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1. Introduction and preliminaries

In this paper, we consider the existence, uniqueness, and multiplicity of solutions for a second-
order discrete boundary value problem

p(n + 1)u(n + 1) + c(n)u(n) + p(n)u(n − 1) = λf
(
n, u(n)

)
, n ∈ Z(1, k),

u(0) + αu(1) = A, u(k + 1) + βu(k) = B,
(1.1)

where λ ∈ R is a parameter. Our technique is based on critical point theory, which is succes-
sfully used to deal with the existence of solutions for discrete problems (see [1–9]), especially
in [7, 9]. Similarly to [7], we denote by N, Z, and R the sets of all natural numbers, integers,
and real numbers, respectively. For a, b ∈ Z,Z(a) = {a, a+1, . . .},Z(a, b) = {a, a+1, . . . , b}when
a ≤ b. We assume that p(n) is nonzero and real-valued for each n ∈ Z(1, k), c(n) is real-valued
for each n ∈ Z(1, k), and f(n, u) is real-valued for each (n, u) ∈ Z(1, k)×R and continuous in u.
Let R

k be the real Euclidean space with dimension k. For any u, v ∈ R
k, ‖u‖ and (u, v), denote

the usual norm and inner product in R
k, respectively.
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Consider the functional defined on R
k,

J(u) =
1
2
(Mu,u) + (η, u) − λF(u), u =

(
u(1), u(2), . . . , u(k)

)T ∈ R
k, (1.2)

where (·)T is the transpose of a vector in R
k,

M =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

c(1) − αp(1) p(2) 0 · · · 0 0

p(2) c(2) p(3) · · · 0 0

0 p(3) c(3) · · · 0 0

· · · · · · · · ·
0 0 0 · · · c(k − 1) p(k)

0 0 0 · · · p(k) c(k) − βp(k + 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

,

η =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

p(1)A

0
...

0

p(k + 1)B

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

,

F(u) =
k∑

j=1

∫u(j)

0
f(j, s)ds.

(1.3)

It is easy to see that J(u) is Fréchet differentiable with Fréchet derivative

J ′(u) = Mu + η − λf(u), (1.4)

where f(u) = (f(1, u(1)), f(2, u(2)), . . . , f(k, u(k)))T , and there is a one-to-one correspondence
between the critical point of functional J and the solution of BVP (1.1). Furthermore, u =
(u(1), u(2), . . . , u(k))T is a critical point of J if and only if {u(t)}k+1t=0 = (u(0), u(1), . . . , u(k + 1))T

is a solution of (1.1), where u(0) = A − αu(1), u(k + 1) = B − βu(k) [7].
Recently, Yu and Guo [7] studied the BVP,

p(n + 1)u(n + 1) + c(n)u(n) + p(n)u(n − 1) = f
(
n, u(n)

)
,

u(0) + αu(1) = A, u(k + 1) + βu(k) = B.
(1.5)

They obtained some existence results for (1.5). One of the main results is as follows.

Theorem 1.1 (A0). Suppose that f(n, z) satisfies the following assumption:
(f3) there exist constants a1 > 0, a2 > 0, R > 0, and β > 2 such that

k∑

j=1

∫u(j)

0
f(j, s)ds ≥ a1‖u‖β − a2 for u =

(
u(1), u(2), . . . , u(k)

)T ∈ R
k, ‖u‖ ≥ R. (1.6)

Then BVP (1.5) has at least one solution.
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Equation (1.6) shows that F(u) =
∑k

j=1

∫u(j)
0 f(j, s)ds > 0 for ‖u‖ large enough. Since

F(u) may be negative, then the conclusion of Theorem 1.1 cannot be drawn, which motivates
us to consider (1.1). Note that if we take λ = −1 in (1.1), then F(u) < 0. Under the similar
condition to (1.6) when λ < 0, we not only obtain the existence of solutions for (1.1), but also
the multiplicity.

