
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2008, Article ID 389727, 15 pages
doi:10.1155/2008/389727

Research Article
On a Periodic Time-Dependent Model of
Population Dynamics with Stage Structure
and Impulsive Effects

Kaiyuan Liu1, 2 and Lansun Chen2

1Department of Mathematics, Anshan Normal University, Anshan 114007, China
2Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China

Correspondence should be addressed to Kaiyuan Liu, liukaiyuan 1963@sohu.com

Received 12 June 2007; Revised 5 February 2008; Accepted 20 March 2008

Recommended by Xue-Zhong He

We consider a periodic time-dependent predator-prey system with stage structure and impulsive
harvesting, in which the prey has a life history that takes them through two stages, immature and
mature. A set of sufficient and necessary conditions which guarantee the permanence of the system
is obtained. Finally, we give a brief discussion of our results.

Copyright q 2008 K. Liu and L. Chen. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

In the natural world, there are many species whose individual members have a life history
that takes them through two stages, immature and mature. In particular, we have mammalian
populations and some amphibious animals in mind, which exhibit these two stages. From the
view point of mathematics, the description of the stage structure of the population in the life
history is also an interesting problem in population dynamics. The permanence and extinction
of species are significant concepts for those stage-structured population dynamical systems.
Recently, stage structure models have been studied by many authors [1–3]. This is not only
because they are much more simple than the models governed by partial differential equations
but also because they can exhibit phenomena similar to those of partial differential models [4],
and many important physiological parameters can be incorporated. Much research has been
devoted to the models concerning single-species population growth with the stage structure
of immature and mature [5, 6]. Two species models with stage structure were investigated by
Wang and Chen (1997), Magnusson (1999), Xiao and Chen (2003), as well as Cui and Song
(2004). Also, Zhang, Chen, and Neumann (2000) proposed the following autonomous stage
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structure predator-prey system:

x′
1 = αx2 − r1x1 − βx1 − ηx2

1 − β1x1x3,
x′
2 = βx1 − r2x2,
x′
3 = x3

( − r + kβ1x1 − η1x3
)
,

(1.1)

where α, β, β1, η, η1, r, r1, r2, and k are all positive constants, k is a digesting constant.
On the other hand, since biological and environmental parameters are naturally subject

to fluctuation in time, the effects of a periodically varying environment are considered as
important selective forces on systems in a fluctuating environment. So more realistic and
interesting models should take into account the seasonality of the changing environment
[7, 8]. This motivated Cui and Y. Takeuchi (2006) to consider the following periodically
nonautonomous predator-prey model with stage structure for prey:

ẋ1 = a(t)x2 − b(t)x1 − d(t)x2
1 − p(t)φ

(
t, x1

)
x1y,

ẋ2 = c(t)x1 − f(t)x2
2,

ẏ = y
[ − g(t) + h(t)φ(t, x1

)
x1 − q(t)y

]
,

(1.2)

in which a(t), b(t), c(t), d(t), f(t), g(t), h(t), p(t), q(t), and φ(t, x1) are all continuousω-periodic
functions; a(t), b(t), c(t), d(t), f(t), h(t), p(t), q(t) are all positive; g(t), φ(t, x1) are nonnegative;
x1 and x2 denote the density of immature and mature population (prey), respectively; and y
is the density of the predator that only prey on x1 (immature prey). They provided a set of
sufficient and necessary conditions to guarantee the permanence of the above system.

Systems with impulsive effects describing evolution processes are characterized by the
fact that at certain moments of time, they experience a change of state abruptly. Processes of
such type are studied in almost every domain of applied science. Impulsive equations [9, 10]
have been recently used in population dynamics in relation to impulsive vaccination [11, 12],
population ecology [13, 14], the chemotherapeutic treatment of disease [15], birth pulses [16],
as well as the theory of the chemostat [17].

Let us assume that the predator population is affected by harvesting (e.g., fishing or
hunting). Further, as we all know that the harvesting does not occur continuously, that is,
the harvesting occurs in regular pulses, then let us assume that at some fixed moments,
the predator population in system (1.2) is subject to a perturbation which incorporates the
proportional decrease. After a perturbation at step τk > 0 (k ∈ N), the size of the population
y(τ+

k
) becomes

y
(
τ+k

)
=
(
1 − uk

)
y
(
τk
)
, (1.3)

where y(τk) is the size of the predator population at step τk before the impulsive perturbation,
and 0 < uk < 1 represents the rate at which the predator is harvested.

