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The paper presents a nonlinear discrete game model for two oligopolistic firms whose products
are adnascent. (In biology, the term adnascent has only one sense, “growing to or on something
else,” e.g., “moss is an adnascent plant.” See Webster’s Revised Unabridged Dictionary published
in 1913 by C. & G. Merriam Co., edited by Noah Porter.) The bifurcation of its Nash equilibrium
is analyzed with Schwarzian derivative and normal form theory. Its complex dynamics is
demonstrated by means of the largest Lyapunov exponents, fractal dimensions, bifurcation
diagrams, and phase portraits. At last, bifurcation and chaos anticontrol of this system are studied.
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1. Introduction

Economic thought has had some significant influence on the development of ecological
theory [1]. (Worster claimed that Darwin was influenced in his development of the
theory of evolution of species by the views of Malthus.) In the opposite direction, many
scientists such as Marshall [2] and Lotka [3], have stated that biology can be a source
of inspiration for economics. (Marshall [2] suggested that “The Mecca of the economist
lies in economic biology rather than in economic dynamics;” Lotka [3] said that “Man’s
industrial activities are merely a highly specialized and greatly form of the general biological
struggle for existence, . . . , the analysis of the biophysical foundations of economics, is one
of the problems coming within the program of physical biology.”) Thus further analogies
between biology and economics can be discovered as both disciplines adopt concepts such
as competition, mutualism and adnascent relation. Such ideas have greatly influenced a
good many researchers in economics, for example, Barnett and Glenn [4] investigated
competition and mutualism among early telephone companies; Hens and Schenk-Hoppé [5]
studied evolutionary stability of portfolio rules in incomplete markets; Levine [6] Compared
products and production in ecological and industrial systems.
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In addition, there are a lot of phenomena with adnascent relation in economics, for
example, a car key ring is adnascent to a car. In this paper, the definition of adnascent
will be applied into economics to investigate a novel game model with two oligopolistic
firms X and Y , where product B of the firm Y is adnascent to product A of the firm
X, and the output of product B is determined by the output of product A, but not
vice versa.

In 1838, Cournot proposed the classical oligopoly game model. In 1883, Bertrand
reworked Cournot’s duopoly game model using prices rather than quantities as the
strategic variables. In 1991, Puu [7] introduced chaos and bifurcation theory into duopoly
game models. Over the past decade, many researchers, such as Tramontana et al. [8],
Ahmed and Agiza [9] and Ahmed et al. [10], Agiza and Elsadany [11], Bischi et al.
[12], Kopel [13] and Den Haan [14], have paid a great attention to the dynamics of
games.

As mentioned above, if one draws an analogy between species in biology and products
in economics, it is easy to find that some of relationships among different products are
substitutable or parasitic, and others are supportive or adnascent. But all the models cited
above are based on the assumption that all players(firms) produce goods which are perfect
substitutes in an oligopoly market. In this paper, we assume that the relationship of two
players’ products are not substitutable but adnascent.

This paper is organized as follows. In Section 2, a nonlinear discrete adnascent-type
game model is presented. In Section 3, local stability of the Nash equilibrium of this system
is studied. In Section 4, the bifurcation is studied with Schwarzian derivative and normal
form theory. In Section 5, bifurcation and chaos anticontrol of the model is considered with
nonlinear feedback anticontrol technology. In Section 6, the model’s complex dynamics is
numerically simulated by the largest Lyapunov exponents, fractal dimensions, bifurcation
diagrams and phase portraits.

2. An adnascent-type dynamical game model

2.1. Assumptions

This model is based on these following assumptions.

Assumption 2.1. There are two heterogeneous firms X and Y producing adnascent products.
The production decision of firm Y must depend on firm X, but not vice versa.

Assumption 2.2. Each firm is a monopoly of its products market.

Assumption 2.3. Firms have respective nonlinear variable cost functions [15] and nonlinear
inverse demand functions [16]. (The linear cost function C(x) = x or C(x) = a + bx is usually
adopted in the classical economics. Indeed, quadratic cost functions are often met in many
applications (see [17–19]).)

Assumption 2.4. Firm X can compete solely on price and then make its output decision, which
can have effect on firm Y.

Assumption 2.5. Firms always make the optimal output decision for the maximal margin
profit in every period.
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2.2. Nomenclature

The following is a list of notations that will be used throughout the paper.

