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This paper investigates the asymptotic stability of switched linear time-varying systems with
constant point delays under not very stringent conditions on the matrix functions of parameters.
Such conditions are their boundedness, the existence of bounded time derivatives almost
everywhere, and small amplitudes of the appearing Dirac impulses where such derivatives do
not exist. It is also assumed that the system matrix for zero delay is stable with some prescribed
stability abscissa for all time in order to obtain sufficiency-type conditions of asymptotic stability
dependent on the delay sizes. Alternatively, it is assumed that the auxiliary system matrix defined
for all the delayed system matrices being zero is stable with prescribed stability abscissa for
all time to obtain results for global asymptotic stability independent of the delays. A particular
subset of the switching instants is the so-called set of reset instants where switching leads to the
parameterization to reset to a value within a prescribed set.
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1. Introduction

Time-delay systems are receiving important attention in the last years. The reason is that they
offer a very significant modeling tool for dynamic systems since a wide variety of physical
systems possess delays either in the state (internal delays) or in the input or output (external
delays). Examples of time-delay systems are war/peace models, biological systems, like,
for instance, the sunflower equation, Minorsky’s effect in tank ships, transmission systems,
teleoperated systems, some kinds of neural networks, and so forth (see, e.g., [1–9]). Time-
delay models are useful for modeling both linear systems (see, e.g., [1–4, 10]) and certain
nonlinear physical systems, (see, e.g., [4, 7–9, 11]). A subject of major interest in time-delay
systems, as it is in other areas of control theory, is the investigation of the stability as well as



2 Discrete Dynamics in Nature and Society

the closed-loop stabilization of unstable systems, [2–4, 6–13] either with delay-free controllers
or by using delayed controllers. Dynamic systems subject to internal delays are infinite
dimensional by nature so that they have infinitely many characteristic zeros. Therefore, the
differential equations describing their dynamics are functional rather than ordinary. Recent
research on time delay systems is devoted to numerical stability tests, to stochastic time-
delay systems, diffusive time-delayed systems, medical and biological applications [14–
17], and characterization of minimal state-space realizations [18]. Another research field
of recent growing interest is the investigation in switched systems including their stability
and stabilization properties. A general insight in this problem is given in [19–21]. Switched
systems consist of a number of different parameterizations (or distinct active systems) subject
to a certain switching rule which chooses one of them being active during a certain time. The
problem is relevant in applications since the corresponding models are useful to describe
changing operating points or to synthesize different controllers which can adjust to operate
on a given plant according to situations of changing parameters, dynamics, and so forth.
Specific problems related to switched systems are the following.

(a) The nominal order of the dynamics changes according to the frequency content of
the control signal since fast modes are excited with fast input while they are not excited under
slow controls. This can imply the need to use different controllers through time.

(b) The system parameters are changing so that the operation points change. Thus, a
switched model which adjusts to several operation points may be useful [19–21].

(c) The adaptation transient has a bad performance due to a poor estimates
initialization due to very imprecise knowledge of the true parameters. In this case,
a multiparameterized adaptive controller, whose parameterization varies through time
governed by a parallel multiestimation scheme, can improve the whole system performance.
For this purpose, the parallel multiestimation scheme selects trough time, via a judicious
supervision rule, the particular estimator associated with either the best identification
objective, or the best tracking objective or the best mixed identification and tracking
objectives. Such strategies can improve the switched system performance compared to the
use of a single estimator/controller pair [5, 22].

This paper is devoted to the investigation of the global asymptotic stability properties
of switched systems subject to internal constant point delays, while the matrices defining
the delay-free and delayed dynamics are allowed to be time varying while fulfilling some
standard additional regularity conditions like boundedness, eventual time differentiability,
and being subject to sufficiently slow growing rates [23]. The various obtained asymptotic
stability results are either dependent on or independent of the delay size and they are
obtained by proving the existence of “ad-hoc” Krasovsky-Lyapunov functionals. It is
assumed that either the current system matrix or that describing the system under null
delay is stability matrices for results independent of and dependent on the delays sizes,
respectively. This idea relies on the well-known fact that both of those matrices have
to be stable for any linear time-invariant configuration in order that the corresponding
time-delay system may be asymptotically stable, [1, 4, 10], provided that a minimum
residence time at each configuration is respected before the next switching to another
configuration. The formalism is derived by assuming two classes of mutually excluding
switching instants. The so-called reset-free switching instants are defined as those where
some parametrical function is subject to a finite jump (equivalently, a Dirac impulse at its
time derivative) which is not constrained to a finite set. The so-called reset switching instants
are defined as those registering bounded jumps to values within some prescribed set of
resetting parameterizations. The distinction between reset-free and reset switching instants
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is irrelevant for stability analysis since in both cases at least one parameter is subject to a
bounded jump, or equivalently, to a Dirac impulse in its time derivative. Impulsive systems
are of growing interest in a number of applications related, for instance, to very large forces
applied during very small intervals of times, population dynamics, chemostat models, pest,
and epidemic models, and so forth (see, e.g., [24–28] and references therein). However, it
may be relevant in practical situations to distinguish a switch to prescribed time-invariant
parameterizations (see the above situations (a)–(c)) from an undriven switching action. The
paper is organized as follows. Section 2 is devoted to obtain asymptotic stability results
dependent on the delay sizes. Section 3 gives some extension for global asymptotic stability
independent of the delays. Numerical examples are presented in Section 4, where switching
through time in between distinct parameterizations is discussed. Finally, conclusions end the
paper. Some mathematical derivations concerned with the results of Sections 2 and 3 are
derived in Appendix A.

