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1. Introduction

The study of dynamic equations on time scales is an area of research that has received a lot of
attention. Many authors have been devoted to the qualitative research of ordinary differential
equations on time scales. We can refer to monographs by Bohner and Peterson [1], Laksh-
mikantham et al. [2], and the references cited therein. With the development of technology,
in recent years, some authors have explored the partial differential equations on time scales.
Ahlbrandt and Morian [3] have introduced definitions of time scale derivatives and integrals
for functions of two variables and obtained the results that include an Euler-Lagrange equation
for double integral variational problems on time scales and a Picone identity which implies a
Sturm-Picone comparison theorem for second-order elliptic partial differential equations on
time scales. Jackson [4] has extended the existing ideas of the univariate case of the time scales
calculus to the multivariate case.

Lakshmikantham et al. [5] investigated the monotone iterative technique for partial dif-
ferential equations of first order in 1984. Nevertheless, up till now, we have not yet seen any re-
search about monotone iterative technique for partial dynamic equations on time scales. In this
paper, we will investigate the monotone iterative technique for partial dynamic equations of
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first order on time scales. Firstly, in Sections 2 and 3, we will introduce the univariable calculus
and multivariable calculus on time scales that will be the preliminary work in order to define
the partial dynamic equations on time scales. Secondly, in Sections 4 and 5, we will present
existence, uniqueness, and comparison results and provide the monotone iterative technique
for such partial dynamic equations.

2. Univariable calculus on time scales

For the detail of basic notions concerned with time scales, we refer to [1, 2]. To meet the re-
quirements in the next sections, we introduce some notions and lemma here.

A time scale is a nonempty closed subset of the real number R, and we denote it by the
symbol T. We define the forward and backward jump operators σ, ρ : T → T by

σ(t) = inf {s ∈ T | s > t}, ρ(t) = sup {s ∈ T | s < t} (2.1)

(supplemented by inf∅ = supT). A point t ∈ T is called right-scattered, right-dense, left-
scattered, left-dense if σ(t) > t, σ(t) = t, ρ(t) < t, ρ(t) = t hold, respectively. The set T

k is
defined to be T if T does not have a left-scattered maximum; otherwise it is T without this
left-scattered maximum. The graininess μ : T → [0,∞) is defined by μ(t) = σ(t) − t.

If f : T → R is a function and t ∈ T
k, then the “delta-derivative” of f at the point t is

defined to be the number fΔ(t) (provided it exists) with the property that for each ε > 0 there
is a neighborhood U ⊂ T of t such that

∣
∣f

(

σ(t)
) − f(s) − fΔ(t)

[

σ(t) − s
]∣
∣ ≤ ε

∣
∣σ(t) − t

∣
∣ ∀s ∈ U. (2.2)

Lemma 2.1 (see [1]). Let f : R → R be continuously differentiable and suppose that g : T → R is
delta differentiable. Then f ◦ g : T → R is delta differentiable and the formula

(f ◦ g)Δ(t) =
{∫1

0
f ′(g(t) + hμ(t)gΔ(t)

)

dh

}

gΔ(t) (2.3)

holds.

3. Multivariable calculus on time scales

In this section, we generalize existing ideas of the time scales calculus to the multivariate case.
Firstly, consider the product T

n = T1×T2×· · ·×Tn, where Ti is a time scale for all 1 ≤ i ≤ n,
so T

n is a time scale too. Then for any x ∈ T
n with x = (x1, x2, . . . , xn), in which xi ∈ Ti, 1 ≤ i ≤ n,

define the following:

(i) the forward jump operator σ : T
n → T

n by σ(x) = (σ(x1), σ(x2), . . . , σ(xn)), where σ(xi)
represents the forward jump operator of xi ∈ Ti for all 1 ≤ i ≤ n. Hereafter, the forward
jump operator of xi ∈ Ti will be denoted by σ(xi) = σi(x);

(ii) the back jump operator ρ : T
n → T

n by ρ(x) = (ρ(x1), ρ(x2), . . . , ρ(xn)), where ρ(xi)
represents the backward jump operator of xi ∈ Ti for all 1 ≤ i ≤ n. The backward jump
operator of xi ∈ Ti will be denoted by ρ(xi) = ρi(x);
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(iii) the graininess function μ : T
n → R

n by μ(x) = (μ(x1), μ(x2), . . . , μ(xn)), where μ(xi)
represents the graininess function of xi ∈ Ti on the time scale Ti for all 1 ≤ i ≤ n. Again,
from this point on the graininess function of the time scale Ti for xi ∈ Ti will be denoted
by μ(xi) = μi(x);

(iv) T
kn = T

k
1 × T

k
2 · · · × T

k
n.