(i) xt, yt are outputs of firms X and Y in period t, respectively, and they must be
positive for any t > 0.

(ii) Pxt = a1 − b1x
2
t , Pyt = a2 − b2y

2
t are nonlinear inverse demand functions [16] for

firms X and Y in period t, respectively, where a1, b1, a2, b2 > 0.

(iii) Cxt = c1x
2
t , Cyt = c2y

2
t are nonlinear variable cost functions [15] for firms X and

Y in period t, respectively, where c1, c2 > 0. (The nonlinear variable cost function
C(x) = cx2 can be derived from a Cobb-Douglas-type production function (see
[19–21]).)

(iv) Πxt = Pxtxt − Cxt = xt(a1 − b1x
2
t ) − c1x

2
t , Πyt = Pytyt − Cyt = yt(a2 − b2y

2
t ) − c2y

2
t are

single profits of firms X and Y in period t, respectively.

(v) α1, α2 > 0 are respective output adjustment parameters of firms X and Y , which
represent the fluctuation of two firms’ output decisions. Generally speaking, the
two parameters should be very small.

2.3. Model

With Assumptions (2.5), the margin profits of firms X and Y in period t are give, respectively,
by

∂Πxt

∂xt
= a1 − 3b1x

2
t − 2c1xt,

∂Πyt

∂yt
= a2 − 3b2y

2
t − 2c2yt.

(2.1)

One of the methods to find out the Nash equilibrium is to let (2.1) be equal to 0.
Thus one can get firms’ reaction functions, that is, the optimal outputs x∗t and y∗t . Under
Assumptions (2.1) and (2.4), the dynamic adjustment of the adnascent-type game can be
written as follows:

xt+1 = xt + α1xt
∂Πxt

∂xt
,

yt+1 = yt + α2xt
∂Πyt

∂yt
.

(2.2)

The game model with bounded rational players has the following nonlinear form:

xt+1 = xt + α1xt
(
a1 − 3b1x

2
t − 2c1xt

)
,

yt+1 = yt + α2xt
(
a2 − 3b2y

2
t − 2c2yt

)
.

(2.3)

Note that the model has a particular form, it is a so-called triangular map which is the class of
maps in which one dynamic variable is independent on the other, that is of the type x′ = f(x),
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y′ = g(x, y), while the other, y, strongly depends on the first. A peculiarity of this class of
maps is that the eigenvalues in any point of the phase plane are always real, and that many
bifurcations are explained via the one-dimensional map x′ = f(x).

3. Nash equilibrium and its local stability of system (2.3)

A Nash equilibrium, named after John Nash, is a solution concept of a game involving two
or more players, such that no player has incentive to unilaterally change his or her action. In
other words, players are in equilibrium if a change in strategies by any one of them would
lead that he (she) to earn less than if he (she) remained with his (her) current strategy.

System (2.3) is a two-dimensional non-invertible that depends on eight parameters.
The Nash equilibrium point of system (2.3) is the solution of the following algebraic system:

α1x
(
a1 − 3b1x

2 − 2c1x
)
= 0,

α2x
(
a2 − 3b2y

2 − 2c2y
)
= 0.

(3.1)

Note that system (3.1) does not depend on the parameters α1 and α2. By simple computation
of the above algebraic system it was found that there exists one interesting positive Nash
equilibrium as follows:

E∗
(
x∗, y∗

)
=

(
A − c1

3b1
,
B − c2

3b2

)

, (3.2)

where A =
√
c2

1 + 3a1b1, B =
√
c2

2 + 3a2b2.

The Jacobian matrix of system (2.3) at the Nash equilibrium E∗(x∗, y∗) has the
following form:

J
(
E∗

)
=

[
1 − 2α1

(
a1 − c1x

∗) 0

0 1 − 2α2Bx
∗

]

. (3.3)

Thus its eigenvalues can be expressed as λ1 = 1 − 2α1Ax
∗ and λ2 = 1 − 2α2Bx

∗. Then
the condition λ1 < 1 is always satisfied while λ1 > −1 holds if

α1 <
1

Ax∗
=

3b1

A
(
A − c1

) = C, (3.4)

and the condition λ2 < 1 is always satisfied while λ2 > −1 holds if

α2 <
1
Bx∗

=
3b1

B
(
A − c1

) = D. (3.5)

As a result, the following proposition holds.
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Proposition 3.1. The Nash equilibrium E∗(x∗, y∗) is called

(i) a sink if α1 < C and α2 < D, so the sink is locally asymptotically stable;

(ii) a source if α1 > C and α2 > D, so the sink is locally unstable;

(iii) a saddle if α1 < C and α2 > D or α1 > C and α2 < D;

(iv) non-hyperbolic if either α1 = C or α2 = D.