In this article, we extend the model (1.2) to the case when the predator population is
omnivorous and affected by impulsive effects, which is governed by the following system:

ẋ1 = a(t)x2 − b(t)x1 − d(t)x2
1 − p1(t)φ1

(
t, x1

)
x2
1y, t /= τk,

ẋ2 = c(t)x1 − f(t)x2
2 − p2(t)φ2

(
t, x2

)
x2
2y, t /= τk,
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ẏ = y
[
g(t) +

2∑

i=1

hi(t)φi
(
t, xi

)
x2
i − q(t)y(t)

]
, t /= τk,

Δy(t) = −uky(t), t = τk, k ∈ N,

(1.4)

with the initial value conditions

x1(0) = x10 ≥ 0, x2(0) = x20 ≥ 0, y(0) = y0 ≥ 0, (1.5)

in which x1 and x2 are the densities of immature and mature prey, respectively; and y is the
density of the predator that can prey on x1 andx2. When its favorite food is severely scarce,
population y can eat other resources: Δy(t) = y(t+) − y(t). Also, there exists a positive integer
q such that

uk+q = uk, τk+q = τk +ω,

0 = τ0 < τ1 < τ2 < · · · < τk < τk+1 < · · · , k ∈ N.
(1.6)

Here, x2
i φi(t, xi), the number of the prey xi consumed per predator in unit time, is called the

predator functional response. We assume that there exists a positive constant L such that

0 < φi
(
t, xi

)
< L;

∂

∂xi

(
x2
i φi

(
t, xi

)) ≥ 0 forxi > 0, i = 1, 2. (1.7)

The last condition in (1.7) implies that as the prey population increases, the consumption rate
of prey consumed per predator increases. The birth rate of the immature prey population is
proportional to the existing mature prey population with a proportionality function a(t). For
the immature prey population, the death rate is proportional to the existing immature prey
population with a proportionality function b(t). The variable parameter d(t) represents that the
immature prey population is density restriction. The transition rate from immature individuals
to the mature individuals is assumed to be proportional to the existing immature population
with proportionality coefficient c(t). The death rate of the mature population is of a logistic
nature with proportionality coefficient f(t). Also, pi(t) and hi(t) (i = 1, 2) are the coefficients
that relate to conversion rates of the immature and, respectively, mature prey biomass into
predator biomass. The coefficients in (1.4) are all continuous ω-periodic for t ≥ 0. In fact, a(t),
b(t), c(t), d(t), f(t), pi(t) , hi(t), and q(t) are all strictly positive, and φi(t, xi) is nonnegative
(i = 1, 2).

The organization of this paper is as follows. In Section 2, we provide some preliminary
results which will be useful. In Section 3, we investigate the permanence and extinction of
system (1.4) by using analysis technique. In the last section, we give a biological example and
a brief discussion of our result.

2. Preliminary results

Before stating and proving our main results, we give the following definitions, notations, and
lemmas which will be useful in the following section.

Let R+ = [0,∞), Rn
+ = {(x1, . . . , xn) : xi > 0, i = 1, . . . , n} and α(t) be a continuous

ω-periodic function defined on [0,+∞), then we set

Aω(α) = ω−1
∫ω

0
α(t)dt, αU = max

t∈[0,ω]
α(t), αL = min

t∈[0,ω]
α(t). (2.1)



4 Discrete Dynamics in Nature and Society

Lemma 2.1. System (1.4) is dissipative.

Proof. Define a function V (t, x1, x2, y) such that

V
(
t, x1, x2, y

)
= h

(
x1
(
t
)
+ x2(t)

)
+ py(t), (2.2)

in which h = maxt∈[0,ω]{h1(t), h2(t)}, p = mint∈[0,ω]{p1(t), p2(t)}. After a simple computations,
we have

D+V |(4) +wV <
(
haU +w

)
x2 − hfLx2

2 +
(
hcU +w − hbL)x1 − hdLx2

1 +
(
w + pgU

)
y − pqLy2,

(2.3)

in which w is a positive constant. Obviously, the right-hand side of the above inequality is
bounded above for all (x1(t), x2(t), y(t)) ∈ R3

+. Hence,

D+V |(4) +wV < λ, (2.4)

where λ is a positive constant. When t = τk, we get

V
(
τ+k

) ≤ V (
τk
)
. (2.5)

According to Lemma 2.2 in [9, page 23 ], we derive that

V (t) = V (0)e−w t +
∫ t

0
λe−w (t−s)ds <

2λ
w
, as t −→ ∞, (2.6)

which implies that system (1.4) is dissipative. This completes the proof.