Secondly, we introduce the definitions of time-scale derivatives for the function u(t, x),
where t ∈ T and x ∈ T

n. The forward jump operator σ : T → T and τ : T
n → T

n are defined
by σ(t) = inf {s1 ∈ T | s1 > t} and τ(x) = inf {s2 ∈ T

n | s2 > x}. The graininess h : T → R is
defined as h(t) = σ(t) − t. The graininess k : T

n → T
n is defined as k(x) = τ(x) − x. We will use

the notation uσ(t, x) = u(σ(t), x), uτ(t, x) = u(t, τ(x)) and uστ(t, x) = u(σ(t), τ(x)).
Because we will need notation for partial derivatives with respect to time-scale variables

t and x, we employ lexigraphic ordering for consistency. Let uΓ(t, x) denote the time-scale par-
tial derivative with respect to t, in order to distinguish for the sign ofΔ-derivative in Section 2,
let uΔ2(t, x) denote the time-scale partial derivative with respect to x.

The following definitions of these partial derivatives are now given.

Definition 3.1. Let u be a real-valued function on T × T
n. At (t, x) ∈ T

k × T
kn, we say that u has

a “Γ partial derivative” uΓ(t, x), with respect to t, if for each ε > 0, there exists a neighborhood
Ut (open in the relative topology of T of t) such that

∣
∣u
(

σ(t), x
) − u

(

s1, x
) − uΓ(t, x)

[

σ(t) − s1
]∣
∣ ≤ ε

∣
∣σ(t) − s1

∣
∣ (3.1)

for all s1 ∈ Ut. Similarly, we say that u has a “Δ partial derivative” denoted by uΔ2(t, x) ∈ R,
with respect to x, if for each ε > 0 there exists a neighborhood Ux of x such that

∣
∣u
(

t, τ(x)
) − u

(

t, s2
) − uΔ2(t, x)

[

τ(x) − s2
]∣
∣ ≤ ε

∣
∣τ(x) − s2

∣
∣ (3.2)

for all s2 ∈ Ux.
Finally, we define the partial derivative of u(t, x) at x with respect to the variable xi,

where t ∈ T and x = (x1, x2, . . . , xn) ∈ T
n. Having defined the multivariable calculus as earlier,

we set

uσi(t, x) = u
(

t, x1, x2, . . . , xi−1, σi(x), xi+1, . . . , xn

)

,

us3
i (t, x) = u

(

t, x1, x2, . . . , xi−1, s3, xi+1, . . . , xn

)

.
(3.3)

Definition 3.2. Let u : T × T
n → R be a real-valued function and let x = (x1, x2, . . . , xn) ∈ T

kn.
Then define uΔi

2(t, x) to be the number (provided it exists) with the property that given any
ε > 0, there exists a neighborhood U of xi, with U = (xi − δ, xi + δ) ∩ Ti for δ > 0 such that

∣
∣
[

uσi(t, x) − us3
i (t, x)

] − uΔi
2(t, x)

[

σi(x) − s3
]∣
∣ ≤ ε

∣
∣σi(x) − s3

∣
∣ (3.4)

for all s3 ∈ U. uΔi
2(t, x) is called the partial delta derivative of u(t, x) at xwith respect to variable

xi.
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4. Existence, uniqueness, and comparison result

In this section, we consider the initial value problem (IVP) for partial dynamic equation of first
order on time scales

uΓ + f(t, x)uΔ2 = g(t, x, u), u(0, x) = φ(x), (4.1)

where f ∈ C(Ω,Rn), g ∈ C(Ω × R,R), Ω = {(t, x) : 0 ≤ t ≤ T, a ≤ x ≤ b, t ∈ T
k, a, b, x ∈ T

kn},
fuΔ2 =

∑n
i=1fi(t, x)u

Δi
2 and φ ∈ C1([a, b],R).

We define the set D = {u ∈ C[Ω1,R], uΓ, uΔ2 , anduΔi
2 are continuous onT

k × T
kn}, Ω1 =

{(t, x), 0 ≤ t ≤ T, a ≤ x ≤ σ(b), t ∈ T
k, a, b, andx ∈ T

kn}.
Now, we begin to prove the following comparison result.

