the properties of the impulsive evolution operator
{Φ(t, θ), (t, θ) ∈ Δ} associated with {U(t, θ), (t, θ) ∈ Δ} and {Bk; τk}∞k=1 are widely used in
this paper.

Lemma 2.5. Assumption (H1) holds. The impulsive evolution operator {Φ(t, θ), (t, θ) ∈ Δ} has the
following properties:

(1) for 0 ≤ θ ≤ t ≤ T̃ ,Φ(t, θ) ∈ £b(X), there existsMT̃ > 0 such that sup0≤θ≤t≤T̃‖Φ(t, θ)‖ ≤ MT̃ ,

(2) for 0 ≤ θ < r < t ≤ T̃ , r /= τk, Φ(t, θ) = Φ(t, r)Φ(r, θ),
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(3) for 0 ≤ θ ≤ t ≤ T̃ , n ∈ Z+, Φ(t + nT̃, θ + nT̃) = Φ(t, θ),

(4) for 0 ≤ θ ≤ t ≤ T̃ , n ∈ Z+, Φ(t + nT̃, 0) = Φ(t, 0)[Φ(T̃ , 0)]n,

(5) for 0 ≤ θ < t, there exitsM ≥ 1, ω ∈ R such that

∥∥Φ(t, θ)
∥∥ ≤ M exp

{
ω(t − θ) +

∑

θ≤τn<t
ln
(
M
∥∥I + Bn

∥∥)
}
. (2.11)

Proof. For (1)–(4), the reader can see [23, Lemma 2.7]. We only need to verify (5). Without loss
of generality, for τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1,

∥∥Φ(t, θ)
∥∥ =
∥∥U
(
t, τ+k
)∥∥∥∥I + Bk

∥∥∥∥U
(
τk, τ

+
k−1
)∥∥ · · ·∥∥I + Bi

∥∥∥∥U
(
τi, θ
)∥∥

≤ Meω(t−τ+
k
)

[
k∏

n=i+1

∥∥I + Bn

∥∥Me(τn−τ
+
n−1)

]
∥∥I + Bi

∥∥Meω(τi−θ)

≤ M exp

{
ω(t − θ) +

∑

θ≤τn<t
ln
(
M
∥∥I + Bn

∥∥)
}
.

(2.12)

This completes the proof.

In order to study the asymptotical properties of periodic solution, it is necessary to
discuss the exponential stability of the impulsive evolution operator {Φ(t, θ), t ≥ θ ≥ 0}. We
first give the definition of exponentially stable for {Φ(t, θ), t ≥ θ ≥ 0}.

Definition 2.6. {Φ(t, θ), t ≥ θ ≥ 0} is called exponentially stable if there exist K ≥ 0 and ν > 0
such that

∥∥Φ(t, θ)
∥∥ ≤ Ke−ν(t−θ), t > θ ≥ 0. (2.13)

Assumption (H2): {U(t, θ), t ≥ θ ≥ 0} is exponentially stable, that is, there exist K0 > 0
and ν0 > 0 such that

∥∥U(t, θ)
∥∥ ≤ K0e

−ν0(t−θ), t > θ ≥ 0. (2.14)

Next, two sufficient conditions that guarantee the impulsive evolution operator
{Φ(t, θ), t ≥ θ ≥ 0} with rational γ is exponentially stable are given.

Lemma 2.7. Suppose γ is rational and (H1) and (H2) hold. There exists 0 < λ < ν0 such that

δ∏

k=1

(
K0
∥∥I + Bk

∥∥)γe−λT < 1. (2.15)

Then {Φ(t, θ), t ≥ θ ≥ 0} is exponentially stable.
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Proof. Since γ is rational, let γ = p/q, p, q ∈ N and p, q are relatively prime. Let T̃ = pT0 (= qT),
then (2.7) is T̃ -periodic. Without loss of generality, for τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1, by (5)
of Lemma 2.5, we have

∥∥Φ(t, θ)
∥∥ ≤ K0e

−(ν0−λ)(t−θ)
(
∏

θ≤τk<t

(
K0
∥∥I + Bk

∥∥)e−λ(t−θ)
)
. (2.16)