Next, we consider the following two subsystems of system (1.4):

ẋ1 = a(t)x2 − b(t)x1 − d(t)x2
1,

ẋ2 = c(t)x1 − f(t)x2
2,

(2.7)

ẏ = y
[
g(t) − q(t)y(t)], t /= τk,

Δy(t) = −uky(t), t = τk, k ∈ N.
(2.8)

Lemma 2.2 (see [18]). The system (2.7) has a positive ω-periodic solution (x∗
1(t), x

∗
2(t)) which is

globally asymptotically stable with respect to R2
+.

Lemma 2.3. If the following conditions

Aω(g) > 0,
q∏

k=1

(
1 − uk

)
> exp

( −ωAω(g)
) (2.9)
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hold, then system (2.8) has a unique ω-periodic solution:

y∗(t) =
(∏

0<τk<t
(
1/(1−uk)

)
exp

( − ∫ t
0 g(ξ)dξ

) ∫ω
0

∏
s≤τk<ω

(
1/(1−uk)

)
exp

( − ∫ω
s g(ξ)dξ

)
q(s)ds

1 −∏q

k=1

(
1/(1 − uk)) exp

( − ∫ω
0 g(ξ)dξ

)

+
∫ t

0

∏

s≤τk<t

1
1 − uk exp

(
−
∫ t

s

g(ξ)dξ
)
q(s)ds

)−1

(2.10)

and for every solution y(t) of system (2.8),
∣∣y(t) − y∗(t)

∣∣ −→ 0 as t −→ ∞. (2.11)

Proof. Let y(t) = 1/z(t) and obtain the linear nonhomogeneous impulsive equation

ż(t) = −g(t)z(t) + q(t), t /= τk,

z
(
t+
)
=

1
1 − uk z(t), t = τk.

(2.12)

Let W(t, s) =
∏

s≤τk<t(1/(1 − uk)) exp(−
∫ t
s g(ξ)dξ) be the Cauchy matrix for the relevant

homogeneous equation, then the solution of (2.12) has the form

z(t) =W(t, 0)z(0) +
∫ t

0
W(t, s)q(s)ds. (2.13)

The solution z(t)will be ω-periodic if z(ω) = z(0), or if

(1 −W(ω, 0))z(0) =
∫ω

0
W(ω, s)q(s)ds. (2.14)

In view of conditions (2.9), (2.14) has a unique solution

z(0) =

∫ω
0 W(ω, s)q(s)ds

1 −W(ω, 0)
. (2.15)

Then, (2.13) has a unique ω-periodic solution

z∗(t) =
W(t, 0)

∫ω
0 W(ω, s)q(s)ds

1 −W(ω, 0)
+
∫ t

0
W(t, s)q(s)ds. (2.16)

Hence, (2.8) has a unique ω-periodic solution

y∗(t) =
(
W(t, 0)

∫ω
0 W(ω, s)q(s)ds

1 −W(ω, 0)
+
∫ t

0
W(t, s)q(s)ds

)−1

=
(∏

0≤τk<t
(
1/(1−uk)

)
exp

( − ∫ t
0 g(ξ)dξ

) ∫ω
0

∏
s≤τk<ω

(
1/(1−uk)

)
exp

( − ∫ω
s g(ξ)dξ

)
q(s)ds

1 −∏q

k=1

(
1/(1 − uk)

)
exp

( − ∫ω
0 g(ξ)dξ)

+
∫ t

0

∏

s≤τk<t

1
1 − uk exp

(
−
∫ t

s

g(ξ)dξ
)
q(s)ds

)−1
.

(2.17)
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From (2.12), we derive that

(
z(t) − z∗(t))′ = −g(t)(z(t) − z∗(t)), τk < t ≤ τk+1. (2.18)

Let

κ
.=

q∏

k=1

1
1 − uk exp

(
−
∫ω

0
g(t)dt

)
. (2.19)

Since conditions (2.9) hold, we note that 0 < κ < 1. Then, from Lemma 2.1, the solution of (2.8)
is governed by

∣∣y(t) − y∗(t)
∣∣ ≤ 2λ

w
y∗U∣∣z

(
0+) − z∗(0+)∣∣

∏

0<τk<t

1
1 − uk exp

(
−
∫ t

0
g(s)ds

)
,

≤ 2λ
w
y∗U∣∣z

(
0+
) − z∗(0+)∣∣κ[t/ω]+1 −→ 0 as t −→ ∞,

(2.20)

in which λ and w are defined in Lemma 2.1. This completes the proof.

3. Permanence and extinction of system

Theorem 3.1. System (1.4) is permanent if and only if

Aω

(
g +

2∑

i=1

hiφi
(
t, x∗

i

)
x∗2
i

)
> 0,

q∏

k=1

(
1 − uk

)
> exp

(
−ωAω

(
g +

2∑

i=1

hiφi
(
t, x∗

i

)
x∗2
i

))
,

(3.1)

in which (x∗
1(t), x

∗
2(t)) is the positive ω-periodic solution of system (2.7).