4. Bifurcation analysis

Due to the fact that the map is triangular, the stability of the variable x is independent on
the other, thus the bifurcation analysis for this variable can be easily performed with the one-
dimensional map x′ = f(x), which is a cubic, and the interest is only in the positive part.

The best known and most popular projective differential invariant is the Schwarzian
derivative. The map’s Schwarzian derivative [22] is

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

= −
6α1

(
3b1 + 3α1a1b1 + 54α1b

2
1x

2 + 24α1b1c1x + 4α1c
2
1

)

(
1 + α1a1 − 9α1b1x2 − 4α1c1x

)2
.

(4.1)

Obviously Sf(x) < 0 for x > 0, so that all the flip bifurcations are supercritical [23].
An example of supercritical flip bifurcation will be presented with normal form theory

as follows.
Generally speaking, for given firms X and Y , their parameters a1, b1, a2, b2, c1, and

c2 are invariable, and their output adjustment parameters α1 and α2 are changeable. In what
follows, for convenience of studying the bifurcation parameter α1 and α2, we let a1 = 10,
b1 = 0.5, a2 = 9.75, b2 = 0.182, c1 = 5, and c2 = 4. Then we can get the following system:

xt+1 = xt + α1xt
(
10 − 1.5x2

t − 10xt
)
,

yt+1 = yt + α2xt
(
9.75 − 0.546y2

t − 8yt
)
.

(4.2)

Howevere, (4.2) exists a Nash equilibrium point E∗(0.883, 1.132) which is independent
of the parameters α1 and α2. The Jacobian matrix at E∗(0.883, 1.132) is

A =

(
1 − 11.17α1 0

0 1 − 8.1557α2

)

. (4.3)

Obviously, its eigenvalues satisfy (i) λ1 = −1 if α1 = 0.179; (ii) λ2 = −1 if α2 = 0.245. Thus
system (4.2) may undergo flip bifurcation at α1 = 0.179 or α2 = 0.245.

Lemma 4.1 (Topological norm form for the flip bifurcation [24]). Any generic, scalar, one-
parameter system x �→ f(x, α), having at α = 0 the fixed point x0 = 0 with μ = fx(0, 0) = −1,
is locally topologically equivalent near the origin to one of the following normal forms: η �→ −(1 +
β)η ± η3.
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The following system can be obtained with α2 = 0.2,

xt+1 = xt + α1xt
(
10 − 1.5x2

t − 10xt
)
,

yt+1 = yt + 0.2xt
(
9.75 − 0.546y2

t − 8yt
)
.

(4.4)

Proposition 4.2 (Critical norm form for flip bifurcation). System (4.4) can be written as fol-
lowing critical normal form for flip bifurcation:

ξt+1 = −ξt + cξ3
t , (4.5)

where c = 12.23.

Proof. To compute coefficients of normal form, we translate the origin of the coordinates to
this Nash equilibrium E∗ = (0.883, 1.132) by the change of variables as by the change of
variables

x = 0.883 + u, y = 1.132 + v. (4.6)

This transforms system (4.2) with parameters α1 = 0.179 into

ut+1 = 0.883 − ut − 2.5u2
t − 0.269u3

t ,

vt+1 = 1.131 − 0.001ut − 0.63vt − 1.85utvt − 0.1v2
t − 0.11utv2

t .

(4.7)

This system can be written as

Xn+1 = AXn +
1
2
B
(
Xn,Xn

)
+

1
6
C
(
Xn,Xn,Xn

)
+O

(
X4
n

)
, (4.8)

where

A0 = A
(
E∗

)
=

(
−1 0

0 −0.63

)

. (4.9)

and the multilinear functions B : R
2 × R

2 → R
2 and C : R

2 × R
2 × R

2 → R
2 are also defined,

respectively, by

Bi(x, y) =
2∑

j,k=1

∂2Xi(ξ, 0)
∂ξj∂ξk

∣∣∣∣
ξ=0
xjyk,

Ci(x, y, z) =
2∑

j,k,l=1

∂3Xi(ξ, 0)
∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0
xjykzl.