Theorem 4.1. Assume that

(A0) αΓ + f(t, x)αΔ2 ≤ g(t, x, α), α(0, x) ≤ φ(x), and βΓ + f(t, x)βΔ2 ≥ g(t, x, β), β(0, x) ≥ φ(x) for
(t, x) ∈ Ω1, where α, β ∈ D.

(A1) f(t, x) is quasimonotone nonincreasing in x for each i and f(t, a) ≤ 0, f(t, b) ≥ 0.

(A2) g(t, x, u1) − g(t, x, u2) ≤ L(u1 − u2) whenever u1 ≥ u2 for some L ≥ 0.

Then α(t, x) ≤ β(t, x) on Ω1.

Proof. Let us prove the theorem for strict inequalities firstly. For example, we suppose that
αΓ + f(t, x)αΔ2 < g(t, x, α) and α(0, x) < φ(x) on Ω1, and prove that α(t, x) < β(t, x) on Ω1. If
this conclusion is not true, then consider the set

Z =
{

(t, x) ∈ Ω1 | α(t, x) ≥ β(t, x)
}

. (4.2)

Let Zt be the projection of Z on the t-axis and let t0 = inf Zt. Clearly, t0 > 0 and there exists an
x0 ∈ [a, σ(b)] such that

α
(

t0, x0
)

= β
(

t0, x0
)

, α
(

σ
(

t0
)

, x0
) ≥ β

(

σ
(

t0
)

, x0
)

,

α
(

t0, x
) ≤ β

(

t0, x
)

for a ≤ x ≤ σ(b).
(4.3)

It then follows that αΓ(t0, x0) ≥ βΓ(t0, x0) and if a ≤ x ≤ σ(b), we also have αΔi
2(t0, x0) =

βΔ
i
2(t0, x0), i = 1, 2, . . . , n. In this case, we get the following contradiction:

g
(

t0, x0, α
(

t0, x0
))

> αΓ + f
(

t0, x0
)

αΔ2 ≥ βΓ + f
(

t0, x0
)

βΔ2 ≥ g
(

t0, x0, β
(

t0, x0
))

. (4.4)

If, on the other hand, for some j, x0,j = bj and x0,i < bi, i /= j, and a < x0, then we have

αΔi
2(t0, x0) = βΔ

i
2(t0, x0), i /= j, and α(t0, σ(x0)) ≥ β(t0, σ(x0)), then we have αΔj

2(t0, x0) ≥
βΔ

j

2(t0, x0). Hence using the assumption (A1), we obtain fj(t0, x0) ≥ fj(t0, b) ≥ 0 and

fj(t0, x0)αΔj

2(t0, x0) ≥ fj(t0, x0)βΔ
j

2(t0, x0). Consequently, we get the inequality

g
(

t0, x0, α
(

t0, x0
))

> αΓ + f
(

t0, x0
)

αΔ2 ≥ βΓ + f
(

t0, x0
)

βΔ2 ≥ g
(

t0, x0, β
(

t0, x0
))

, (4.5)
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which is a contradiction as before. This proves that α(t, x) < β(t, x) onΩ1. If one of the inequal-
ities in (A0) is not strict, and on one hand, if μ(t) = 0, we set α̃(t, x) = α(t, x) − εe2Lt and note
that α̃ < α. Then using (A0) and (A2), we have

α̃Γ + f(t, x)α̃Δ2 = αΓ + f(t, x)αΔ2 − 2Lεe2Lt

≤ g(t, x, α) − 2Lεe2Lt ≤ g(t, x, α̃) + Lεe2Lt − 2Lεe2Lt < g(t, x, α̃),
(4.6)

and α̃(0, x) < φ(x) on Ω1. On the other hand, if μ(t)/= 0, we set α̃(t, x) = α(t, x) − εeLt and note
that α̃ < α. Then using (A0), (A2), and Lemma 2.1, we have

α̃Γ + f(t, x)α̃Δ2 = αΓ + f(t, x)αΔ2 − ε

(

eLt

μ

(

eLμ − 1
)

)

≤ g(t, x, α) − εeLt

μ

(

eLμ − 1
) ≤ g(t, x, α̃) + LεeLt − εeLt

μ

(

eLμ − 1
)

= g(t, x, α̃) +
Lμ + 1 − eLμ

μ
εeLt < g(t, x, α̃),

(4.7)

and α̃(0, x) < φ(x) on Ω1. Thus the foregoing arguments imply that α(t, x) < β(t, x) on Ω1.
Taking limit as ε → 0, we then get α(t, x) ≤ β(t, x) on Ω1, and the proof is complete.