We need the following lemmas to prove Theorem 3.1.

Lemma 3.2. There exist positive constantsMx andMy such that

lim sup
t→∞

xi(t) ≤Mx (i = 1, 2), lim sup
t→∞

y(t) ≤My. (3.2)

Proof. In fact, from Lemmas 2.1 and 2.3, the proof of the lemma is obvious. This completes the
proof.

Lemma 3.3. There exists a positive constant ρx (ρx < Mx) such that

lim inf
t→∞

xi(t) ≥ ρx (i = 1, 2). (3.3)
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Proof. From Lemma 3.2, one notes that there exists a positive constant T0 such that

0 < y(t) ≤My for t ≥ T0, (3.4)

we then have

ẋ1 ≥ a(t)x2 − b(t)x1 −
(
d(t) + p1(t)LMy

)
x2
1,

ẋ2 ≥ c(t)x1 −
(
f(t) + p2(t)LMy

)
x2
2

(3.5)

for t ≥ T0. According to Lemma 2.2, the following auxiliary equations:

u̇1 = a(t)u2 − b(t)u1 −
(
d(t) + p1(t)LMy

)
u21,

u̇2 = c(t)u1 −
(
f(t) + p2(t)LMy

)
u22

(3.6)

has a globally asymptotically stable ω-periodic solution (u∗1(t), u
∗
2(t)). Let (u1(t), u2(t)) be the

solution of (3.6) with (u1(0), u2(0)) = (x1(0), x2(0)). By the vector comparison theorem [19],
we obtain

xi(t) ≥ ui(t), i = 1, 2 ∀ t ≥ 0. (3.7)

According to the global asymptotic stability of (u∗1(t), u
∗
2(t)), for any positive constant ε(≤

mint∈[0,ω]{u∗i (t)/3, i = 1, 2}), there exists a T1(> T0) such that for all t ≥ T1,
∣∣ui(t) − u∗i (t)

∣∣ < ε, i = 1, 2. (3.8)

Hence, for all t ≥ T1, we derive that

ui(t) ≥ u∗i (t) − ε, i = 1, 2. (3.9)

Let

ρx = max
t∈[0,ω]

{
u∗i (t)
2

, i = 1, 2
}
, (3.10)

then

xi(t) ≥ ρx, i = 1, 2. (3.11)

Consequently,

lim inf
t→∞

xi(t) ≥ ρx, i = 1, 2. (3.12)

This completes the proof.

Lemma 3.4. Suppose that (3.1) holds, then there exists a positive constant �y (�y < My) such that

lim sup
t→∞

y(t) ≥ �y. (3.13)
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Proof. In view of (3.1), we can choose a positive constant ε0 such that

Aω

(
ψε0(t)

)
> 0,

q∏

k=1

(
1 − uk

)
> exp(−ωAω

(
ψε0(t))

)
,

(3.14)

in which

ψε0(t) = g(t) +
2∑

i=1

hi(t)φi
(
t,
(
x∗
i (t) − ε0

))(
x∗
i (t) − ε0

)2 − q(t)ε0. (3.15)

Consider the following system with a positive parameter μ:

ẋ1 = a(t)x2 − b(t)x1 −
[
d(t) + Lμp1(t)

]
x2
1,

ẋ2 = c(t)x1 −
[
f(t) + Lμp2(t)

]
x2
2.

(3.16)

By Lemma 2.2, system (3.16) has a positive ω-periodic solution (x∗
1μ(t), x

∗
2μ(t)), which is

globally asymptotically stable. Let (x1μ(t), x2μ(t)) be the solution of (3.16)with initial condition
xiμ(0) = x∗

i (0), i = 1, 2, where (x∗
1(t), x

∗
2(t)) is the positive periodic solution of (2.7). Hence, for

the above ε0, there exists T2 > T1 such that

∣∣xiμ(t) − x∗
iμ(t)

∣∣ <
ε0
4

(3.17)

for t ≥ T2, i = 1, 2. According to the continuity of the solution in the parameter μ, we have
xiμ(t) → x∗

i (t) (i = 1, 2) uniformly in [T2, T2 + ω] as μ → 0. Hence, for ε0 > 0, there exists
μ0 = μ0(ε0) (0 < μ0 < ε0) such that

∣∣xiμ(t) − x∗
i (t)