(4.10)
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For system (4.7),

B(ξ, η) =

(
−5ξ1η1

−1.85ξ1η2 − 0.2ξ2η2

)

,

C(ξ, η, ζ) =

(
−1.61ξ1η1ζ1

−0.22ξ1η2ζ2

)

.

(4.11)

The eigenvalues of the matrix J are λ1 = −1 and λ2 = −0.63.
Let q, p ∈ R

2 be eigenvectors corresponding to λ1, λ1, respectively:

q =

(
1

0

)

, p =

(
1

0

)

. (4.12)

satisfy A0q = −q, AT
0p = −p and 〈p, q〉 = 1.

So the coefficient of the normal form of system (4.7) can be computed by the following
invariant formula:

c =
1
6
〈
p,C(q, q, q)

〉
− 1

2
〈
p, B

(
q,
(
A − In

)−1
B(q, q)

)〉
= 12.23. (4.13)

The proposition is proved.

The bifurcation type is determined by the stability of the Nash equilibrium as at the
critical parameter value. According to the above Proposition 4.2, for system (4.7), the critical
parameter c = 12.23 > 0, so the flip bifurcation at the Nash equilibrium E∗(0.883, 1.132) is
supercritical.

5. Bifurcation and chaos anticontrol

A government may pay attention to chaos anticontrol on the game system. Its motivations are
as follows. Chaos exhibits high sensitivity to initial conditions, which manifests itself as an
exponential growth of perturbations in the initial conditions. As a result, two firms’ decision
behaviors of the anticontrolled chaotic game systems appear to be random. So it can weaken
the negative effect of excessive monopoly at least. In addition, Huang [25] has proved that,
in some sense, chaos is beneficial not only to all oligopolistic firms but also to the economy as
a whole.

There are various methods can be used to control or anticontrol bifurcations and
chaos, for example, impulsive control [26], adaptive feedback control [27], linear and
nonlinear feedback control [28–30]. In this section, the nonlinear feedback technique will
be employed to anticontrol system (4.4). As mentioned above, system (4.4) is a adnascent-
type game model, that is, firm Y must depend on firm X, but not vice versa. In other
words, the production decision of firm X is independent. Since firm X of system (4.4)
undergoes bifurcation and chaos, one may merely anticontrol firm Y . Considering the
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principle of simplification and maneuverability, one may choose a generalized nonlinear
feedback anticontroller (e.g., production tax rebate) on firm Y as follows:

u =
n∑

i=1

kiy
i, (5.1)

where the linear terms in the anticontroller are used to shift the location of the equilibrium
and bifurcation because only the linear part affects the Jacobian matrix of the linearized
system, the nonlinear terms are used to change the property of the bifurcation and chaos. But
it is not necessary to take too much components unless one wants to preserve all equilibria of
the original system. In this paper, since it is unnecessary to preserve all equilibria of system,
the anticontroller can be greatly simplified as

u = ky2. (5.2)

Then the anticontrolled system can be represented as

xt+1 = xt + α1xt
(
10 − 1.5x2

t − 10xt
)
,

yt+1 = yt + 0.2xt
(
9.75 − 0.546y2

t − 8yt
)
+ ky2

t ,
(5.3)

for system (5.3), it is easy to get its Nash equilibria

E1

(

0.88,
106 −

√
14964 − 38743k

150k − 14.47

)

, E2

(

0.88,
106 +

√
14964 − 38743k

150k − 14.47

)

(5.4)

and Jacobian matrix

J
(
E∗

)
=

[
1 + α1

(
10 − 20x − 4.5x2) 0

1.95 − 0.11y2 − 1.6y 1 − 0.22xy − 0.6x + 2ky

]

. (5.5)

As mentioned above, system (4.4) undergoes a flip bifurcation at α1 = 0.179 and x = 0.88.
Like system (5.3), after a anticontroller u = ky2 is put on firm Y of system (4.4), firm X is
uninfluenced. As a result, in system (5.3), when x = 0.88 and α1 = 0.179, the two conditions
of flip bifurcation at Nash equilibria can be expressed as follows:

