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We study the asymptotic behavior of positive solutions to the difference equation xn = max{A/xαn-1,
B/x

β

n−2}, n = 0, 1, . . . , where 0 < α, β < 1, A, B > 0. We prove that every positive solution to this
equation converges to x∗ = max{A1/(α+1), B1/(β+1)}.
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1. Introduction

Recently, there has been a considerable interest in studying, the so-called, max-type difference
equations, see for example, [1–21] and the references cited therein. The max-type operators
arise naturally in certain models in automatic control theory (see [9, 11]). The investigation of
the difference equation

xn = max
{

A1

xn−1
,
A2

xn−2
, . . . ,

Ap

xn−p

}
, n = 0, 1, . . . , (1.1)

where p ∈ N, Ai, i = 1, . . . , p, are real numbers such that at least one of them is different from
zero and the initial values x−1, . . . , x−p are different from zero, was proposed in [6]. Some results
about (1.1) and its generalizations can be found in [1, 3–5, 7, 8, 10, 12, 17–19] (see also the
references therein). The study of max-type equations whose some terms contain nonconstant
numerators was initiated by Stević, see for example, [2, 14–16]. For some closely related papers,
see also [20, 21].

Motivated by the aforementioned papers and by computer simulations, in this paper we
study the asymptotic behavior of positive solutions to the difference equation

xn = max

{
A

xα
n−1

,
B

x
β

n−2

}
, n = 0, 1, . . . , (1.2)
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where 0 < α, β < 1, A, B > 0. We prove that every positive solution of this equation converges
to x∗ = max{A1/(α+1), B1/(β+1)}.

2. Main results

In this section, we will prove the following result concerning (1.2).

Theorem 2.1. Let (xn) be a positive solution to (1.2).
Then

xn −→ max
{
A1/(α+1), B1/(β+1)} as n −→ ∞. (2.1)

In order to establish Theorem 2.1, we need the following lemma and its corollary which
can be found in [13].

Lemma 2.2. Let (an)n∈N be a sequence of positive numbers which satisfies the inequality

an+k ≤ q max
{
an+k−1, an+k−2, . . . , an

}
, for n ∈ N, (2.2)

where q > 0 and k ∈ N are fixed. Then there exist L ∈ R+ such that

akm+r ≤ Lqm ∀m ∈ N0, 1 ≤ r ≤ k. (2.3)

Corollary 2.3. Let (an)n∈N be a sequence of positive numbers as in Lemma 2.2. Then there existsM > 0
such that

an ≤ M
(

k
√
q
)n
, n ∈ N. (2.4)

Now, we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. We proceed by distinguishing two possible cases.

Case 1 (A1/(α+1) ≥ B1/(β+1)). We prove xn → A1/(α+1) as n → ∞.
Set xn = ynA

1/(α+1), then (1.2) becomes

yn = max

{
1

yα
n−1

,
C

y
β

n−2

}
, n = 0, 1, . . . , (2.5)

where C = B/A(α+1)/(β+1). Since A1/(α+1) ≥ B1/(β+1), we have C ≤ 1. To prove xn → A1/(α+1) as
n → ∞, it suffices to prove yn → 1 as n → ∞.

We proceed by two cases: C = 1 and 0 < C < 1.

Case C = 1. In this case (2.5) is reduced to

yn = max

{
1

yα
n−1

,
1

y
β

n−2

}
, n = 0, 1, . . . , (2.6)
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where 0 < α, β < 1. Choose a number D so that 0 < D < 1. Let yn = Dzn, n ≥ −2. Then, (zn) is a
solution to the difference equation

zn = min
{ − αzn−1,−βzn−2

}
, n = 0, 1, . . . . (2.7)

To prove yn → 1 as n → ∞, it suffices to prove zn → 0 as n → ∞.
It can be easily proved that there is a positive integer N such that for all n ≥ 0,

z3n+N ≥ 0, z3n+N+1 ≤ 0, z3n+N+2 ≤ 0. (2.8)

By simple computation, we get that, for all n ≥ 0,

z3n+N+2 = min
{ − αz3n+N+1,−βz3n+N

}
= −βz3n+N, (2.9)

0 ≤ z3n+N+3 = min
{ − αz3n+N+2,−βz3n+N+1

}
= min

{
αβz3n+N,−βz3n+N+1

} ≤ αβz3n+N, (2.10)

z3n+N+4 = min
{ − αz3n+N+3,−βz3n+N+2

}
= −αz3n+N+3. (2.11)

Since 0 < αβ < 1, (2.10) implies z3n+N → 0 as n → ∞. From (2.9) and (2.11), it follows
that z3n+N+1 → 0, z3n+N+2 → 0 as n → ∞. This implies zn → 0.
Case 0 < C < 1. Let yn = Czn , then (zn) is a solution to the difference equation

zn = min
{ − αzn−1, 1 − βzn−2

}
, n = 0, 1, . . . . (2.12)

To prove yn → 1 as n → ∞, it suffices to prove zn → 0 as n → ∞. If z−1 = 0, z−2 = 0, then
we have zn = 0 for all n ≥ −2. Next, we assume either z−1 /= 0 or z−2 /= 0. Then the following four
claims are obviously true.