∣∣ <
ε0
4
, 0 ≤ μ ≤ μ0, (3.18)

t ∈ [T2, T2 +ω], i = 1, 2. Thus, from (3.17) and (3.18), we get

∣∣x∗
iμ(t) − x∗

i (t)
∣∣ <

ε0
2
, 0 ≤ μ ≤ μ0, (3.19)

t ∈ [T2, T2 +ω], i = 1, 2. Since x∗
iμ(t) and x

∗
i (t) are all ω-periodic, we have

∣∣x∗
iμ(t) − x∗

i (t)
∣∣ <

ε0
2
, 0 ≤ μ ≤ μ0, (3.20)

t ≥ 0, i = 1, 2.
Choose a constant μ1 (0 < μ1 < μ0, μ1 < ε0), from (3.20), we derive

x∗
iμ1
(t) ≥ x∗

i (t) −
ε0
2
, t ≥ 0, i = 1, 2. (3.21)

Suppose that (3.13) is not true, then for the above ε0, there exists a ν ∈ R3
+ such that

lim sup
t→∞

y(t) < μ1, (3.22)
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where (x1(t), x2(t), y(t)) is the solution of (1.4) with the initial condition (x10, x20, y0) = ν. So
there exists a constant T3(> T2) such that

y(t) < μ1, t ≥ T3, (3.23)

then we derive that

ẋ1 ≥ a(t)x2 − b(t)x1 −
(
d(t) + Lμ1p1(t)

)
x2
1,

ẋ2 ≥ c(t)x1 −
(
f(t) + Lμ1p2(t)

)
x2
2

(3.24)

for t ≥ T3. Let (x1μ1 , x2μ1) be the solution of (3.16) with μ = μ1 and (x1μ1(T3), x2μ1(T3)) =
(x1(T3), x2(T3)), then by the vector comparison theorem, we obtain

xi(t) ≥ xiμ1(t), i = 1, 2, (3.25)

t ≥ T3. By the global asymptotic stability of (x∗
1μ1

(t), x∗
2μ1

(t)), for the given ε0 > 0, there exists
T4 > T3 such that

xiμ1(t) > x
∗
iμ1
(t) − ε0

2
, t ≥ T4, i = 1, 2, (3.26)

and hence, by (3.21), we get

xi(t) > x∗
i (t) − ε0, t ≥ T4, i = 1, 2. (3.27)

Since 0 < y(t) < μ1 < ε0 together with (1.4) and (1.7), we have

ẏ ≥ y
[
g(t) +

2∑

i=1

hi(t)φi
(
t,
(
x∗
i (t) − ε0

))(
x∗
i (t) − ε0

)2 − q(t)ε0
]
, t /= τk,

y
(
t+
)
=
(
1 − uk

)
y(t), t = τk, k ∈ N.

(3.28)

Hence, it follows from Lemma 2.2 in [9, page 23] that

y(t) ≥ y0
∏

0<τk<t

(
1 − uk

)
exp

(∫ t

0
ψε0(s)ds

)
, (3.29)

that is,

y(t) ≥ y0
[ ∏

0<τk<ω

(
1 − uk

)
exp(ωAω

(
ψε0

))
][t/ω]

. (3.30)

By (3.14), we know that y(t) → ∞ as t→ ∞, which leads to a contradiction. This completes the
proof.

Lemma 3.5. Assume that (3.1) holds, then there exists a positive constant δy (δy < My) such that
any solution (x1, x2, y) of system (1.4) with initial conditions satisfies

lim inf
t→∞

y(t) ≥ δy. (3.31)
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Proof. Suppose that (3.31) is not true, there must exists a time sequence {t(k̂)tk
}∞k=1 ⊂ R+, k̂ ∈ Z

such that

lim inf
t
(k̂)
k

→∞
y
(
tk̂k
)
<

�y

(k̂ + 1)2
, (3.32)

and by Lemma 3.4, we have lim sup
t
(k̂)
k

→∞y(t
(k̂)
k

) ≥ �y, k̂ = 1, 2, . . . .Hence, for each k̂, we choose

two time sequences {s(k̂)q } and {t(k̂)q }, satisfying 0 < s(k̂)1 < t
(k̂)
1 < s

(k̂)
2 < t

(k̂)
2 < · · · < s(k̂)q < t

(k̂)
q < · · ·

and s(k̂)q → ∞ as q → ∞, as well as

y
(
s
(k̂)
q

)
=

�y

k̂ + 1
, y

(
t
(k̂)
q

)
=

∏

0<τk<t
(k̂)
q

(
1 − uk

) �y

(k̂ + 1)2
, (3.33)