Suppose t ∈ (nT̃, (n + 1)T̃] and let b = maxs∈[0,T̃]Π0<τk<s{K0‖I + Bk‖}. Then
∏

θ≤τk<t

(
K0
∥∥I + Bk

∥∥)e−λ(t−θ) ≤
∏

0≤τk<nT̃

(
K0
∥∥I + Bk

∥∥)e−λnT̃ ·
∏

nT̃≤τk<t

(
K0
∥∥I + Bk

∥∥)e−λ(t−nT̃)eλθ

≤
∏

0≤τk<npT0

(
K0
∥∥I + Bk

∥∥)e−λnqTbeλθ

≤
δ∏

k=1

(
K0
∥∥I + Bk

∥∥)npe−λnqTbeλθ

=

[
δ∏

k=1

(
K0
∥∥I + Bk

∥∥)γe−λT
]nq

beλθ

< beλθ.

(2.17)

Let K = K0be
λθ > 0 and ν = ν0 − λ > 0, then we obtain ‖Φ(t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0.

Remark 2.8. An exponentially bounded evolutionary process {U(t, θ), t ≥ θ ≥ 0} is exponential
stability if and only if for some 1 ≤ p < ∞ and all x ∈ X and t > θ ≥ 0, there is a constant κ > 0
such that ∫∞

θ

∥∥U(t, θ)x
∥∥pdt ≤ κp‖x‖p. (2.18)

Lemma 2.9. Assumption (H1) holds. Suppose

0 < μ1 = inf
k=1,2,...,δ

(τk − τk−1) ≤ sup
k=1,2,...,δ

(τk − τk−1) = μ2 < ∞. (2.19)

If there exists α > 0 such that

ω +
1
μ
ln
(
M
∥∥I + Bk

∥∥) ≤ −α < 0, k = 1, 2, . . . , δ, (2.20)

where

μ =

⎧
⎨

⎩
μ1, α +ω < 0,

μ2, α +ω ≥ 0,
(2.21)

then {Φ(t, θ), t > θ ≥ 0} is exponentially stable.

Proof. It comes from (2.20) that

ln
(
M
∥∥I + Bk

∥∥) ≤ −μ(α +ω) < 0, k = 1, 2, . . . , δ. (2.22)

Further,
∑

θ≤τk<t
ln
(
M
∥∥I + Bk

∥∥) ≤ −
∑

θ≤τk<t
μ(α +ω) = −μ(α +ω)N(θ, t), (2.23)

whereN(θ, t) is denoted the number of impulsive points in [θ, t).
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For τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1, by (2.19), we obtain the following two inequalities:

t − θ ≥ (τk − τk−1
)
+ · · · + (τi+1 − τi

) ≥ (N(θ, t) − 1
)
μ1,

t − θ ≤ (τk+1 − τk
)
+
(
τk − τk−1

)
+ · · · + (τi+1 − τi

)
+
(
τi − τi−1

) ≤ (N(θ, t) + 1
)
μ2.

(2.24)

This implies that

μ1
(
N(θ, t) − 1

) ≤ t − θ ≤ μ2
(
N(θ, t) + 1

)
, (2.25)

that is,

1
μ2

(t − θ) − 1 ≤ N(θ, t) ≤ 1
μ1

(t − θ) + 1. (2.26)

Then

−μ(α +ω)N(θ, t) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μ1(α +ω)
[
1
μ1

(t − θ) + 1
]
= −(α +ω)(t − θ) − μ1(α +ω), α +ω < 0.

−μ2(α +ω)
[
1
μ2

(t − θ) − 1
]
= −(α +ω)(t − θ) + μ2(α +ω), α +ω ≥ 0.

= −(α +ω)(t − θ) + μ|α +ω|.
(2.27)

Thus, we obtain

ω(t − θ) +
∑

θ≤τk<t
ln
(
M
∥∥I + Bk

∥∥) ≤ −α(t − θ) + μ|α +ω|. (2.28)

By (5) of Lemma 2.5, let K = Meμ|α+ω| > 0, ν = α > 0, ‖Φ(t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0.