2. Asymptotic stability dependent on the delays

Consider the nth order linear time-varying dynamic system with q internal (in general,
incommensurate) known point delays:

ẋ(t) =
q∑

j=0

Aj(t)x
(
t − hj

)
(2.1)

for any given bounded piecewise absolutely continuous function ϕ : [−h, 0] → Rn of initial
conditions, where h := max1≤j≤q(hj) with h0 = 0, for some delays hj ∈ [0, ĥj], of finite or
infinite maximum allowable delays sizes ĥj ∈ R0+, for all j ∈ q := {1, 2, . . . , q}, where R0+

is the nonnegative real axis R0+ := R+ ∪ {0} = {0 ≤ z ∈ R}; and Aj : R0+ → Rn×n, for all
j ∈ q ∪ {0}. The following assumptions are made.

2.1. Assumptions on the time-delay dynamic system (2.1)

One or more of the following assumptions are used to derive the various stability results
obtained in this paper.

Assumption 2.1. All the entries of the matrix functions Aj : R0+ → Rn×n are piecewise
continuous and uniformly bounded for all j ∈ q ∪ {0}.

Assumption 2.2. All the eigenvalues λi(
∑q

j=0Aj(t)) of the matrix function
∑q

j=0Aj(t) satisfy

Reλi(
∑q

j=0Aj(t)) ≤ −ρ0 < 0 for all t ∈ R0+, for all i ∈ σ (σ ≤ n) for some ρ0 ∈ R+ := {0 < z ∈ R},
that is,

∑q

j=0Aj(t) is a stability matrix for all t ∈ R0+.

Assumptions 2.3. The matrix functions Aj : R0+ → Rn×n are almost everywhere time
differentiable with essentially bounded time derivative for all j ∈ q∪ {0} possessing eventual
isolated bounded discontinuities, then ess supt∈R0+

(‖
∑q

j=0Ȧj(t)‖) ≤ γ� < ∞ with γ� being a
�-norm dependent nonnegative real constant and, furthermore,

∫ t+T

t

∥∥Ȧj(τ)
∥∥dτ ≤ μjT + αj ≤ μT + α ∀j ∈ q ∪ {0} (2.2)

for some αj , μj , α, μ ∈ R+ for all t ∈ R0+, and some fixed T ∈ R0+ independent of t.
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At time instants t, where the time-derivative of some entry of Aj(t) does not exist for
any j ∈ q∪{0}, the time derivative is defined in a distributional Dirac sense as Ȧj(t) = Γ(t)δ(0)
what equivalently means the presence of a discontinuity at t in Aj(t) defined as

Aj

(
t+
)
= Aj

(
t−
)
+ lim
ε→ 0+

∫ ε

−ε
Γj(τ)δ(t − τ)dτ = Aj(t) + Γj(t). (2.3)

Assumption 2.1 is relevant for existence and uniqueness of the solution of (2.1). The
differential system (2.1) has a unique state-trajectory solution for t ∈ R+ for any given
piecewise absolutely continuous function ϕ : [−h, 0] → Rn of initial conditions. This follows
from Picard-Lindelöff existence and uniqueness theorem. Assumption 2.2 establishes that∑q

j=0Aj(t) is a stability matrix for all time what is known to be a necessary condition for
the global asymptotic stability of the system (2.1) for a set of prescribed maximum delays
in the time-invariant case. It is well known that even if Aj ≡ 0 for all j ∈ q, then the
resulting linear time-varying delay-free system cannot be proved to be stable without some
additional assumptions, like for instance, Assumptions 2.3. The latest assumption is related
to the smallness of the time-derivative of the delay-free system matrix everywhere it exists
or generating sufficiently small bounded discontinuities in

∑q

j=0Aj(t) at times, where it is
impulsive. An alternative assumption to Assumptions 2.3 which avoids the assumption of
almost everywhere existence of a bounded Ȧj(t), for all j ∈ q ∪ {0} (see second part of
Assumption 2.1) might be stated in terms of sufficiently smallness of ‖ΔAj(t)‖ for ΔAj(t) :=
Aj(t) − A∗j for all t ∈ R0+ for all j ∈ q ∪ {0} for some constant stability matrix

∑q

j=0A
∗
j whose

eigenvalues satisfy Reλi(
∑q

j=0A
∗
j ) ≤ −ρ0 < 0. Such an alternative assumption guarantees

also the global existence and uniqueness of the state-trajectory solution of (2.1) and it allows
obtaining very close stability results to those being obtainable from the given assumptions.
For global asymptotic stability dependent of the delay sizes on the first delay interval, the
stability of the values taken by the matrix function (

∑q

j=0Aj(t)) is required within some
real interval of infinite measure. Such an interval possesses a connected component being
of infinite measure which is a necessary condition for global asymptotic stability for zero
delays (see Theorem 2.12(i) ).