∏

0<τk<t
(k̂)
q

(
1 − uk

) �y

(k̂ + 1)2
< y(t) <

�y

k̂ + 1
, t ∈ (

s
(k̂)
q , t

(k̂)
q

)
. (3.34)

By Lemma 3.2, for a given positive integer k̂, there exists T̃ (k̂) > 0 such that xi(t) ≤Mx (i = 1, 2)

and y(t) ≤My for all t ≥ T̃ (k̂). In view of s(k̂)q → ∞ as q → ∞, there exists a positive integerK(k̂)
1

such that s(k̂)q > T̃ (k̂) as q ≥ K(k̂)
1 . Hence, for any t ≥ T̃ (k̂), we have

ẏ ≥ y( − ∣∣g(t)
∣∣ −Myq(t)

)
, t /= τk,

y
(
t+
)
=
(
1 − uk

)
y(t), t = τk, k ∈ N.

(3.35)

Integrating the above inequality from s
(k̂)
q to t(k̂)q , for any q ≥ K(k̂)

1 , then we have

y(t(k̂)q ) ≥ y(s(k̂)q )
∏

s
(k̂)
q <τk<t

(k̂)
q

(1 − uk) exp
(∫ t

(k̂)
q

s
(k̂)
q

[ − ∣∣g(t)
∣∣ −Myq(t)

]
dt

)
. (3.36)

Obviously, it follows from (3.33) that

∫ t
(k̂)
q

s
(k̂)
q

[∣∣g(t)
∣
∣ +Myq(t)

]
dt > ln(k̂ + 1) for q ≥ K(k̂)

1 . (3.37)

Hence, in view of the periodicity of g(t) and q(t), we get

t
(k̂)
q − s(k̂)q −→ ∞ as k̂ −→ ∞, q ≥ K(k̂)

1 . (3.38)

By (3.14), (3.33), and (3.38), there are positive constants T andN0 such that

y
(
s
(k̂)
q

)
=

∏

0<τk≤s(k̂)q

(
1 − uk

) �y

k̂ + 1
< ε0, (3.39)

t
(k̂)
q − s(k̂)q > 2T, (3.40)

∏

0<τk<κ

(
1 − uk

)
exp

(∫κ

0
ψε0(t)dt

)
> 1 (3.41)
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for k̂ ≥N0, for q ≥ K(k̂)
1 , and for all κ > T . However, (3.39) implies that

y(t) < ε0, t ∈ [
s
(k̂)
q , t

(k̂)
q

]
(3.42)

for k̂ ≥N0, q ≥ K(k̂)
1 . Then, we get

ẋ1 ≥ a(t)x2 − b(t)x1 −
(
d(t) + Lε0p1(t)

)
x2
1,

ẋ2 ≥ c(t)x1 −
(
f(t) + Lε0p2(t)

)
x2
2.

(3.43)

Let (x1ε0 , x2ε0) be the solution of (3.16) with μ = ε0 and (x1ε0(T3), x2ε0(T3)) = (x1(T3), x2(T3)),
then by the vector comparison theorem, we obtain

xi(t) ≥ xiε0(t), i = 1, 2, t ∈ [
s
(k̂)
q , t

(k̂)
q

]
. (3.44)

From limq→∞s
(k̂)
q = ∞ and Lemmas 3.2 and 3.3, we obtain that for any k̂, there is a K(k̂)

2 > K
(k̂)
1

such that for any q ≥ K(k̂)
2 ,

ρx ≤ xi
(
s
(k̂)
q

) ≤Mx, i = 1, 2. (3.45)

For μ = ε0, (3.16) has a globally asymptotically stable positive ω-periodic solution
(x∗

1ε0
(t), x∗

2ε0
(t)). By the global asymptotic stability of (x∗

1ε0
(t), x∗

2ε0
(t)), for the given ε0 > 0, there

exists T5 > T4, and T5 is dependent of any k̂ and q such that

xiε0(t) > x
∗
iε0
(t) − ε0

2
, t ≥ T5 + s(k̂)q , i = 1, 2, q ≥ K(k̂)

2 , (3.46)

and hence, by (3.21), we get

xiε0(t) > x
∗
i (t) − ε0, t ≥ T5 + s(k̂)q , i = 1, 2, q ≥ K(k̂)

2 . (3.47)

By (3.44), there is an N1 ≥ N0 such that t(k̂)q − s(k̂)q ≥ 2T for all k̂ ≥ N1 and q ≥ K
(k̂)
2 , where