1 + α1
(
10 − 20x − 4.5x2) = −1, |1 − 0.22xy − 0.6x + 2ky| < 1

hold with 0.1 < k < 0.39.
(5.6)

6. Numerical simulations

In this section, some numerical simulations are presented to confirm the above analytic
results and to demonstrate added complex dynamical behaviors. To do this, one will use the
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Figure 1: For system (4.2) with α1 ∈ [0, 0.27] and α2 ∈ [0, 0.2], (a) bifurcation diagram of firms X; (b)
bifurcation diagram of firms Y ; (c) largest Lyapunov exponents (LLEs); (d) fractal dimensions (FDs).

largest Lyapunov exponents, fractal dimensions, bifurcation diagrams and phase portraits to
show interesting complex dynamical behaviors.

In system (4.2), the largest Lyapunov exponents, fractal dimensions and bifurcation
diagrams with two parameters α1 and α2 are shown in Figure 1.

Figure 1(a) is the outputs bifurcation diagram of firm X with the parameters α1 ∈
[0, 0.27] and α2 ∈ [0, 0.2]. When the output adjustment parameter α1 increases, the outputs of
firm X present complex dynamics as follows. Its outputs change from Nash equilibrium to
bifurcation till chaos. Obviously the output adjustment parameter α2 of firm Y has no effect
on firm X, which just verifies the adnascent relationship between firms X and Y .

Figure 1(b) is the outputs bifurcation diagram of firm Y with the parameters
α1 ∈ [0, 0.27] and α2 ∈ [0, 0.2]. It is obviously that there is no bifurcation and chaos
in Figure 1(b).

Figure 1(c) is the largest Lyapunov exponents diagram of system (4.2) with the
parameters α1 ∈ [0, 0.27] and α2 ∈ [0, 0.2]. The Lyapunov exponent of a dynamical system
is a quantity that characterizes the rate of separation of infinitesimally close trajectories. A
positive Lyapunov exponent is usually taken as an indication that the system is chaotic [31].

Figure 1(d) is a fractal dimensions diagram of system (4.2) with the parameters α1 ∈
[0, 0.27] and α2 ∈ [0, 0.2]. A fractal dimension is taken as a criterion to judge whether the
system is chaotic. There are many specific definitions of fractal dimension and none of them
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Figure 2: (a) The largest Lyapunov exponents and bifurcation diagram of system (4.4) versus α1 ∈
[0, 0.27]; (b) the largest Lyapunov exponents and bifurcation diagram of system (5.3) versus k = 0.2
and α1 ∈ [0, 0.27].
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Figure 3: For system (5.3) with k = 0.2. (a) Chaotic attractor versus α1 = 0.24; (b) chaotic attractor versus
α1 = 0.27.

should be treated as the universal one. This paper adopts the following definition of fractal
dimension [32].

dL = k − 1
λk+1

k∑

i=1

λi (6.1)

where λ1 ≥ λ2 ≥, . . . ,≥ λn are the Lyapunov exponents and k is the largest integer for which∑k
i=1 λi ≥ 0 and

∑k+1
i=1 λi < 0. If λi ≥ 0 for all i = 1, 2, . . . , n then dL = n. If λi < 0 for all

i = 1, 2, . . . , n then dL = 0.
In system (4.4), firm X has supercritical flip bifurcation at α1 = 0.179 shown in

Figure 2(a), while firm Y undergoes neither bifurcation nor chaos.
In system (5.3), when one fixes k = 0.2, he can get the largest Lyapunov exponents and

bifurcations diagram shown in Figure 2(b) and chaotic attractor portrait shown in Figure 3.
Obviously firms X and Y undergo synchronously bifurcations and chaos with k = 0.2.
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The goverment can anticontrol the synchronization of bifurcation and chaos by varying the
anticontrol parameter k.

7. Conclusion

In this paper, we have presented a nonlinear adnascent-type game dynamical model
with two oligopolistic firms, and emphatically reported its some complex dynamics, such
as Nash equilibrium, bifurcations, chaos and their anticontrol. By means of the largest
Lyapunov exponents, fractal dimensions, bifurcation diagrams and phase portraits, we
have demonstrated numerically its complex dynamics. For the system, other complexity
anticontrol theory and methodology will be considered in future work.
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