Theorem 4.2. Assume that (A1) and (A2) hold. Suppose further that (A3) for each (t0, x0) ∈ Ω, there
exists a unique solution x(t0, x0) of

xΔ = f(t, x), x
(

t0
)

= x0, (4.8)

on 0 ≤ t ≤ T , x(t, t0, x0) is continuously differentiable with respect to (t0, x0). Assume (A4) for each
x0 ∈ [a, b] and y0 ∈ R, there exists a unique solution y(t, 0, y0;x0) of

yΔ = g
(

t, x
(

t, 0, x0
)

, y
)

, y(0) = y0, (4.9)

on 0 ≤ t ≤ T , where x(t, 0, x0) is the unique solution of (4.8) and y(t, 0, y0;x0) is continuously
differentiable with respect to (y0, x0).

Then there exists a unique solution u(t, x) = y(t, 0, φ(x(0, t, x));x(0, t, x)) for the problem (4.1)
on Ω1.

Proof. By (A3) and (A4), x(t, t0, x0), y(t, 0, y0;x0) are unique solutions of (4.8) and (4.9), re-
spectively, on 0 ≤ t ≤ T . Choose y0 = φ(x0) and note that if x = x(t, 0, x0), then because of
uniqueness, x0 = x(0, t, x). Hence, y(t, 0, φ(x(0, t, x));x(0, t, x)) is a unique solution of (4.9).
Then we have

yΔ = yΓ + yΔ2xΔ = yΓ + f(t, x)yΔ2 = g(t, x, y), y(0, x) = φ(x), (4.10)

that is, u(t, x) = y(t, 0, φ(x(0, t, x));x(0, t, x)) satisfies (4.1) and consequently, u(t, x) is a solu-
tion of the problem (4.1).

To show uniqueness of solution of (4.1), suppose that u1(t, x), u2(t, x) are two solutions
of (4.1) on Ω1. Then setting α = u1, β = u2 and applying Theorem 4.1, we get u1(t, x) ≤ u2(t, x)
on Ω1. Similarly we can prove that u1(t, x) ≥ u2(t, x) on Ω1. Hence the proof is complete.
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5. Monotone iterative technique

we are now in a position to describe the monotone iterative technique which yields monotone
sequences on time scales. We prove the following result specifically.

Theorem 5.1. Assume that (A0), (A1), and (A3) hold with α ≤ β onΩ1. Suppose further (A5) for some
M > 0, g(t, x, u1) − g(t, x, u2) ≥ −M(u1 − u2) whenever α ≤ u2 ≤ u1 ≤ β on Ω1. Assume (A6) for
each x0 ∈ [a, b] and y0 ∈ R, there exists a unique solution y(t, 0, y0;x0) of

yΔ = g
(

t, x
(

t, 0, x0
)

, y;η
(

t, x
(

t, 0, x0
))) −M(y − η), y(0) = y0, (5.1)

whenever α ≤ η ≤ β.
Then there exist monotone sequences {αn(t, x)}, {βn(t, x)}, and the functions ρ(t, x), r(t, x)

such that if u is any solution of (4.1), then

α ≤ α1 ≤ · · · ≤ αn ≤ ρ ≤ u ≤ r ≤ βn ≤ · · · ≤ β1 ≤ β on Ω1. (5.2)

Proof. Consider the linear IVP

uΓ + f(t, x)uΔ2 = G(t, x, u;η), u(0, x) = φ(x), (5.3)

where G(t, x, u;η) = g(t, x, η) −M(u − η) and η ∈ C(Ω1,R) is such that α ≤ η ≤ β on Ω1.
By (A5), we have

g(t, x, α) −G(t, x, α;η) = g(t, x, α) − g(t, x, η) +M(u − η) ≤ M(η − α) +M(α − η) = 0, (5.4)

so it follows that αΓ + f(t, x)αΔ2 ≤ G(t, x, α;η), α(0, x) ≤ φ(x) on Ω1. Similarly, we obtain that
βΓ + f(t, x)βΔ2 ≤ G(t, x, β;η), β(0, x) ≤ φ(x) onΩ1. Hence (A0) holds. Also, if u1 ≥ u2,