3. Periodic solution and global asymptotical stability

Assumption (H3): f ∈ L1
T([0,+∞);X). For each k ∈ Z+

0 , δ ∈ N, and ck ∈ X, ck+δ = ck.
Under the (H1) and (H3), consider the following system

ẋ(t) = A(t)x(t) + f(t), t /= τk,

Δx(t) = Bkx(t) + ck, t = τk,
(3.1)

and Cauchy problem

ẋ(t) = A(t)x(t) + f(t), t ∈ [0, T̃] \ D̃,

Δx
(
τk
)
= Bkx

(
τk
)
+ ck, k = 1, 2, . . . , pδ,

x(0) = x.

(3.2)

Now we list the PC-mild solution of Cauchy problem (3.2) and T̃ -periodic PC-mild
solution of (3.1).
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Definition 3.1. For every x ∈ X, f ∈ L1([0,+∞);X), the function x ∈ PC ([0, T̃];X), given by

x(t) = Φ(t, 0)x +
∫ t

0
Φ(t, θ)f(θ)dθ +

∑

0≤τk<t
Φ
(
t, τ+k
)
ck (3.3)

for t ∈ [0, T̃], is said to be a PC-mild solution of the Cauchy problem (3.2).

Definition 3.2. A function x ∈ PC ([0,+∞);X) is said to be a T̃ -periodic PC-mild solution of (3.1)
if it is a PC-mild solution of Cauchy problem (3.2) corresponding to some x and x(t+ T̃) = x(t)
for t ≥ 0.

In the sequel, we show the existence and global asymptotical stability of T̃ -periodic PC-
mild solution of (3.1).

Theorem 3.3. Assumptions (H1) and (H3) hold. Suppose ‖Φ(T, 0)‖ = l < 1, then (3.1) has a unique
T̃ -periodic PC-mild solution xT̃(t) ≡ (P(f, ck))(t), t ≥ 0, given by

xT̃(t) = Φ(t, 0)
[
I −Φ

(
T̃ , 0
)]−1

z +
∫ t

0
Φ(t, θ)f(θ)dθ +

∑

0≤τk<t
Φ
(
t, τ+k
)
ck ≡ (P(f, ck

))
(t), (3.4)

where

z =
∫ T̃

0
Φ
(
T̃ , θ
)
f(θ)dθ +

∑

0≤τk<T̃
Φ
(
T̃ , τ+k

)
ck. (3.5)

Further, operator

P : L1
T

(
[0,+∞);X

) ×Xδ −→ PCT̃

(
[0,+∞);X

)
(3.6)

is a bounded linear operator, that is, there exists B̃ > 0 such that

∥∥P
(
f, ck
)∥∥

PCT̃
=
∥∥xT̃

∥∥
PCT̃

≤ B̃

(
q‖f‖L1

T
+ p

δ∑

k=1

∥∥ck
∥∥
)
, (3.7)

where B is independent on f and ck.

Proof. By (1) and (4) of Lemma 2.5, ‖Φ(T̃ , 0)‖ = ‖Φ(T, 0)‖q = lq < 1, operator [I −Φ(T̃ , 0)]
−1

exists, is bounded and

[
I −Φ

(
T̃ , 0
)]−1

=
∞∑

n=0

Φ
(
nT̃, 0

)
. (3.8)

Thus,

∥∥∥
[
I −Φ

(
T̃ , 0
)]−1∥∥∥ ≤ 1

1 − ∥∥Φ(T̃ , 0)∥∥
=

1
1 − lq

. (3.9)
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For

z =
∫ T̃

0
Φ
(
T̃ , θ
)
f(θ)dθ +

∑

0≤τk<T̃
Φ
(
T̃ , τ+k

)
ck, (3.10)

operator equation [I −Φ(T̃ , 0)]x = z has a unique solution x = [I −Φ(T̃ , 0)]−1z.
Let x(0) = x = [I −Φ(T̃ , 0)]−1z, consider the Cauchy problem

ẋ(t) = A(t)x(t) + f(t), t ∈ [0, T̃] \ D̃,

Δx
(
τk
)
= Bkx

(
τk
)
+ ck, k = 1, 2, . . . , pδ,

x(0) =
[
I −Φ

(
T̃ , 0
)]−1

z.

