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1. Introduction

Let (X, ‖·‖) be a Banach space, and let (Xα, ‖·‖α) for 0 < α < 1 be an arbitrary abstract
intermediate Banach space between D(A) (domain of the operator A) and X. In this paper,
we deal with sufficient conditions for the existence and uniqueness of pseudo almost
automorphic mild solutions to equation

d

dt
[u(t) + f(t, Bu(t))] = Au(t) + g(t, Cu(t)), t ∈ R, (1.1)

where A is a sectorial linear operator on a Banach space X and σ(A) ∩ iR = ∅, B, C are
bounded linear operators on Xα, f : R × X �→ Xβ, g : R × X �→ X are jointly continuous
functions. This turns out to be a nontrivial problem due to the complexity and importance of
pseudo almost automorphic functions (e.g., see [1–8] and the references therein).

Upon making some additional assumptions, it will be shown that (1.1) admits a
unique Xα-valued pseudo almost automorphic mild solution. Applications include the study
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of pseudo almost automorphic mild solutions to some nonlinear heat equation:

ut(t, x) = uxx(t, x) + au(t, x) + g(t, q(x)u(t, x)), t ∈ R, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ R,
(1.2)

where a ∈ R is a constant, and g, q are continuous functions.
As a natural and important generalization of almost automorphy as well as pseudo

almost periodicity, pseudo almost automorphy has recently been investigated (for more
details, see [1–3]). Moreover, Liang et al. in [2] established a composition theorem about
pseudo almost automorphic functions; Xiao et al. in [3] obtained sufficient conditions for
the existence and uniqueness of pseudo almost automorphic mild solutions to semilinear
differential equations in Banach spaces. In particular, they proved in [3] that the space
(PAA(R,X), ‖·‖∞) of pseudo almost automorphic functions, endowed with sup norm, is a
Banach space, thus pushed the door open to study pseudo almost automorphicmild solutions
to various differential equations.

The method used here was firstly developed in [9], in which Diagana established
an existence and uniqueness theorem of pseudo almost periodic mild solutions to (1.1)
under some similar assumptions. Combining bounded invariance theorem of pseudo
almost automorphic functions established in [6] with composition theorem of pseudo
almost automorphic functions and completeness of the space (PAA(R,X), ‖·‖∞), this paper
extends the results in [9], since such function as g(t, u) = u sin(1/(2 + cos t + cos

√
2t)) +

maxk∈Z{e−(t±k2)
2} cos u, t ∈ R, u ∈ X is not pseudo almost periodic, while they are pseudo

almost automorphic.
It should be pointed out that one can also make use of (1.1) to study several types

of evolution equations including partial functional differential equations, integro-differential
equations, and reaction diffusion equations.

2. Preliminaries

In this section, we collect some preliminary facts from [9–11] that will be used later.
Throughout this paper, N, Z, R, and C stand for the sets of positive integer, integer, real and
complex numbers; (X, ‖·‖), (Y, ‖·‖Y) stand for Banach spaces. If A is a linear operator on X,
then ρ(A), σ(A), D(A), ker(A), R(A) stand for the resolvent set, spectrum, domain, kernel,
and range of A. The space B(X,Y) denotes the Banach space of all bounded linear operators
from X into Y equipped with natural norm ‖A‖B(X,Y) = supx∈X, x /= 0(‖Ax‖Y/‖x‖). If Y = X, it
is simply denoted by B(X) with ‖A‖B(X) = supx∈X, x /= 0(‖Ax‖/‖x‖).

2.1. Sectorial linear operators and analytic semigroups

Definition 2.1. A linear operator A : D(A) ⊂ X �→ X (not necessarily densely defined) is said
to be sectorial if the following hold. There exist constants ω ∈ R, θ ∈ (π/2, π), and M > 0
such that

ρ(A) ⊃ Sθ,ω := {λ ∈ C : λ /= ω, | arg(λ −ω)| < θ},

‖R(λ,A)‖ ≤ M

|λ −ω| , λ ∈ Sθ,ω,
(2.1)

where R(λ,A) = (λI −A)−1 for each λ ∈ ρ(A).
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Remark 2.2. If A is sectorial, then it generates an analytic semigroup (T(t))t≥0, which maps
(0,∞) into B(X) such that there existM0,M1 > 0 with

‖T(t)‖ ≤M0e
ωt, t > 0,

‖t(A −ωI)T(t)‖ ≤M1e
ωt, t > 0.