G(t, x, u1;η) −G(t, x, u2;η) = −M(

u1 − u2
) ≤ L

(

u1 − u2
)

, (5.5)

and therefore (A2) is satisfied for G. Furthermore, by (A6), (A4) is satisfied relative to

yΔ = G
(

t, x
(

t, 0, x0
)

, y;η
(

t, x
(

t, 0, x0
)))

, y(0) = y0. (5.6)

As a result, by Theorem 4.2, there exists a unique solution u(t, x) of (5.3) on Ω1 for every η ∈
C(Ω1,R) such that α ≤ η ≤ β on Ω1.

Defining a mapping A by Aη = u, where u is the unique solution of (5.3) corresponding
to η. Concerning this mappingA, we will show that (i) α ≤ Aα, β ≥ Aβ, and (ii)A is monotone
on the sector [α, β], namely, if α ≤ η1 ≤ η2 ≤ β, then Aη1 ≤ Aη2.

Let η = α and let Aα = α1, where α1 is the unique solution of (5.3). Then we have
αΓ + f(t, x)αΔ2 ≤ G(t, x, α;α), α(0, x) ≤ φ(x), and αΓ

1 + f(t, x)αΔ2
1 = G(t, x, α;α), α1(0, x) = φ(x)

on Ω1. By Theorem 4.1, we see that α ≤ α1 = Aα. Similarly, we can show that β ≥ Aβ.
To prove (ii), let η1, η2 ∈ C[Ω1,R] be such that α ≤ η1 ≤ η2 ≤ β and letAη1 = u1,Aη2 = u2,

where u1, u2 are the unique solutions of (5.3) corresponding to η = η1, η = η2, respectively.
Then, uΓ

1 + f(t, x)uΔ2
1 = G(t, x, u1;η1) ≤ G(t, x, u1;η2) and uΓ

2 + f(t, x)uΔ2
2 = G(t, x, u2;η2). Also,

u1(0, x) = u2(0, x). Hence by Theorem 4.1, we have u1 ≤ u2 on Ω1. This proves Aη1 ≤ Aη2.
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Consider the sequence {αn(t, x)} and note that αn(t, x) = yn[t, 0, φ(x(0, t, x));x(0, t, x)]
on Ω1, where yn = yn(t, 0, y0;x0) is the unique solution of (5.6) such that y0 = φ(x0). Thus
αn(t, x(t, 0, x0)) = yn(t, 0, φ(x0);x0) and α ≤ yn ≤ β. Since {yn} is monotone sequence, it is
easy to conclude that yn(t, 0, φ(x0);x0) converges uniformly and monotonically as n → ∞.
Suppose that limn→∞yn(t, 0, φ(x0);x0) = y(t, 0, φ(x0);x0) on 0 ≤ t ≤ T . Then it is clear that
yΔ(t, 0, φ(x0);x0) = g(t, x(t, 0, x0), y(t, 0, φ(x0));x0), y(0) = φ(x0). Consequently, we can now
define ρ(t, x) = y(t, 0, φ(x(0, t, x));x(0, t, x)) on Ω1. Similar arguments hold relative to the se-
quence {βn(t, x)} and one defines r(t, x) = ỹ(t, 0, φ(x(0, t, x));x(0, t, x)) on Ω1.

Finally, we show that α ≤ ρ ≤ u ≤ r ≤ β on Ω1, where u is any solution of (4.1) such
that α ≤ u ≤ β on Ω1. For this, it is enough to show that αn ≤ u ≤ βn on Ω1 and this we do by
induction. Suppose that αk ≤ u ≤ βk for some k on Ω1. Then we have

αΓ
k+1 + f(t, x)αΔ2

k+1 = G
(

t, x, αk+1;αk

)

, αk+1(0, x) = φ(x),

uΓ + f(t, x)uΔ2 = g(t, x, u) ≥ G
(

t, x, u;αk

)

, u(0, x) = φ(x).
(5.7)

By Theorem 4.1, we have αk+1 ≤ u onΩ1. We can show similarly that u ≤ βk+1. Hence it follows
that αk ≤ u ≤ βk on Ω1 for all n, which prove the claim.

Remark 5.2. We note that if (A4) holds, then ρ and r are actually solutions of (4.1).
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