Let E be a Banach space with a direct sum decomposition E = X ⊕ Y. The functional I ∈
C1(E,R) has a local linking at 0 if for some ρ > 0, I(u) ≤ 0, u ∈ X, ‖u‖ ≤ ρ, and I(u) ≥ 0, u ∈ Y ,
‖u‖ ≤ ρ. The functional I ∈ C1 (E,R) is said to satisfy the (PS) condition if any sequence xn ⊂ X
for which I(xn) is bounded, and I ′(xn) → 0 (n → ∞) possesses a convergent subsequence in E.

TheoremA (see[10]). Let E be a Banach space. Suppose that I ∈ C1(E,R) satisfies the (PS) condition
and has a local linking at 0. Assume that I is bounded below and infE I < 0. Then I has at least two
nontrivial critical points.

Theorem B (see[6, 11]). LetX be a real Banach space, I ∈ C1(X,R) with I even, bounded from below,
and satisfying (PS) condition. Suppose I(0) = 0. There is a set K ⊂ X such that K is homeomorphic to
a unit sphere Sn−1 in R

n (n ∈ N) by an odd map, and supK I < 0. Then I possesses at least n distinct
pairs of critical points.

2. Main results

Following conditions will be useful to prove our main results.

(H1) There exist numbers α1 > 2 and a1 > 0 such that

F(u) ≥ a1‖u‖α1 for u =
(
u(1), u(2), . . . , u(k)

)T ∈ R
k. (2.1)

(H2) limu→0(F(u)/‖u‖2) = 0 for u = (u(1), u(2), . . . , u(k))T ∈ R
k.

Theorem 2.1. Suppose thatM is positive definite, f(j, 0) = 0, f(j, u)u < 0 for j ∈ Z(1, k) and u /= 0,
and that p(1)A = p(k + 1)B = 0. Then (1.1) has only trivial solution for λ > 0.

Proof. Note that

(
J ′(u), u

)
= (Mu,u) + (η, u) − λ

(
f(u), u

)

≥ λ1‖u‖2 − λ
k∑

j=1

f
(
j, u(j)

)
u(j)

≥ λ1‖u‖2 > 0

(2.2)

for u /= 0, where λ1 is the least eigenvalue of M, which means that the Nahari manifold is
empty. Thus (1.1) has only trivial solution.

Theorem 2.2. Suppose that (H1) and (H2) hold, p(1)A = p(k + 1)B = 0 and M is neither positive
definite nor negative definite. Then (1.1) has at least two nontrivial solutions for λ < 0.

Proof. Wewill prove that the functional J(u) satisfies all conditions of Theorem A by two steps.
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Step 1. J is bounded from below and satisfies (PS) condition. Let λ−l, λ−l+1, . . . , λ−1, λ1, λ2, . . . , λm
denote all the eigenvalues of M, where λ−l ≤ λ−l+1 ≤ · · · ≤ λ−1 < 0 < λ1 ≤ λ2 ≤ · · · ≤ λm and
l + m = k. For any j ∈ Z(−l,−1)⋃Z(1, m), set ξj to be an eigenvector of M corresponding to
the eigenvalue λj , j = −l,−l + 1, . . . ,−1, 1, 2, . . . , m, such that

(
ξi, ξj

)
=

{
0 for i /= j,

1 for i = j.
(2.3)

Let X and Y be subspaces of R
k defined by

X =

{

x ∈ R
k : x =

m∑

j=1

xjξj , xj ∈ R, j ∈ Z(1, m)

}

,

Y =

{

y ∈ R
k : y =

−1∑

j=−l
yjξj , yj ∈ R, j ∈ Z(−l,−1)

}

,

(2.4)

respectively. Then R
k has the direct sum decomposition R

k = X ⊕ Y . In view of (H1), we have

J(u) ≥ 1
2
λ−l‖u‖2 − λa1‖u‖α1

≥ −1
2
∣∣λ−l
∣∣(1 − 2/α1

)(∣∣λ−l
∣∣/
( − α1λa1

))2/(α1−2).
(2.5)

The second inequality follows from the elementary inequality −ax2 + bxq ≥ −a(1 − 2/q)((2a)/
(qb))2/(q−2), where a > 0, b > 0, x > 0, and q > 2, which can be easily obtained by the fact that
the function h(x) = −ax2 + bxq (a, b > 0, x ≥ 0) attains its minimum at ((2a)/(qb))1/(q−2). Thus
J(u) is bounded from below.