2.2. Switching function, switching sequence, and basic assumptions on
the switching matrix function

Assumption 2.1 admits bounded discontinuities in the entries of Aj(t) for j ∈ q∪{0}. At such
times Aj(t+) denote right values of the matrix function while Aj(t−) is simply denoted by
Aj(t). A set of p resetting systems of (2.1) is defined by the linear time-invariant systems:

żj(t) =
( q∑

i=0

Aij

)
zj
(
t − hj

)
(2.4)

for some given AjiRn×n for all j ∈ p for all i ∈ q ∪ {0} for some given p ∈ N. Those
parameterizations are used to reset the system (2.1) at certain reset instants defined later
on. Assumption 2.2 extends in a natural fashion to include the resetting systems as follows.
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Assumption 2.4. All the eigenvalues λk(
∑q

i=0Aij) satisfy Reλk(
∑q

i=0Aij) ≤ −ρ0 < 0 for all t ∈ R0+

for all k ∈ σj0 (σj0 ≤ n) for all j ∈ p; that is,
∑q

i=0Aij are constant stability matrices with
prescribed stability abscissa −ρ0 < 0 for all j ∈ p.

The following definitions are then used.

Definition 2.5. The switching matrix function is a mapping σ : R0+ → {(Aj(t+) −Aj(t)), ∀j ∈
q ∪ {0}} ⊂ Rn×(q+1)n from the nonnegative real axis to the set of real n × (q + 1)n matrices.

The trivial switching matrix function is that being identically zero so that no switch
occurs. If some switch occurs then the switching matrix function is nonzero. The switching
matrix function is colloquially referred to in the following as the switching law.

Definition 2.6 (switching instant). t ∈ R0+ is a switching instant if Aj(t+)/=Aj(t) for some
j ∈ q ∪ {0}.

The set of switching instants generated by the switching law σ is denoted by ST(σ).
Two kinds of switching instants, respectively, reset instants and reset-free switching instants
defined in Definitions 2.7 and 2.8 are considered.

Definition 2.7 (reset instant). t ∈ R0+ is a reset instant generated by the switching law σ if
t ∈ ST(σ) and Ai(t+) = Aij for some i ∈ q∪{0} and some j ∈ p, provided that Ai(t) = Aik /=Aij

for some k(/= j) ∈ p.

The set of reset instants generated by the switching law σ is denoted by STr(σ).
Note that STr(σ) ⊂ ST(σ) from Definitions 2.6 and 2.7. Note also that the whole system
parameterization is driven to some of the prefixed resetting systems (2.4) when a reset instant
happens. Note that at reset instants, Ȧi(t) = (Aij −Ai(t))δ(0) for some i ∈ q ∪ {0}, j ∈ p.

Definition 2.8 (reset-free switching instant). t ∈ R0+ is a switching reset-free instant generated
by the switching law σ if t ∈ ST(σ) and Aij /=Ai(t+)/=Ai(t) for some i ∈ q ∪ {0}, for all j ∈ p.

The set of reset-free instants is denoted by t ∈ STrf(σ). Note that at reset-free
switching instants some of the switched system parameters suffer an undriven bounded
discontinuity. If all the parameters jump to a parameterization (2.4) at the same time, then
the corresponding instant is considered a reset time instant. Note that STrf(σ) ⊂ ST(σ),
ST(σ) = STr(σ)∪STrf(σ), and STr(σ)∩STrf(σ) = ∅ from Definitions 2.6–2.8, that is, the whole
set of switching instants is the disjoint union of the sets of reset and reset-free switching
instants.

Definition 2.9. The partial switching sequence ST(σ, t), the partial switching sequence
STr(σ, t), and the reset-free partial switching sequence STrf(σ, t), generated by the switching
law σ : R0+ → {(Aj(t) − Aj(t−)), ∀j ∈ q ∪ {0}} ⊂ Rn×(q+1)n up till any time t ∈ R0+, are
defined, respectively, by ST(σ, t) := {ti ∈ ST(σ) : ti < t}, STr(σ, t) := {ti ∈ STr(σ) : ti < t}, and
STrf(σ, t) := {ti ∈ STrf(σ) : ti < t}.