(2.2)

Definition 2.3. A semigroup (T(t))t≥0 is said to be hyperbolic, if there exist a projection P and
constants M,δ > 0 such that each T(t) commutes with P , ker(P) is invariant with respect to
T(t), T(t) : R(Q)→R(Q) is invertible and

‖T(t)Px‖ ≤Me−δt‖x‖ for t ≥ 0,

‖T(t)Qx‖ ≤Meδt‖x‖ for t ≤ 0,
(2.3)

where Q := I − P and T(t) := (T(−t))−1 for t ≤ 0.

Recall that if a semigroup (T(t))t≥0 is analytic, then (T(t))t≥0 is hyperbolic if and only
if σ(A) ∩ iR = ∅ (see, e.g., [11, Definition 1.14 and Proposition 1.15, page 305]).

2.2. Intermediate Banach spaces

Definition 2.4. Let α ∈ (0, 1). A Banach space (Xα, ‖·‖α) is said to be an intermediate space
between D(A) and X, if D(A) ⊂ Xα ⊂ X and there is a constant C > 0 such that

‖x‖α ≤ C‖x‖1−α‖x‖αA, x ∈ D(A), (2.4)

where ‖·‖A is the graph norm of A.

Concrete examples of Xα include D(Aα) for α ∈ (0, 1), the domains of the fractional
powers of A, the real interpolation spaces DA(α,∞), α ∈ (0, 1), defined as follows:

DA(α,∞) :=
{
x ∈ X : [x]α = sup

0<t≤1

∥∥t1−α(A −ωI)e−ωtT(t)x∥∥ <∞
}
,

‖x‖α = ‖x‖ + [x]α,

(2.5)

and the abstract Hölder spaces DA(α) := D(A)
‖·‖α

.

Lemma 2.5. For the hyperbolic analytic semigroup (T(t))t≥0, there exist constants C(α) > 0, δ >
0, M(α) > 0, and γ > 0 such that

‖T(t)Qx‖α ≤ C(α)eδt‖x‖ for t ≤ 0,

‖T(t)Px‖α ≤M(α)t−αe−γt‖x‖ for t > 0.
(2.6)
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Lemma 2.6 (see [9]). Let 0 < α < β < 1. For the hyperbolic analytic semigroup (T(t))t≥0, there exist
constants c > 0, δ > 0, and γ > 0 such that

‖AT(t)Qx‖α ≤ ceδt‖x‖β for t ≤ 0,

‖AT(t)Px‖α ≤ ctβ−α−1e−γt‖x‖β for t > 0.
(2.7)

3. Pseudo almost automorphic functions

In this section, we recall some recent results on almost automorphic functions and pseudo
almost automorphic functions. LetC(R,X) denote the collection of continuous functions from
R intoX. LetBC(R,X) denote the Banach space of allX-valued bounded continuous functions
equipped with the sup norm ‖u‖∞ := supt∈R

‖u(t)‖ for each u ∈ BC(R,X). Similarly, C(R ×
X,X) denotes the collection of continuous functions from R × X into X, BC(R × X,X) denotes
the collection of all bounded continuous functions f : R × X �→ X.

Definition 3.1 (see [8]). A function f ∈ C(R,X) is said to be almost automorphic if for every
sequence of real numbers (σn)n∈N

, there exists a subsequence (sn)n∈N
such that

lim
m→+∞

lim
n→+∞

f(t + sn − sm) = f(t) for each t ∈ R. (3.1)

This limit means that

g(t) = lim
n→+∞

f(t + sn) (3.2)

is well defined for each t ∈ R, and

f(t) = lim
n→+∞

g(t − sn) (3.3)

for each t ∈ R. The collection of all such functions will be denoted by AA(R,X).