(3.11)

It has a PC-mild solution xT̃(·) given by

xT̃(t) = Φ(t, 0)
[
I −Φ

(
T̃ , 0
)]−1

z +
∫ t

0
Φ(t, θ)f(θ)dθ +

∑

0≤τk<t
Φ
(
t, τ+k
)
ck ≡ (P(f, ck

))
(t). (3.12)

By (2), (3), and (4) of Lemma 2.5, one can easily verify that xT̃(·) is just the unique T̃ -periodic
PC-mild solution of (3.1).

Obviously, operator P : L1
T([0,+∞);X) ×Xδ → PCT̃([0,+∞);X) is linear.

For t ∈ [0, T̃],
∥∥P
(
f, ck
)
(t)
∥∥ =
∥∥xT̃(t)

∥∥ ≤
(∥∥Φ(t, 0)

∥∥
∥∥∥
[
I −Φ

(
T̃ , 0
)]−1∥∥∥ + 1

)

×
(∫ T̃

0

∥∥Φ
(
T̃ , θ
)∥∥∥∥f(θ)

∥∥dθ +
∑

0≤τk<T̃

∥∥Φ
(
T̃ , τ+k

)∥∥∥∥ck
∥∥
)

≤ MT̃

(
MT̃

1 − lq
+ 1
)(

q‖f‖L1
T
+ p

δ∑

k=1

∥∥ck
∥∥
)
.

(3.13)

Let B̃ = MT̃(MT̃/(1 − lq) + 1), one can obtain the estimation immediately.

Theorem 3.4. Assumptions (H1) and (H3) hold. Suppose {Φ(t, θ), t ≥ θ ≥ 0} is exponentially stable,
then (3.1) has a unique T̃ -periodic PC-mild solution xT̃(·, x) given by

xT̃

(
t, x
)
= Φ(t, 0)x +

∫ t

0
Φ(t, θ)f(θ)dθ +

∑

0≤τk<t
Φ
(
t, τ+k
)
ck, (3.14)

where

x =
[
I −Φ

(
T̃ , 0
)]−1

z, z =
∫ T̃

0
Φ
(
T̃ , θ
)
f(θ)dθ +

∑

0≤τk<T̃
Φ
(
T̃ , τ+k

)
ck, (3.15)

and there exists B̂ > 0 such that

∥∥xT̃

(
t, x
)∥∥ ≤ B̂

(
q‖f‖L1

T
+ p

δ∑

k=1

∥∥ck
∥∥
)
, (3.16)

where B̂ > 0 is independent on f and ck.



JinRong Wang et al. 11

Further, for arbitrary x0 ∈ X, the PC-mild solution of the Cauchy problem (3.2) corresponding
to the initial value x0 satisfies the following inequality:

∥∥x
(
t, x0
) − xT̃

(
t, x
)∥∥ ≤ B1B2e

−νt, (3.17)

where xT̃(·, x) is the T̃ -periodic PC-mild solution of (3.1), B1 > 0 is independent on x0, f , and ck;
B2 = ‖x0‖ + q‖f‖L1

T
+ p
∑δ

k=1‖ck‖.

Proof. Consider the operator series S =
∑∞

n=0[Φ(T̃ , 0)]n. By (4) of Lemma 2.5 and the stability
of {Φ(·, ·)}, we have

∥∥[Φ
(
T̃ , 0
)]n∥∥ =

∥∥Φ
(
nT̃, 0

)∥∥ ≤ Ke−νnT̃ −→ 0 as n −→ ∞. (3.18)

Thus, we obtain

‖S‖ ≤
∞∑

n=0

∥∥[Φ
(
T̃ , 0
)]n∥∥ ≤

∞∑

n=0

Ke−νnT̃ . (3.19)

Obviously, the series
∑∞

n=0Ke−νnT̃ is convergent, thus operator S ∈ £b(X). It comes from
[
I −Φ

(
T̃ , 0
)]
S = S

[
I −Φ

(
T̃ , 0
)]

= I (3.20)

that

S =
[
I −Φ

(
T̃ , 0
)]−1 ∈ £b(X). (3.21)

Similar proof in Theorem 3.3, it is not difficult to verify that (3.1) has a unique T̃ -periodic PC-
mild solution xT̃(·, x) and xT̃(·, x) can be given by (3.14) and (3.15).