Remark 2.10. An interpretation of Assumptions 2.3 is that the following conditions hold for
any given �-matrix norm for some nonnegative norm dependent real constants μj , αj , μ, and
α for all j ∈ q ∪ {0}:
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ess sup
t∈R+

0

∥∥Ȧj(t)
∥∥ ≤ μj ≤ max

(
ess sup

t∈R+
0

∥∥Ȧj(t)
∥∥ : j ∈ q ∪ {0}

)
≤ μ,

∥∥∥∥∥
∑

τ∈ ST(σ)∩[t,t+T)
Ȧj(τ)

∥∥∥∥∥ ≤
∑

τ∈ST(σ)∩[t,t+T)
‖X(τ)δ(0)‖ ≤ αj

≤ max

(∥∥∥∥∥
∑

τ∈ST(σ)∩[t,t+T)
Ȧj(τ)

∥∥∥∥∥ : j ∈ q ∪ {0}
)
≤ α,

(2.5)

where δ(0) is a Dirac impulse at t = 0. Note that Assumptions 2.3 imply |‖
∑q

j=0Aj(t + τ)‖ −
‖
∑q

j=0Aj(t)‖| ≤ μT + ν(t + τ) for all τ ∈ [0, T], with the function ν : R0+ → R0+ satisfying
ν(t + τ) ≤ α0j + α1j(t + τ) ≤ α with α1j(t + τ) = 0 if Ȧj(t + τ) exists with ‖Ȧj(t + τ)‖ ≤ αj or
αj − α0j ≥ α1j(t + τ) ≥ ‖Δj(t + τ)‖ if Ȧj(t + τ) = Δj(t + τ)δ(0), that is, at least one of its entries
is impulsive.

Note that Assumption 2.1 implies that switching does not happen arbitrarily fast neither to
reset parameters nor to reset-free ones . The subsequent result is direct.

Assertions 2.11. The following properties are true irrespective of the switching function:
(i) t /∈ ST(σ)⇔ σ(t+) = σ(t) = 0n×(q+1)n (i.e., a zero n × (q + 1)n-matrix);
(ii) t ∈ ST(σ)⇔ σ(t+) − σ(t)/= 0n×(q+1)n;
(iii) t /∈ ST(σ)⇔ ST(σ, t+) = ST(σ, t);
(iv) t ∈ ST(σ)⇔ ST(σ, t+)/= ST(σ, t).

Proof. (i) σ(t+) = σ(t) = 0n×(q+1)n ⇒ t /∈ STr(σ) ∧ t /∈ STrf(σ) ⇔ t /∈ ST(σ), t /∈ ST ⇔ σ ( t) = 0
(since switching is not arbitrarily fast),

∧
(
σ
(
t+
)
− σ(t) = 0n×(q+1)n

)
⇐⇒ σ

(
t+
)
= σ(t) = 0n×(q+1)n. (2.6)

Property (i) has been proven. Property (ii) is the contrapositive logic proposition to Property
(i), and thus equivalent, since switching is not arbitrarily fast.

Properties (iii)-(iv) are also contrapositive logic propositions, then equivalent since

ST(σ, t) :=
{
ti ∈ ST(σ) : ti < t

}
⇐⇒ ST

(
σ, t+
)

:=
{
ti ∈ ST(σ) : ti < t+

}
=
{
ti ∈ ST(σ) : ti ≤ t

}

⇐⇒ ST(σ, t+)

⎧
⎨

⎩

= ST(σ, t) if t/∈ ST(σ),

/= ST(σ, t) if t ∈ ST(σ)
(2.7)

since switching cannot happen arbitrarily fast. Properties (iii)-(iv) have been proven.
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The subsequent global stability result is proven in Appendix A by guaranteeing
that the Krasovsky-Lyapunov functional candidate below is indeed a Krasovsky-Lyapunov
functional:

V (t, xt) = xT (t)P(t)x(t) +
q∑

i=1

q∑

j=0

∫−hj

−hi−hj

∫ t

t+θ
xT (τ)Sijx(τ)dτ dθ. (2.8)

Theorem 2.12. The following properties hold.

(i) Assume the following.

(i.a) The matrix functions Aj(t), for all j ∈ q ∪ {0} are subject to Assumption 2.1.
(i.b) The switching law σ is such that

Q(t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1 ĥ1P(t)A1(t)M(t) · · · ĥqP(t)Aq(t)M(t)

ĥ1M
T (t)AT

1 (t)P(t) −R1 0 · · · 0
... 0

...

. . .
...

ĥqM
T (t)AT

q (t)P(t) 0 · · · −Rq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

∀t ∈ R0+,

(2.9)

whereH1 denotes (
∑q

j=0A
T
j (t))P(t) + P(t)(

∑q

j=0Aj(t)) + Ṗ(t) +
∑q

i=1

∑q

j=0ĥiSij , for

some time-differentiable real symmetric positive definite matrix function P : R0+ →
Rn×n and some real symmetric positive definite matrices Sij ∈ Rn×n (∀i ∈ q, ∀j ∈
q ∪ {0}), where

M(t) :=
[
A0(t), . . . , Aq(t)

]
∈ Rn×(q+1)n,

Ri := diag
(
Si0, Si1, . . . , Siq

)
∈ R(q+1)n×(q+1)n; ∀i ∈ q, ∀t ∈ R0+.