Claim 1. If zn−1 ≥ 0 and zn−2 ≥ 0 for some n, then

∣∣zn∣∣ ≤ max
{
α
∣∣zn−1∣∣, β∣∣zn−2∣∣ − 1

}
. (2.13)

Claim 2. If zn−1 ≤ 0 and zn−2 ≤ 0 for some n, then |zn| ≤ α|zn−1|.

Claim 3. If zn−1 ≥ 0 and zn−2 ≤ 0 for some n, then |zn| = α|zn−1|.

Claim 4. If zn−1 ≤ 0 and zn−2 ≥ 0 for some n, then

∣∣zn∣∣ ≤ max
{
α
∣∣zn−1∣∣, β∣∣zn−2∣∣ − 1

}
. (2.14)

In general, we have

∣∣zn∣∣ ≤ max
{
α
∣∣zn−1∣∣, β∣∣zn−2∣∣ − 1

} ≤ max
{
α
∣∣zn−1∣∣, β∣∣zn−2∣∣} ≤ γ max

{∣∣zn−1∣∣, ∣∣zn−2∣∣}, (2.15)

where 0 < γ = max{α, β} < 1. From (2.15) and Corollary 2.3, there exists M > 0 such that

∣∣zn∣∣ ≤ M
(√

γ
)n
. (2.16)

This implies zn → 0 as n → ∞.
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Case 2 (A1/(α+1) < B1/(β+1)). We prove xn → B1/(β+1) as n → ∞.

Similar to the proof of Case 1, we set xn = ynB
1/(β+1), then (1.2) becomes

yn = max

{
C

yα
n−1

,
1

y
β

n−2

}
, n = 0, 1, . . . , (2.17)

where C = A/B(α+1)/(β+1) < 1. To prove xn → B1/(β+1) as n → ∞, it suffices to prove yn → 1 as
n → ∞. Let yn = Czn , then (zn) is a solution to the difference equation

zn = min
{
1 − αzn−1,−βzn−2

}
, n = 0, 1, . . . . (2.18)

To prove yn → 1 as n → ∞, it suffices to prove zn → 0 as n → ∞. If z−1 = 0, z−2 = 0, then
we have zn = 0 for all n ≥ −2. Next, we assume either z−1 /= 0 or z−2 /= 0, then the following four
claims are obviously true.

Claim 1. If zn−1 ≥ 0 and zn−2 ≥ 0 for some n, then

∣∣zn∣∣ ≤ max
{
α
∣∣zn−1∣∣ − 1, β

∣∣zn−2∣∣}. (2.19)

Claim 2. If zn−1 ≤ 0 and zn−2 ≤ 0 for some n, then |zn| ≤ β|zn−2|.

Claim 3. If zn−1 ≥ 0 and zn−2 ≤ 0 for some n, then

∣∣zn∣∣ ≤ max
{
α
∣∣zn−1∣∣ − 1, β

∣∣zn−2∣∣}. (2.20)

Claim 4. If zn−1 ≤ 0 and zn−2 ≥ 0 for some n, then |zn| = β|zn−2|.

In general, we have

∣∣zn∣∣ ≤ max
{
α
∣∣zn−1∣∣ − 1, β

∣∣zn−2∣∣} ≤ max
{
α
∣∣zn−1∣∣, β∣∣zn−2∣∣} ≤ γ max

{∣∣zn−1∣∣, ∣∣zn−2∣∣}, (2.21)

where 0 < γ = max{α, β} < 1. Then the rest of the proof is similar to the proof of Case 1 and
will be omitted. The proof is complete.

Theorem 2.4. Every solution to the difference equation xn = A/xα
n−m, 0 < α < 1, A > 0 converges to

x∗ = A1/(α+1).

Proof. Let xn = ynA
1/(α+1), then the equation becomes

yn =
1

yα
n−m

= yα2

n−2m = yα4

n−4m = · · · = yα2	n/2m

n−2	n/2m
m. (2.22)

From this and the condition 0 < α < 1, it follows that yn → 1 as n → ∞ which implies
xn → A1/(α+1) as n → ∞.
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3. Conclusions and remarks

This paper examines the asymptotic behavior of positive solutions to the difference equation
(1.2) with 0 < α, β < 1, A, B > 0. The method used in this work may provide insight into the
asymptotic behavior of positive solutions to the generic difference equation

xn = max

{
A1

xα1
n−1

,
A2

xα2
n−2

, . . . ,
Ap

x
αp

n−p

}
, n = 0, 1, . . . , (3.1)

where 0 < αi < 1, Ai > 0, i = 1, . . . , p. We close this work by proposing the following conjecture.

Conjecture 3.1. Assume that (xn) is a positive solution to (3.1). Then xn → max1≤i≤p{A1/(αi+1)
i } as

n → ∞.
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