Theorem 3.2 (see [7]). Assume f, g : R �→ X are almost automorphic, and λ is any scalar. Then the
following holds true:

(1) f + g, λf, fτ(t) := f(t + τ) and f̂(t) := f(−t) are almost automorphic;

(2) the range Rf of f is precompact, so f is bounded;

(3) if {fn} is a sequence of almost automorphic functions and fn→ f uniformly on R, then f
is almost automorphic.

Theorem 3.3 (see [7]). If one equips AA(R,X) with the sup norm ‖u‖∞ = supt∈R
‖u(t)‖, then

AA(R,X) turns out to be a Banach space.

One sets

AA0(R,X) :=
{
f ∈ BC(R,X) : lim

r→∞
1
2r

∫ r

−r
‖f(s)‖ds = 0

}
. (3.4)
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Definition 3.4 (see [2]). A function f ∈ BC(R,X) is said to be pseudo almost automorphic if
it can be decomposed as f = g + φ, where g ∈ AA(R,X) and φ ∈ AA0(R,X). The collection of
such functions will be denoted by PAA(R,X).

Theorem 3.5 (see [3]). If one equips PAA(R,X) with the sup norm ‖u‖∞ = supt∈R
‖u(t)‖, then

PAA(R,X) turns out to be a Banach space.

Definition 3.6 (see [2]). A function f ∈ C(R × X,X) is said to be almost automorphic if
f ∈ C(R × X,X) is almost automorphic in t ∈ R uniformly for all x ∈ K, where K is any
bounded subset of X. That is to say, for every sequence of real numbers (σn)n∈N

there exists a
subsequence (sn)n∈N

such that

g(t, x) = lim
n→+∞

f(t + sn, x) (3.5)

is well defined in t ∈ R, for all x ∈ K, and

f(t, x) = lim
n→+∞

g(t − sn, x) (3.6)

for each t ∈ R and x ∈ K. Denote by AA(R × X,X) the collection of all such functions.

One also defines AA0(R × X,X) as the collection of functions f ∈ BC(R × X,X) such
that

lim
r→∞

1
2r

∫ r

−r
‖f(t, x)‖dt = 0 (3.7)

uniformly for any bounded subset of X.

Definition 3.7 (see [2]). A function f ∈ BC(R×X,X) is said to be pseudo almost automorphic
if it can be decomposed as f = g + φ, where g ∈ AA(R × X,X) and φ ∈ AA0(R × X,X). The
collection of such functions will be denoted by PAA(R × X,X).

Theorem 3.8 (see [2]). Assume f = g + φ ∈ PAA(R × X,X) with g(t, x) ∈ AA(R × X,X),
φ(t, x) ∈ AA0(R × X,X), satisfying the following conditions:

(1) g(t, x) is uniformly continuous in any bounded subset K ⊂ X uniformly for t ∈ R;

(2) f(t, x) is uniformly continuous in any bounded subset K ⊂ X uniformly for t ∈ R.

If x(·) ∈ PAA(R,X), then f(·, x(·)) ∈ PAA(R,X).

Remark 3.9. If Xα for α ∈ (0, 1) is an intermediate space between D(A) and X, BC(R,Xα),
AA(R,Xα), PAA(R,Xα) are equipped with the α-sup norm: ‖u‖∞,α = supt∈R

‖u(t)‖α, then they
all constitute Banach spaces in view of Definition 2.4, Theorems 3.3 and 3.5.

Theorem 3.10 (see [6]). Let u ∈ PAA(R,Y), B ∈ B(Y,X). If v(t) := Bu(t) for each t ∈ R, then
v ∈ PAA(R,X).
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4. Pseudo almost automorphic mild solutions

In this section, combining Theorem 3.10 with composition theorem of pseudo almost
automorphic functions (Theorem 3.8) and completeness of the space (PAA(R,X), ‖·‖∞)
(Theorem 3.5), we will establish the existence and uniqueness theorem of pseudo almost
automorphic mild solutions to (1.1) under the following assumptions.

(H1) For 0 < α < β < 1, Xβ ↪→ Xα ↪→ X are continuously embedded and there exist
k0 > 0, k(α) > 0 such that ‖u‖ ≤ k0‖u‖β, ‖u‖α ≤ k(α)‖u‖β for each u ∈ Xβ.