(2.10)

Thus, the system (2.1) is globally asymptotically Lyapunov’s stable for all delays hi ∈
[0, ĥi], for all i ∈ q. A necessary condition is (

∑q

j=0A
T
j (t))P(t)+P(t)(

∑q

j=0Aj(t))+

Ṗ(t) < 0, for all t ∈ R0+ what implies that (
∑q

j =0Aj(t)) is a stability matrix of
prescribed stability abscissa on R0+ except eventually on a real subinterval of finite
measure of R0+.

(ii) Assume the following

(ii.a) Ai(t) = Aij , for all i ∈ q ∪ {0}, for all t ∈ R0+ for some j ∈ p (eventually being
dependent on t) satisfying Assumption 2.4.

(ii.b) The switching law σ is such that STrf(σ) = ∅ (i.e., it generates reset switching
instants only) with STr(σ) being arbitrary, namely, the set of reset times is either
any arbitrary strictly increasing sequence of nonnegative real values (i.e., the resetting
switching never ends) or any finite set of strictly ordered nonnegative real numbers
with a finite maximal (i.e., the resetting switching process ends in finite time).
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(ii.c)

Q∗i :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
q∑

j=0

AT
ji

)
P ∗+P ∗

(
q∑

j=0

Aji

)
+

q∑

i=1

q∑

j=0

ĥiS
∗
ij ĥ1P

∗A1iM
∗
1 · · · ĥqP

∗AqiM
∗
q

ĥ1M
∗
1
TAT

1iP
∗ −R∗1 0 · · · 0

... 0
...

. . .
...

ĥqM
∗
q
TAT

qiP
∗ 0 · · · −R∗q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0;

∀i ∈ p
(2.11)

for some Rn×n � P ∗ = P ∗T > 0, Rn×n � S∗ij = S
∗
ij
T > 0 (∀i ∈ q, ∀j ∈ q ∪ {0}), where

Mi :=
[
A0i, . . . , Aqi

]
∈ Rn×(q+1)n,

R∗i := diag
(
S∗i0, S

∗
i1, . . . ,

)
∈ R(q+1)n×(q+1)n; ∀i ∈ q

(2.12)

Thus, the switched system (2.1), obtained from switches among resetting systems
(2.4), is globally asymptotically Lyapunov’s stable and also globally exponentially
stable for all delays hi ∈ [0, ĥi], for all i ∈ q. If (2.9) is replaced with Q∗i ≤
−2εI(q+1)n < 0, for all i ∈ q, and some ε ∈ R+ then the state trajectory decays
exponentially with rate (−ε) < 0.

(iii) There is a sufficiently small ĥ := maxi∈qĥi such that Property (i) holds for any hi ∈ [0, ĥi],
for all i ∈ q provided that all the delay-free resetting systems (2.4) żj(t) = (

∑q

i=0Aij)zj(t)
fulfil Assumption 2.4, that is, they are globally exponentially stable.

It is of interest to discuss particular cases easy to test, guaranteeing Theorem 2.12 (i) .

2.3. Sufficiency type asymptotic stability conditions obtained for
constant symmetric matrices P and Sij

Assume real constant symmetric matrices P(t) = P and Sij , for all i ∈ q , for all j ∈ q ∪ {0},
for all t ∈ R 0+ so that

Q(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H2 ĥ1PA1(t)M(t) · · · ĥqPAq(t)M(t)

ĥ1M
T (t)AT

1 (t)P −R1 0 · · · 0
... 0

...

. . .
...

ĥqM
T (t)AT

q (t)P 0 · · · −Rq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (2.13)

where H2 denotes (
∑q

j=0A
T
j (t))P +P(

∑q

j=0Aj(t))+
∑q

i=1

∑q

j=0ĥiSij . In this case, the Krasovsky-

Lyapunov functional used in the proof of Theorem 2.12(i) holds defined with constant
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matrices for all time irrespective of being a switching-free instant or any switching instant
(independently of its nature: reset time or reset-free switching instant). A practical test for
(2.13) to hold follows. Consider A∗i (i ∈ q ∪ {0}) such that the time invariant system (2.1)
defined with Ai(t) → A∗i is globally asymptotically Lyapunov’s stable and define a stability

real n-matrix A∗ :=
∑q

i=0A
∗
i . Decompose Q(t) = Q∗ + Q̃(t), where

Q∗ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗TP + PA∗ +
q∑

i=1

q∑

j=0

ĥiSij ĥ1PA
∗
1M

∗ · · · ĥqPA
∗
qM

∗

ĥ1M
∗TA∗1

TP −R∗1 0 · · · 0
... 0

...

. . .
...

ĥqM
∗TA∗q

TP 0 · · · −R∗q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q̃(t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ÃT (t)P + PÃ(t) ĥ1P Δ̃1(t) · · · ĥqPΔ̃q(t)

ĥ1Δ̃T
1 (t)P 0 0 · · · 0
... 0

...

. . .
...

ĥqΔ̃T
q (t)P 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.14)

where

M∗ := diag
(
A∗0, A

∗
1, . . . , A

∗
q

)
, R∗i := diag

(
S∗i0, S

∗
i1, . . . , S

∗
iq

)
, M̃(t) :=M(t) −M∗,

Ãi(t) := Ai(t) −A∗, Ã(t) :=

(
q∑

j=0

Aji(t)

)
−A∗,

Δ̃i(t) :=
(
Ãi(t)M∗ +A∗i M̃(t) + Ãi(t)

↔
M (t)

)
.