Next, verify the estimation (3.16). In fact, for t ∈ [0, T̃], we have

∥∥xT̃

(
t, x
)∥∥ ≤ ∥∥Φ(t, 0)

∥∥∥∥x
∥∥ +
∫ t

0

∥∥Φ(t, θ)
∥∥∥∥f(θ)

∥∥dθ +
∑

0≤τk<t

∥∥Φ
(
t, τ+k
)∥∥∥∥ck

∥∥. (3.22)

On the other hand,

∥∥x
∥∥ ≤ ∥∥[I −Φ

(
T̃ , 0
)]−1∥∥

[∫ T̃

0

∥∥Φ
(
T̃ , θ
)∥∥∥∥f(θ)

∥∥dθ +
∑

0≤τk<T̃

∥∥Φ
(
T̃ , τ+k

)∥∥∥∥ck
∥∥
]

≤ ‖S‖
[∫ T̃

0
Ke−ν(T̃−θ)

∥∥f(θ)
∥∥dθ +Ke−ν(T̃−τ

+
k
)p

δ∑

k=1

∥∥ck
∥∥
]

≤ K‖S‖
(
q‖f‖L1

T
+ p

δ∑

k=1

∥∥ck
∥∥
)
.

(3.23)

Let B̂ = K(K‖S‖ + 1), one can obtain (3.16) immediately.
System (3.1) has a unique T̃ -periodic PC-mild solution xT̃(·, x) given by (3.14) and (3.15).

The PC-mild solution of the Cauchy problem (3.2) corresponding to initial value x0 can be
given by (3.3) replacing x with x0. Combining with (3.23), we obtain

∥∥x
(
t, x0
) − xT̃

(
t, x
)∥∥ ≤ Ke−νt

[
∥∥x0
∥∥ +K‖S‖

(
q‖f‖L1

T
+ p

δ∑

k=1

∥∥ck
∥∥
)]

. (3.24)

Let B1 = max{K,K2‖S‖} > 0, B2 = ‖x0‖+q‖f‖L1
T
+p
∑δ

k=1‖ck‖, one can obtain (3.17) immediately.
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Definition 3.5. The T̃ -periodic PC-mild solution xT̃(·, x) of (3.1) is said to be globally
asymptotically stable in the sense that

lim
t→+∞

∥∥x
(
t, x0
) − xT̃

(
t, x
)∥∥ = 0, (3.25)

where x(·, x0) is any PC-mild solution of the Cauchy problem (3.2) corresponding to initial
value x0 ∈ X.

By Theorem 3.4 and Lemma 2.7 (Lemma 2.9), one can obtain the following results.

Corollary 3.6. Assumptions of Lemma 2.7 (Lemma 2.9) and (H3) hold. System (3.1) has a unique
T̃ -periodic PC-mild solution xT̃(·, x) which is globally asymptotically stable.

Theorem 3.7. If x(t, x) is a periodic PC-mild solution of (3.1), then its period must be nT0 for some
n ∈ N.