(H2) A is a sectorial linear operator on a Banach space X and σ(A) ∩ iR = ∅.

(H3) f = M + ϕ ∈ PAA(R × X,Xβ) with M ∈ AA(R × X,Xβ), ϕ ∈ AA0(R × X,Xβ) and
g = N + ψ ∈ PAA(R × X,X) withN ∈ AA(R × X,X), ψ ∈ AA0(R × X,X).

(H4) The functions f, g are uniformly Lipschitz with respect to the second argument in
the sense that: there exists L > 0 such that

‖f(t, x) − f(t, y)‖β ≤ L‖x − y‖,
‖g(t, x) − g(t, y)‖ ≤ L‖x − y‖,

(4.1)

for all t ∈ R and x, y ∈ X.

(H5) M, N are uniformly continuous in any bounded subsetK ⊂ X uniformly for t ∈ R.

(H6) The operators B,C ∈ B(Xα,X) and ω = max(‖B‖B(Xα,X), ‖C‖B(Xα,X)).

Definition 4.1 (see [9]). A function u ∈ BC(R,Xα) is said to be a mild solution to (1.1) if
s→AT(t − s)Pf(s, Bu(s)) is integrable on (−∞, t), s→AT(t − s)Qf(s, Bu(s)) is integrable on
(t,+∞) and

u(t) = −f(t, Bu(t)) −
∫ t

−∞
AT(t − s)Pf(s, Bu(s))ds +

∫+∞

t

AT(t − s)Qf(s, Bu(s))ds

+
∫ t

−∞
T(t − s)Pg(s, Cu(s))ds −

∫+∞

t

T(t − s)Qg(s, Cu(s))ds
(4.2)

for each t ∈ R.

Lemma 4.2. Let assumptions (H1)–(H6) hold. Consider the nonlinear operator Λ1 defined by

(Λ1u)(t) =
∫ t

−∞
AT(t − s)Pf(s, Bu(s))ds −

∫+∞

t

AT(t − s)Qf(s, Bu(s))ds. (4.3)

Then, Λ1 maps PAA(R,Xα) into itself.
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Proof. From (H1), (H3), (H4), (H5), we deduce that f = M + ϕ ∈ PAA(R × X,X) with M ∈
AA(R × X,X), ϕ ∈ AA0(R × X,X), satisfying the following conditions.

(1) M(t, x) is uniformly continuous in any bounded subset K ⊂ X uniformly for t ∈ R.

(2) f(t, x) is uniformly Lipschitz with respect to the second argument in the sense that
there exists k0L > 0 such that

‖f(t, x) − f(t, y)‖ ≤ k0L‖x − y‖, (4.4)

for all t ∈ R and x, y ∈ X.

Let u ∈ PAA(R,Xα). Since B ∈ B(Xα,X), it follows from Theorem 3.10 that Bu(·) ∈
PAA(R,X). Setting h(·) = f(·, Bu(·)) and applying Theorem 3.8, we get that h ∈ PAA(R,X).
Using (H1) and Theorem 3.10, we obtain that h ∈ PAA(R,Xβ). Now, write h = ξ + η where
ξ ∈ AA(R,Xβ) and η ∈ AA0(R,Xβ), then

(Λ1u)(t) =
∫ t

−∞
AT(t − s)Pξ(s)ds +

∫ t

−∞
AT(t − s)Pη(s)ds

+
∫ t

+∞
AT(t − s)Qξ(s)ds +

∫ t

+∞
AT(t − s)Qη(s)ds.

(4.5)

Set

Ξ(t) =
∫ t

−∞
AT(t − s)Pξ(s)ds +

∫ t

+∞
AT(t − s)Qξ(s)ds,

Π(t) =
∫ t

−∞
AT(t − s)Pη(s)ds +

∫ t

+∞
AT(t − s)Qη(s)ds.