(2.15)

If t ∈ ST (σ), then

δQ̃(t) := Q̃
(
t+
)
− Q̃(t)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H3 ĥ1P
(
Δ̃1
(
t+
)
− Δ̃1(t)

)
· · · ĥqP

(
Δ̃1
(
t+
)
− Δ̃1(t)

)

ĥ1
(
Δ̃1
(
t+
)
− Δ̃ 1 (t)

)T
P 0 0 · · · 0

... 0
...

. . .
...

ĥq
(
Δ̃1
(
t+
)
− Δ̃1(t)

)T
P 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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∥∥δQ̃(t)
∥∥

2 ≤ 2λmax(P)

[
∥∥ÃT(t+

)
− ÃT (t)

∥∥
2 +

q∑

i=1

ĥi
∥∥Δ̃i

(
t+
)
− Δ̃i(t)

∥∥
2

]

= 2λmax(P)

[∥∥∥∥∥

q∑

i=0

(
AT
i

(
t+
)
−AT

i (t)
)
∥∥∥∥∥

2

+
q∑

i=1

ĥi
∥∥Δ̃i

(
t+
)
− Δ̃i(t)

∥∥
2

]
, (2.16)

where H3 denotes (ÃT (t+) − ÃT (t))P + P((Ã(t+) − Ã(t))), what leads to

∥∥δQ̃(t)
∥∥

2 ≤ 2λmax(P)

[
(q + 1)a+ + ĥq

(
a+
(

q∑

j=0

‖A∗j ‖2 + (q + 1)‖A∗i ‖2 + (q + 1)(a + a+)

)

+(q + 1)(2a + a+)a

)]
,

(2.17)

where a := maxi∈q∪{0}(‖Ai‖2) and a+ := supt∈ST(σ)maxi∈q∪{0}(‖Ai(t+) −Ai‖2) (see (A.9) in
Appendix A). Direct results from Theorem 2.12 which follow from (2.13) to (2.17) are given
below.

Corollary 2.13. Consider in (2.9) replacements with constant real matrices Q(t) → Q∗ = Q∗T ,
P ( t) → P = P T > 0, Ai(t) → A∗i , A(t) → A∗ :=

∑q

i=0A
∗
i ; for all i ∈ q , for all j ∈ q ∪ {0},

for all t ∈ R0+ such that A ∗ is a stability matrix. Then, Theorem 2.12(i) holds if Q∗ < 0 for any
switching law σ such that

(1) λmin(−Q∗) = −λmax(Q∗) > ‖Q̃(t)‖2 := λ1/2
max(Q̃T (t)Q̃(t)), for all t ∈ R0+ \ ST(σ),

(2) a := maxi∈q∪{0}(‖Ai‖2) and a+ := supt∈ST(σ)maxi∈q∪{0}(‖Ai(t+) − Ai‖2) are sufficiently
small such that

λmin
(
−Q∗
)
−
∥∥Q̃(t)

∥∥
2

> 2λmax(P)

[
(q + 1)a+ + ĥq

(
a+
(

q∑

j=0

∥∥A∗j
∥∥

2
+ (q + 1) max

i∈q∪{0}

∥∥A∗i
∥∥

2 + (q + 1)(a + a+)

)

+ (q + 1)(2a + a+)a

)]
, ∀t ∈ ST(σ).

(2.18)

Corollary 2.14. Consider in (2.9) replacements with constant real matrices Q(t) → Q∗j = Q∗j
T ,

P(t) → P = PT > 0, Aij(t) → A∗ij , A(t) → A∗j :=
∑q

i=0 A
∗
ij for all j ∈ p, for all k ∈ q ∪ {0},

for all t ∈ R 0+ such that each A∗j (∀j ∈ p) is a stability matrix with A∗ij ; for all i ∈ q, for all j ∈ p
being the parameterizations defining the resetting systems (2.4). Assume that the system (2.1) is one of
the resetting systems (2.4) at t = 0. Then, Theorem 2.12(i) holds with a common Krasovsky-Lyapunov
function for all those resetting systems if Q∗j < 0 (∀j ∈ p) for any switching law σ such that
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(1) λmin(−Q∗) = −λmax(Q∗) > ‖Q̃(t)‖2 := λ1/2
max(Q̃T (t)Q̃(t)), for all t ∈ R0+ \ ST(σ),

(2) aj := maxi∈q∪{0}(‖Aji‖2) and a
+
j := supt∈ST(σ)maxi∈q∪{0}(‖Ai(t+) −Aji‖2) are sufficiently

small such that

λmin
(
−Q∗
)
−
∥∥Q̃(t)

∥∥
2

> 2λmax(P)

[
(q + 1)a+j + ĥq

(
a+j

(
q∑

i=0

‖Aji‖2 + (q + 1) max
i∈q ∪{0}

‖Aji‖2

)

+ ( q + 1)
(
aj + a+j

)
+ (q + 1)

(
2aj + a+j

)
a+j

)]

(2.19)

t ∈ STfr(σ), provided that at time max (t′ < t : t′ ∈ STr(σ)), the system (2.1) coincides
with at the j ∈ pr setting system (2.4).