Equation (2.5) shows that J(u) is coercive, so we can obtain that any (PS) sequence must
be bounded in R

k and, by a standard argument, has a convergent subsequence.
Step 2. J has a local linking at 0. Indeed, by (H2) for given λ < 0 and sufficiently small ε > 0
such that −λε + (1/2)λ−1 < 0, there exists r > 0 small enough such that for ‖u‖ < r,

F(u) < ε‖u‖2 (2.6)

holds. Then for y ∈ Y such that 0 < ‖y‖ < r, we have

J(y) ≤ 1
2
λ−1‖y‖2 − λε‖y‖2

=
(
1
2
λ−1 − λε

)
‖y‖2 < 0.

(2.7)

On the other hand, for x ∈ X with ‖x‖ < r, we have

J(x) ≥ 1
2
λ1‖x‖2 − λa1‖x‖α1 ≥ 0. (2.8)

The application of Theorem A finishes our proof.
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Remark 2.3. By the above proof, we see that replacing (H1) with (f3), and by adding the
condition that F(u) ≥ 0 for u ∈ R

k, Theorem 2.2 still holds, where (f3) is the same as in
Theorem 1.1. Indeed, we have

J(u) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
λ−lR2 for ‖u‖ ≤ R,

−1
2
∣∣λ−l
∣∣(1 − 2/β)

(∣∣λ−l
∣∣/
( − βλa1

))2/(β−2) + λa2 for ‖u‖ > R,

(2.9)

which means that J(u) is bounded from below. The fact that J(u) has local linking at 0 may be
verified similarly.

If we further impose some condition on f(u) and matrix M, then the following result
can be derived.

Theorem 2.4. Suppose (H1) and (H2) hold, p(1)A = p(k+1)B = 0, f(u) is odd in u, that is, f(j,−u) =
−f(j, u) for (j, u) ∈ Z(1, k) × R, and that M is neither positive definite nor negative definite and has l
distinct negative eigenvalues. Then (1.1) has at least l distinct pairs of solutions for λ < 0.

Proof. By the proof of Theorem 2.2, J(u) is bounded from below and satisfies (PS) condition. In
addition, J(0) = 0, J(u) is even. Consider the subset K of R

k:

K =

{

y ∈ Y : y =
−1∑

j=−l
yjξj ,

−1∑

j=−l
y2
j = ρ2, yj ∈ R, j ∈ Z(−l,−1)

}

, (2.10)

where ρ is a positive number small enough to be determined later, Y is defined by Theorem 2.2
similarly. Define the mapping T : K → Sl−1 by

T(y) = T

(

y =
−1∑

j=−l
yjξj

)

=
(
− y−l

ρ
,−y−l+1

ρ
, . . . ,−y−1

ρ

)
, (2.11)

where Sl−1 is a unit sphere in R
l. Then T is a homeomorphism between K and Sl−1, and K is

a subset of the finite dimensional space Y equipped with the Euclidian norm. We can choose
ρ > 0 and ε > 0 small enough such that (1/2)λ−1 − λε < 0 for y ∈ K, and then we have

J(y) ≤ 1
2
λ−1‖y‖2 − λF(u) ≤ 1

2
λ−1ρ2 − λερ2 ≤

(
1
2
λ−1 − λε

)
ρ2. (2.12)

For above ρ > 0, we have

sup
K

J < 0, (2.13)

which together with Theorem B concludes the proof.

Remark 2.5. The condition that J(u) is bounded from below is crucial to prove both Theorems
2.2 and 2.4. As in Remark 2.3, if we replace (H1) by (f3) and the condition that F(u) ≥ 0 for
u ∈ R

k, then Theorem 2.4 is also true.
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