(4.6)

Next, we show that Ξ ∈ AA(R,Xα) and Π ∈ AA0(R,Xα).
Now, to prove that Ξ ∈ AA(R,Xα). Let us take a sequence (σn)n∈N

and show that there
exists a subsequence (sn)n∈N

such that

lim
m→+∞

lim
n→+∞

‖Ξ(t + sn − sm) − Ξ(t)‖α = 0 for each t ∈ R. (4.7)

Since ξ ∈ AA(R,Xβ), there exists a subsequence (sn)n∈N
such that

lim
m→+∞

lim
n→+∞

‖ξ(t + sn − sm) − ξ(t)‖β = 0 for each t ∈ R. (4.8)
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On the other hand, we have

Ξ(t + sn − sm) − Ξ(t) =
∫ (t+sn−sm)

−∞
AT(t + sn − sm − s)Pξ(s)ds −

∫ t

−∞
AT(t − s)Pξ(s)ds

+
∫ t+sn−sm

+∞
AT(t + sn − sm − s)Qξ(s)ds −

∫ t

+∞
AT(t − s)Qξ(s)ds

=
∫+∞

0
AT(s)Pξ(t + sn − sm − s)ds −

∫+∞

0
AT(s)Pξ(t − s)ds

−
(∫0

−∞
AT(s)Qξ(t + sn − sm − s)ds −

∫0

−∞
AT(s)Qξ(t − s)ds

)

=
∫+∞

0
AT(s)P[ξ(t + sn − sm − s) − ξ(t − s)]ds

−
∫0

−∞
AT(s)Q[ξ(t + sn − sm − s) − ξ(t − s)]ds.

(4.9)

Passing to the norm ‖·‖α, 0 < α < 1, remembering the triangle inequalities, (2.7), then we
obtain that

‖Ξ(t + sn − sm) − Ξ(t)‖α ≤
∫+∞

0
‖AT(s)P[ξ(t + sn − sm − s) − ξ(t − s)]‖αds

+
∫0

−∞
‖AT(s)Q[ξ(t + sn − sm − s) − ξ(t − s)]‖αds

≤ c
∫+∞

0
sβ−α−1e−γs‖ξ(t + sn − sm − s) − ξ(t − s)‖βds

+ c
∫0

−∞
eδs‖ξ(t + sn − sm − s) − ξ(t − s)‖βds.

(4.10)

Thus, (4.8) and Lebesgue dominated convergence theorem lead to (4.7), therefore, to Ξ ∈
AA(R,Xα). To finish the proof, we will prove that Π ∈ AA0(R,Xα). It is obvious that Π ∈
BC(R,Xα), the left task is to show that

lim
r→∞

1
2r

∫ r

−r
‖Π(t)‖αdt = 0. (4.11)

Using (2.7), we have

0 ≤ lim
r→∞

1
2r

∫ r

−r
‖Π(t)‖α dt ≤ I + J, (4.12)
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where

I := lim
r→∞

c

2r

∫ r

−r
dt

∫ t

−∞
(t − s)β−α−1e−γ(t−s)‖η(s)‖βds

= lim
r→∞

c

2r

∫ r

−r
dt

∫+∞

0
σβ−α−1e−γσ‖η(t − σ)‖βdσ

= lim
r→∞

c

∫+∞

0
σβ−α−1e−γσ

[
1
2r

∫ r

−r
‖η(t − σ)‖βdt

]
dσ,

J := lim
r→∞

c

2r

∫ r

−r
dt

∫+∞

t

eδ(t−s)‖η(s)‖βds

= lim
r→∞

c

2r

∫ r

−r
dt

∫0

−∞
eδσ‖η(t − σ)‖βdσ

= lim
r→∞

c

∫0

−∞
eδσ

[
1
2r

∫ r

−r
‖η(t − σ)‖βdt

]
dσ.

(4.13)

Then, by the Lebesgue dominated convergence theorem and the fact that η ∈ AA0(R,Xβ),
one has I = J = 0. Hence, Π ∈ AA0(R,Xα) and we end the proof.

Lemma 4.3. Let assumptions (H2)–(H6) hold. Define the nonlinear operator Λ2 by

(Λ2u)(t) =
∫ t

−∞
T(t − s)Pg(s, Cu(s))ds −

∫+∞

t

T(t − s)Qg(s, Cu(s))ds. (4.14)

Then, Λ2 maps PAA(R,Xα) into itself.

Proof. The proof is similar to that of Lemma 4.2, so we omit it.