Proof. Let T̃ be the period of x(t) = x(t, x). Then

x
((
T̃ + t

) ± 0
)
= x(t ± 0), t ≥ 0. (3.26)

Clearly, T̃ is not an impulsive moment, suppose there are s τks in the interval (0, T̃). Let t = τ1.
We have

x
(
T̃ + τ1

)
= x
(
τ1
)
,

x
((
T̃ + τ1

)+) = x
(
τ+1
)
=
(
I + B1

)
x
(
τ1
)
+ c1 =

(
I + B1

)
x
(
T̃ + τ1

)
+ c1,

(3.27)

which means that T̃ +τ1 is one of the impulsive moments. Clearly, there is no τks in the interval
(T̃ , T̃ + τ1). For otherwise, suppose t ∈ (T̃ , T̃ + τ1) is an impulsive moment, then

x
((
T̃ +
(
t − T̃

))+) = x
(
t
+)

/=x
(
t
)
= x
(
T̃ +
(
t − T̃

))
= x
(
t − T̃

)
= x
((
t − T̃

)+)
, (3.28)

which is a contradiction. Thus, T̃ + τ1 = τs+1, Bs+1 = B1, and cs+1 = c1. Similarly, we have

T̃ + τk = τs+k, Bs+k = Bk, cs+k = ck, k ∈ Z+
0 . (3.29)

Now we can claim that s = nδ for some n ∈ N. Otherwise, suppose s = nδ + j for some
n ∈ N ∪ {0} and 1 < j < δ. As a consequence, nT0 < T̃ < (n + 1)T0. By (3.29), we have

T̃ + τk = τs+k = τnδ+j+k = nT0 + τj+k,

Bk = Bs+k = Bnδ+j+k = Bj+k,

ck = cs+k = cnδ+j+k = cj+k, k ∈ Z+
0 ,

(3.30)

or
(
T̃ − nT0

)
+ τk = τj+k, Bk = Bj+k, ck = cj+k, k ∈ Z+

0 . (3.31)

Thus T̃ − nT0 ∈ (0, T0) is a period of the impulsive perturbations for the second equation of
(3.1), which contradicts to that T0 is the least-positive period. Therefore,

T̃ + τ1 = τs+1 = τnδ+1 = nT0 + τ1 (3.32)

and T̃ = nT0 for some n ∈ N. The proof is complete.
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4. Example

Consider a special case of (1.1)

∂

∂t
x(t, y) =

(
(Δ − λI) +Q(t)

)
x(t, y) + sin

(
t + |y|),

|y| =
√
y2
1 + y2

2 ∈ Ω, t > 0, t /= τk, k ∈ Z+
0 ,

x(t, y) = 0, y ∈ ∂Ω, t > 0,

Δx(t, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.05Ix(t, y), k = 3m − 2,

−0.05Ix(t, y), k = 3m − 1, y ∈ Ω, t > 0, t = τk =
k +m − 1

4
π, k,m ∈ Z+

0 .

0.05Ix(t, y), k = 3m,

(4.1)

where Ω ⊂ R2 is bounded domain and ∂Ω ∈ C2, Δ is the Laplace operator in R2, λ is a
parameter. For each t ∈ [0, 2π], Q(t) ∈ £b(L2(Ω), L2(Ω)), sup{‖Q(t)‖, t ∈ [0, 2π]} < ∞, and
Q(· + 2π) = Q(·).

Set X = L2(Ω), for fixed λ ≥ 1, D(Aλ) = H2(Ω) ∩ H1
0(Ω). Define operator Bλx = (Δ −

λI)x, x ∈ D(Aλ). By [24, Theorem 2.5], Bλ is just the infinitesimal generator of a contraction
C0-semigroup in L2(Ω), that is, ‖Tλ(t)‖ ≤ 1. Obviously, for λ > 1, Bλ + I = Δ − (λ − 1)I can
generate a exponentially stable C0-semigroup in L2(Ω) and ‖Tλ(t)‖ ≤ e−(λ−1)t.