T ≥ T5. Hence, from (3.44) and (3.47), we obtain

xi(t) ≥ x∗
i (t) − ε0, i = 1, 2 (3.48)

for all t ∈ [T + s(k̂)q , t
(k̂)
q ], k̂ ≥ N1, and q ≥ K

(k̂)
2 . Since, for any t ∈ [T + s(k̂)q , t

(k̂)
q ], k ≥ N1 and

q ≥ K(k̂)
2 , by (1.4) and (3.42), we have

ẏ ≥ y
[
g(t) +

2∑

i=1

hi(t)φi
(
t,
(
x∗
i (t) − ε0

))(
x∗
i (t) − ε0

)2 − q(t)ε0
]
, t /= τk, t ∈

[
T + s(k̂)q , t

(k̂)
q

]
,

y
(
t+
)
=
(
1 − uk

)
y(t), t = τk, k ∈ N.

(3.49)
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Integrating from T + s(k̂)q to t(k̂)q for any k ≥N1 and q ≥ K(k̂)
2 , we obtain

y
(
t
(k̂)
q

) ≥ y(s(k̂)q + T
) ∏

s
(k̂)
q +T<τk<t

(k̂)
q

(
1 − uk

)
exp

(∫ t
(k̂)
q

s
(k̂)
q +T

ψε0(t)dt
)
. (3.50)

Hence, by (3.34), (3.40), and (3.41), we finally derive that

∏

0<τk<t
(k̂)
q

(
1 − uk

) �y

(k̂ + 1)2
≥

∏

0<τk≤t(k̂)q

(
1 − uk

) �y

(k̂ + 1)2
∏

s
(k̂)
q +T<τk<t

(k̂)
q

(
1 − uk

)
exp

(∫ t
(k̂)
q

s
(k̂)
q +T

ψε0(t)dt
)

>
∏

0<τk<t
(k̂)
q

(
1 − uk

) �y

(k̂ + 1)2
.

(3.51)

This leads to a contradiction. This completes the proof.

According to Lemmas 3.2–3.5, we can directly prove the sufficient part of the theorem.
Next, we are ready to show the necessity of this theorem.

Consider the case of

Aω

(
g +

2∑

i=1

hiφi
(
t, x∗

i

)
x∗2
i

)
≤ 0, (3.52)

it is then easy to derive that the predator population y(t)must be extinct because of sterilization
and impulsive harvesting. Suppose that

Aω

(
g +

2∑

i=1

hiφi
(
t, x∗

i

)
x∗2
i

)
> 0,

q∏

k=1

(
1 − uk

) ≤ exp
(
−ωAω

(
g +

2∑

i=1

hiφi
(
t, x∗

i

)
x∗2
i

))
.

(3.53)

We will show that

lim
t→∞

y(t) = 0. (3.54)

In fact, from (1.7) and (3.53), we know that for any given 0 < ε < 1, there exists ε1 > 0 such that

Aω

(
g +

2∑

i=1

hiφi
(
t,
(
x∗
i + ε1

))(
x∗
i + ε1

)2 − qε
)
> 0,

q∏

k=1

(
1 − uk

)
< exp

(
−ωAω

(
g +

2∑

i=1

hiφi
(
t,
(
x∗
i + ε1

))(
x∗
i + ε1

)2 − qε
))

.

(3.55)
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Note that q(t) > 0 for t ≥ 0. Since

ẋ1 ≤ a(t)x2 − b(t)x1 − d(t)x2
1,

ẋ2 ≤ c(t)x1 − f(t)x2
2,

(3.56)

for the given ε1 > 0, it is easy to show that there exists T (1) > 0 such that

xi(t) ≤ x∗
i (t) + ε1 for t > T (1), i = 1, 2, (3.57)

we then have

q∏

k=1

(
1 − uk

)
< exp

(
−ωAω

(
g +

2∑

i=1

hiφi
(
t, xi

)(
xi
)2 − qε

))
. (3.58)

We now show that there must exist T (2)(> T (1)) such that y(T (2)) < ε. Otherwise, by the last
two equations in system (1.4), we have

ε ≤ y(t) ≤ y(T (1)) ∏

T (1)<τk<t

(1 − uk) exp
(∫ t

T (1)

(
g(s) +

2∑

i=1

hi(s)φi
(
s, xi(s)

)
x2
i (s) − q(s)ε

)
ds

)
−→ 0

as t −→ ∞.

(3.59)

This implies that ε ≤ 0, which is a contradiction.
LetM(ε) = maxt∈[0,ω]{g(t)+

∑2
i=1hi(t)φi(s, xi(t))x

2
i (t)+q(t)ε}. Note thatM(ε) is bounded.