Theorem 4.4. Under the assumptions (H1)–(H6), partial hyperbolic evolution equation (1.1) admits
a unique pseudo almost automorphic mild solution if

Θ = Lω
[
k(α) +

c

δ
+
C(α)
δ

+
cΓ(β − α)
γβ−α

+
M(α)Γ(1 − α)

γ1−α

]
< 1. (4.15)

Proof. Firstly, define the nonlinear operator Λ on BC(R,Xα) by

(Λu)(t) = −f(t, Bu(t)) −
∫ t

−∞
AT(t − s)Pf(s, Bu(s))ds +

∫+∞

t

AT(t − s)Qf(s, Bu(s))ds

+
∫ t

−∞
T(t − s)Pg(s, Cu(s))ds −

∫+∞

t

T(t − s)Qg(s, Cu(s))ds

= −f(t, Bu(t)) − (Λ1u)(t) + (Λ2u)(t).

(4.16)
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Let u ∈ PAA(R,Xα), then f(·, Bu(·)) ∈ PAA(R,Xβ) ⊂ PAA(R,Xα), as proved in Lemma 4.2.
Together with Lemmas 4.2 and 4.3, it follows that the operator Λmaps PAA(R,Xα) into itself.
Secondly, we will show that Λ admits a unique fixed point in PAA(R,Xα).

Let v,w ∈ PAA(R,Xα), then the triangle inequality reads

‖(Λv)(t) − (Λw)(t)‖α ≤ ‖f(t, Bv(t)) − f(t, Bw(t))‖α + ‖(Λ1v)(t) − (Λ1w)(t)‖α
+ ‖(Λ2v)(t) − (Λ2w)(t)‖α.

(4.17)

By (H1), (H5), and (H6), we obtain

‖f(t, Bv(t)) − f(t, Bw(t))‖α ≤ k(α)L‖Bv(t) − Bw(t)‖ ≤ k(α)Lω‖v −w‖∞,α. (4.18)

By (H2), Lemma 2.6, (H5), and (H6), we obtain

‖(Λ1v)(t) − (Λ1w)(t)‖α ≤
∫ t

−∞
‖AT(t − s)P[f(s, Bv(s)) − f(s, Bw(s))]‖αds

+
∫+∞

t

‖AT(t − s)Q[f(s, Bv(s)) − f(s, Bw(s))]‖αds

≤ cLω‖v −w‖∞,α

∫ t

−∞
(t − s)β−α−1e−γ(t−s)ds

+ cLω‖v −w‖∞,α

∫+∞

t

eδ(t−s)ds

≤ cLω‖v −w‖∞,α

[
Γ(β − α)
γβ−α

+
1
δ

]
.

(4.19)

Similarly, by (H2), Lemma 2.5, (H5), and (H6), we obtain

‖(Λ2v)(t) − (Λ2w)(t)‖α ≤
∫ t

−∞
‖T(t − s)P[g(s, Cv(s)) − g(s, Cw(s))]‖αds

+
∫+∞

t

‖T(t − s)Q[g(s, Cv(s)) − g(s, Cw(s))]‖αds

≤M(α)Lω‖v −w‖∞,α

∫ t

−∞
(t − s)−αe−γ(t−s)ds

+ C(α)Lω‖v −w‖∞,α

∫+∞

t

eδ(t−s)ds

≤ Lω‖v −w‖∞,α

[
M(α)Γ(1 − α)

γ1−α
+
C(α)
δ

]
.

(4.20)



Z. Hu and Z. Jin 11

Combining the above inequality together, we obtain ‖Λv −Λw‖∞,α ≤ Θ‖v −w‖∞,α, where

Θ = Lω
[
k(α) +

c

δ
+
C(α)
δ

+
cΓ(β − α)
γβ−α

+
M(α)Γ(1 − α)

γ1−α

]
. (4.21)

Clearly, if Θ < 1, then the operator Λ becomes a strict contraction on PAA(R,Xα).
Remembering that PAA(R,Xα) equipped with the α-sup norm: ‖u‖∞,α = supt∈R

‖u(t)‖α is a
Banach space by Remark 3.9, the classical Banach fixed-point theorem leads to the desired
conclusion.