The proof of Corollary 2.14 is close to that of Corollary 2.13 from (A.9) in Appendix A
with the replacements a → aj , a

+ → a+j for all j ∈ p. If (2.19) is rewritten with the
replacements aj → a := maxj∈paj , a+j → �a+ := maxj∈ pa+j then the reformulated weaker
Corollary 2.14 is valid for all t ∈ STfr(σ) irrespective of the preceding reset switching. A result
which guarantees Corollary 2.13, and then Theorem 2.12(i), is now obtained by replacing
the (1,1) block matrix of Q ∗ by a Lyapunov matrix equality as follows. Consider a real n-
matrix Q∗0 = Q∗T0 > 0 such that λmin(Q∗0) > λmax(

∑q

i=1

∑q

j=0ĥiSij) and P :=
∫∞

0 e
A∗T τQ∗0e

A∗τdτ

satisfying the Lyapunov equation A∗TP + PA∗ = −Q∗0 < 0 as its unique solution. Note that
λmax(P) ≤ K∗λmax(Q∗0)/2ρ∗ for some K∗ ∈ R+, where −ρ∗ < 0 is the stability abscissa of A ∗

with ‖eA∗T t‖ ≤
√
K∗e−ρ

∗t for all t ∈ R. Define the decomposition Q(t) = Q
∗
+ Q̃(t), where

Q
∗

:= Block Diag

(
−Q∗0 +

q∑

i=1

q∑

j=0

ĥiSij ,−R∗1, . . . ,−R
∗
q

)
,

Q̃(t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ÃT (t)P + PÃ( t) ĥ1P
(
A∗1M

∗ + Δ̃1(t)
)
· · · ĥqP

(
A∗qM

∗ + Δ̃ q (t)
)

ĥ1
(
A∗1M

∗ + Δ̃1(t)
)T
P 0 0 · · · 0

... 0
...

. . .
...

ĥq
(
A∗qM

∗ + Δ̃q(t)
)T
P 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒
∥∥Q̃(t)

∥∥
2 ≤
(
K∗λmax

(
Q∗0
)

ρ∗

)(
∥∥ÃT (t)

∥∥
2 +

q∑

i=1

ĥi
∥∥A∗iM

∗ + Δ̃i(t)
∥∥

2

)
.

(2.20)

Thus, the subsequent result follows from Corollary 2.13 and (2.20).
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Corollary 2.15. Consider the matrices of Corollary 2.13 with A∗ being a stability matrix with
stability abscissa (−ρ∗) < 0 which satisfies the Lyapunov equation A∗

T
P + PA∗ = −Q∗0 < 0. Then,

Theorem 2.12(i) holds if Q∗ < 0 for any switching law σ such that

λmin
(
−Q

∗)
= −λmax

(
Q
∗)

>

(
K∗λmax

(
Q∗0
)

ρ∗

)(∥∥ÃT (t)
∥∥

2 +
q∑

i=1

ĥi
∥∥A∗iM

∗ + Δ̃i(t)
∥∥

2

)
,

∀t ∈ R0+, ∀t ∈ ST(σ).

(2.21)

2.4. Sufficiency type asymptotic stability conditions obtained for time-varying
symmetric matrices P(t), Sij(t) = Sij

The following result, which is proven in Appendix A, holds.

Theorem 2.16. Under Assumptions 2.1–2.3, the following properties hold.

(i) The switched system (2.1) is globally asymptotically Lyapunov’s for any delays hi ∈ [0, ĥi]
for all i ∈ q for some ĥ := maxi∈q(ĥi) and any switching law σ such that

(a) the switching instants are arbitrary;

(b) max(ess sup ‖Ȧj(t)‖ : t ∈ R0+, j ∈ p) is sufficiently small compared to the absolute
value of the prescribed stability abscissa of

∑q

j = 0 A j ( t);

(c) the support testing matrix of distributional derivatives ΓAdj(t) of the same matrices
are semidefinite negative for all time instants, where the conventional derivatives do
not exist (i.e., Ȧj(t) = ΓAdj(t)(t)δ(0)).

(ii) The switched system (2.1) is globally exponentially stable for any delays hi ∈ [0, ĥi] for all
i ∈ q for some ĥ := maxi∈q(ĥi) such that

(a) max(ess sup ‖Ȧj(t)‖ : t ∈ R0+, j ∈ p) is sufficiently small compared to the absolute
value of the prescribed stability abscissa of

∑q

j = 0 A j ( t);

(b) max(‖ΓAdj(t)(t)‖ : Ȧj(t) = ΓAdj(t)(t)δ(0), ∀t ∈ ST(σ), j ∈ p) is sufficiently small
compared to the timeintervals in between any two consecutive switching instants.