Define operator series

Uλ,0(t, θ) = Tλ(t − θ),

Uλ,n(t, θ)x =
∫ t

θ

Tλ(t − τ)Q(τ)Uλ,n−1(τ, θ)xdτ, 0 ≤ θ ≤ t ≤ 2π, n = 1, 2, . . . .
(4.2)

One can easily verify the following results:

(i) the evolution operator Uλ(t, θ) =
∑∞

n=0‖Uλ,n(t, θ)‖, 0 ≤ θ ≤ t ≤ 2π is uniformly
convergence;

(ii) Uλ(t, θ) is the unique solution of the integral equation

Uλ(t, θ)x = Tλ(t − θ)x +
∫ t

θ

Tλ(t − τ)Q(τ)Uλ(τ, θ)xdτ ; (4.3)

(iii) Uλ(t, θ) satisfies:

(1) Uλ(t, t) = I, t ≥ 0,
(2) Uλ(t, τ)Uλ(τ, θ) = Uλ(t, θ), t ≥ τ ≥ θ ≥ 0,
(3) for every fixed x ∈ X, (t, θ) → Uλ(t, θ)x is strongly continuous,
(4) ‖Uλ(t, θ)‖ ≤ e−(λ−1−‖Q‖)(t−θ), t ≥ θ ≥ 0,
(5) Uλ(t + 2π, θ + 2π) = Uλ(t, θ), t ≥ θ ≥ 0.
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Thus, linear equation ẋ(t) = Aλ(t)x(t), x ∈ X, t ≥ 0 is well posed, where Aλ(t) ≡ Δ −
(λ − 1)I +Q(t). Obviously, for λ > 1 + ‖Q‖,Aλ(t) ≡ Δ − (λ − 1 − ‖Q‖)I +Q(t) can determine an
exponentially stable 2π-periodic strongly continuous evolutionary process {Uλ(·, ·)} in L2(Ω).

Define x(·)(y) = x(·, y), f(·)(y) = sin(· + |y|), then (4.1) can be abstracted

ẋ(t) = Aλ(t)x(t) + f(t), t > 0, t /= τk, k ∈ Z+
0 ,

Δx(t) = Bkx(t), t = τk, k ∈ Z+
0 ,

(4.4)

where

Bk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.05I, k = 3m − 2,

−0.05I, k = 3m − 2,

0.05I, k = 3m,

(4.5)

and τk = ((k +m − 1)/4)π , k,m ∈ N.
Obviously, Aλ(· + 2π) = Aλ(·), τk+3 = τk + π , Bk+3 = Bk and f(· + 2π)(y) = sin(· +

|y| + 2π) = sin(· + |y|) = f(·)(y), that is, f(· + 2π) = f(·). For λ > 1 + ‖Q‖ + λ, where λ >

ln [(1.05)2 × 0.95]
2
/2π ≈ 0.0147, by Lemma 2.7, {Φλ(·, ·)} is exponentially stable. Now, all the

assumptions are met in Theorem 3.4. Thus (4.4) has a unique 2π-periodic PC-mild solution
x2π(·, y) ∈ PC2π([0 +∞);L2(Ω)) which is globally asymptotically stable.

That is, suppose x(·, y) is the PC-mild solution of the following initial-boundary value
problem:

∂

∂t
x(t, y) =

(
(Δ − λI) +Q(t)

)
x(t, y) + sin

(
t + |y|),

|y| =
√
y2
1 + y2

2 ∈ Ω, t > 0, t /= τk, k ∈ Z+
0 ,

x(t, y) = 0, y ∈ ∂Ω, t > 0,

x(0, y) = cos|y| ∈ L2(Ω),

Δx(t, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.05Ix(t, y), k = 3m − 2,

−0.05Ix(t, y), k = 3m − 1, y ∈ Ω, t > 0, t = τk =
k +m − 1

4
π, k,m ∈ Z+

0 .

0.05Ix(t, y), k = 3m,

(4.6)

Then, for λ > 1 + ‖Q‖ + λ, where λ > 0.0147,

∥∥x(t, y) − x2π(t, y)
∥∥
L2(Ω) =

(∫

Ω

∣∣x(t, y) − x2π(t, y)
∣∣2dy

)1/2

−→ 0 as t −→ +∞. (4.7)

From the above discussion, it is not difficult to find that a suitable parameter λ chosen
by human, which will guarantee the model (4.1) has a unique 2π-periodic PC-mild solution
which is globally asymptotically stable. That is, we can use a biological approach to maintain
the balance of a single, isolated species or eradicate pests. It provides us a reliable method for
managing the single and isolated species in the nature.
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