5. Application

Example 5.1. Take X := C[0, π] equipped with the sup norm. Define the operator A by

Aϕ(ξ) := ϕ′′(ξ) + aϕ(ξ), ∀ξ ∈ (0, π), ϕ ∈ D(A), (5.1)

where D(A) := {ϕ ∈ C2[0, π], ϕ(0) = ϕ(π) = 0} ⊂ C[0, π] and a ∈ R is a constant.
Clearly, A is sectorial, and hence is the generator of an analytic semigroup. If a /= n2,

then A generates a hyperbolic analytic semigroup (T(t))t≥0 on X.
Let

Xα = DA(α,∞) =

⎧⎪⎨
⎪⎩
C2α[0, π], if 0 < α <

1
2
,

C2α
ν [0, π], if

1
2
< α < 1,

(5.2)

where C2α
ν [0, π] = {ϕ ∈ C2α[0, π], ϕ(0) = ϕ(π) = 0} (see [10] for more details).

Define the operator C by

Cϕ(ξ) := q(ξ)ϕ(ξ), ∀ξ ∈ (0, π), ϕ ∈ D(C), (5.3)

where D(C) := {ϕ ∈ C[0, π], ϕ(0) = ϕ(π) = 0} ⊂ C[0, π], then Xα ⊂ D(C) and ‖C‖B(Xα,X) =
‖q‖∞ = supξ∈[0,π]q(ξ).

Let

g(t, u) = u sin
1

2 + cos t + cos
√
2t

+max
k∈Z

{
e−(t±k

2)2} cos u, t ∈ R, u ∈ X, (5.4)

then g ∈ PAA(R × X,X), g is Lipschitz with respect to the second argument with L =
2, N(t, u) = u sin(1/(2 + cos t + cos

√
2t)) is uniformly continuous in any bounded subset

K ⊂ X uniformly for t ∈ R.
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Now the above discussion can be formulated as follows.

Proposition 5.2. Let g(t, u) = u sin(1/(2+cos t+cos
√
2t))+maxk∈Z{e−(t±k2)

2} cos u, t ∈ R, u ∈
X. Suppose that the constant a /= n2 for n ∈ N. Then, nonlinear heat equation (1.2) admits a unique
Xα-valued pseudo almost automorphic mild solution if

2‖q‖∞
[
C(α)
δ

+
M(α)Γ(1 − α)

γ1−α

]
< 1. (5.5)

Appendix

Proof of Theorem 3.10. Write u = φ + ψ where φ ∈ AA(R,Y) and ψ ∈ AA0(R,Y), then

v(t) = Bφ(t) + Bψ(t). (A.1)

Set

Φ(t) = Bφ(t), Ψ(t) = Bψ(t). (A.2)

We are going to prove that Φ ∈ AA(R,X) and Ψ ∈ AA0(R,X).
Let us take a sequence (σn)n∈N

and show that there exists a subsequence (sn)n∈N
such

that

lim
m→+∞

lim
n→+∞

‖Φ(t + sn − sm) −Φ(t)‖ = 0 for each t ∈ R. (A.3)

Since φ ∈ AA(R,Y), there exists a subsequence (sn)n∈N
such that

lim
m→+∞

lim
n→+∞

‖φ(t + sn − sm) − φ(t)‖Y = 0 for each t ∈ R. (A.4)

On the other hand, we have

0 ≤ ‖Φ(t + sn − sm) −Φ(t)‖ = ‖Bφ(t + sn − sm) − Bφ(t)‖ ≤ ‖B‖B(Y,X)‖φ(t + sn − sm) − φ(t)‖Y.
(A.5)

Thus, (A.4) leads to (A.3), therefore, to Φ ∈ AA(R,X).
To complete the proof, we will prove that Ψ ∈ AA0(R,X). In fact, it is easy to check

that Ψ ∈ BC(R,X) and

lim
r→∞

1
2r

∫ r

−r
‖Ψ(t)‖dt ≤ ‖B‖B(Y,X) lim

r→∞
1
2r

∫ r

−r
‖ψ(t)‖Ydt = 0. (A.6)

Hence, Ψ ∈ AA0(R,X) and we end the proof.
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