We then show that

y(t) ≤ ε exp (
M(ε)ω

)
for t ≥ T (2). (3.60)

Otherwise, there exists T (3) > T (2) such that T (3) ∈ (T (2) + P1ω, T
(2) + (P1 + 1)ω], in which

P1 ∈ Z+ = {0, 1, 2, . . .}, and y(T (3)) > ε exp(M(ε)ω). By (3.58), we have

ε exp
(
M(ε)ω

)
< y

(
T (3))

= y
(
T (2)) ∏

T (2)<τk<T (3)

(
1 − uk

)
exp

(∫T (3)

T (2)

(
g(s)+

2∑

i=1

hi(s)φi
(
s, xi(s)

)
x2
i (s)−q(s)ε

)
ds

)

≤ y(T (2))
[ q∏

k=1

(
1−uk

)
exp

(∫ω

0

(
g(s)+

2∑

i=1

hi(s)φi
(
s, xi(s)

)
x2
i (s)−q(s)ε

)
ds

)]P1

×
∏

T (2)+P1ω<τk<T (3)

(
1−uk

)
exp

(∫ω

0

(
g(s)+

2∑

i=1

hi(s)φi
(
s, xi(s)

)
x2
i (s)−q(s)ε

)
ds

)

< ε exp
(
M(ε)ω

)
,

(3.61)

which leads to a contradiction. This implies that (3.60) holds. In view of the arbitrariness of ε,
we get that y(t) → 0 as t→ ∞. This completes the proof.
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Remark 3.6. From the proof of Theorem 3.1 above, we note that the predator population y in
system (1.4)will be extinct provided that

Aω

(
g +

2∑

i=1

hiφi
(
t, x∗

i

)
x∗2
i

)
≤ 0, (3.62)

or excessive harvesting, that is,

Aω

(
g +

2∑

i=1

hiφi
(
t, x∗

i

)
x∗2
i

)
> 0,

q∏

k=1

(
1 − uk

) ≤ exp
(
−ωAω

(
g +

2∑

i=1

hiφi
(
t, x∗

i

)
x∗2
i

))
.

(3.63)

4. Discussion

Our result could provide a useful insight into the conservation of beneficial animals, especially
rare animals. As an example, we depict the case of Oreolalax omeimontis tadpole, Oreolalax
omeimontis, and red-eared slider (T. scripta elegans). Oreolalax omeimontis is a rare species of
frog found nearMt. Omei in Sichuan (China). The red-eared slider is a native of theMississippi
Valley area of the United States [8, 20]. Since the 1970s, large numbers of red-eared sliders
have been produced on turtle farms in the USA for the international pet trade. Red-eared
Turtles are traded as pet animals and have been introduced to many countries. They are
omnivorous and will eat insects, tadpoles, crayfish, shrimp, worms, snails, amphibians and
small fish, as well as aquatic plants, and they hardly may be controlled by a natural enemy. In
our model, the variables x1(t) and x2(t) represent the density of Oreolalax omeimontis tadpole
and Oreolalax omeimontis at time t, respectively. The variable y(t) describes the density of
the red-eared slider at time t. It is well known that Oreolalax omeimontis is beneficial to
humans because they eat so many insect pests. Ironically, although red-eared sliders have been
widely introduced throughout the world, its detrimental effects have been reported by many
researchers [21, 22]. The red-eared slider is one of main enemies of Oreolalax omeimontis. To
protect these beneficial and rare toads, we must control the amount of red-eared sliders in the
habitat of Oreolalax omeimontis. From a control point of view, our aim is to keep red-eared
sliders at an acceptably low level with a minimum use of artificial control measures, not to
eradicate all red-eared sliders. Hence, in the above example, the problem of nonextinction of
populations becomes a description of reasonable harvesting rates uk (k = 1, 2 . . . q).

According to our main result, system (1.4) is permanent if and only if the growth of the
predator y by foraging prey populations x1 and x2 plus its intrinsic rate of increase is positive
on average during the period ω, and harvesting rates uk (k = 1, 2, . . . q) of red-eared sliders
during the period ω are small enough to satisfy that

q∏

k=1

(
1 − uk

)
> exp

(
−ωAω

(
g +

2∑

i=1

hiφi
(
t, x∗

i

)
x∗2
i

))
. (4.1)

These seem to be reasonable from a biological point of view; but it should be noted that
condition (3.1) allows the predator to be g +

∑2
i=1hiφi(t, x

∗
i )x

∗2
i < 0 for some time intervals

among 0 ≤ t ≤ ω. That is, under reasonable harvesting rates, the predator can survive together
with prey populations even if the growth rate of the former is negative for some seasons during
a period. We hope that our result can be used to help protect beneficial animals found in their
habitats.
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