Furthermore, if Assumptions 2.1–2.4 hold, then

(iii) the switched system (2.1) is globally exponentially stable for any delays hi ∈ [0, ĥi] for all
i ∈ q, for some ĥ := maxi∈q(ĥi) such that

(a) max(ess sup ‖Ȧj(t)‖ : t ∈ R0+, j ∈ p) is sufficiently small compared to the absolute
value of the prescribed stability abscissa of

∑q

j=0Aj(t);
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(b) the switching law σ is such that

(a) max(‖ΓAdj(t)‖ : Ȧj(t) = ΓAdj(t)δ(0), ∀t ∈ STrf(σ), j ∈ p) is sufficiently small
compared to the lengths of time intervals between any two consecutive switching
instants;

(b) it exists a common Krasovsky-Lyapunov functional V (t, xt) defined with

constant matrices P = P
T
> 0 and Sij = S

T

ij > 0, for all (i, j) ∈ (q∪{0})×q for all
the time-invariant resetting systems (2.4) and some of the subsequent conditions
hold for all t ∈ STr(σ) under the resetting action P(t+) = P ; for all (i, j) ∈
(q ∪ {0}) × q:

(b.1) V (t+, xt) ≤ V (t, xt) which is guaranteed, in particular, if P(t+) = P ≤ P(t),
(b.2) the tradeoff (a) is respected between sufficiently small norms of the matrices

of distributional derivatives and the length | t − t′|, at any t ∈ STr(σ), if any,
where the condition (b.1) is not satisfied, where t′ = max(τ ∈ R 0+ : ST(σ) �
τ < t).

The characterization of the “sufficient smallness” of the involved magnitudes in
Theorem 2.16 is given explicitly in its proof. The proof considers that when some entry
time derivative of the involved matrices does not exist, it equivalently exists a distributional
derivative at this time instant which is equivalent to the existence of a bounded jump-type
discontinuity in its integral, so that the corresponding time instant is in fact a switching
instant. The sufficiently large time intervals required in between any two consecutive
switching times compared with the amplitudes of the amplitude (in terms of norm errors)
among consecutive parameterizations are related to the need for a minimum residence time
at each parameterization for the case when those ones do not possess a common Krasovsky-
Lyapunov functional.

3. Asymptotic stability independent of the delays

Some results concerning sufficiency type properties of global asymptotic stability indepen-
dent of the delays, that is, for any hi ∈ R0+, for all i ∈ q of the switched system (2.1) are
obtained under very close guidelines as those involved in the results on stability dependent
of the delays given in Section 2. The Krasovsky-Lyapunov functional candidate of Section 2
and Appendix A is modified as follows:

V (t, xt) = xT (t)P(t)x(t) +
q∑

i=1

∫ t

t−hi
xT (τ)Si(τ)x(τ)dτ (3.1)

whose time derivative along the state-trajectory solution of (2.1) is

V̇ (t, xt) = xT (t)

(
AT (t)P(t) + P(t)A(t) +

q∑

i=1

Si(t) + Ṗ (t)

)
x(t)

+ 2xT (t)
q∑

i=1

PAi(t)x
(
t − hi

)
−

q∑

i=1

xT
(
t − hi

)
S i

(
t − hi

)
x
(
t − hi

)

= xT (t)Q′(t)x(t) < 0

(3.2)
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for all nonzero xT (t) = (xT (t), xT (t − h1), . . . , xT (t − hq)) if

Q′(t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT (t)P(t) + P(t)A(t) +
q∑

i=1

Si(t) + Ṗ(t) PA1(t) · · · PAq(t)

AT
1 (t)P −S1

(
t − h1

)
0 · · · 0

...
...

...
AT
q (t)P 0 −Sq

(
t − hq

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.3)

Assumption 2.1 of Section 2 remains unchanged while Assumptions 2.2 and 2.4 of Section 2
are modified under similar justifications as follows.

Assumption 3.1. All the eigenvalues λi(A0(t)) of the matrix function A0(t) satisfy
Reλi(A0(t)) ≤ −ρ00 < 0; for all t ∈ R0+, for all i ∈ σ (σ ≤ n) for some ρ00 ∈ R + := {0 < z ∈ R};
that is, A0(t) is a stability matrix, for all t ∈ R0+.

Assumptions 3.2. Aj : R 0+ → R n×n are almost everywhere time-differentiable with
essentially bounded time derivative, for all j ∈ q ∪ {0} possessing eventual isolated bounded
discontinuities, then ess supt∈R0+

(‖Ȧ0(t)‖) ≤ γ0� < ∞ with γ0� being a �-norm dependent

nonnegative real constant and, furthermore,
∫ t+ T
t ‖ Ȧ0 ( τ ) ‖d τ ≤ μ0 T + α0 for some α0, μ0 ∈

R +, for all t ∈ R 0+, and some fixed T ∈ R 0+ independent of t. If the time derivative does not
exist then it is defined in the distributional sense as in Assumptions 2.3.

Assumption 3.3 (for the resetting systems). All the eigenvalues λk(A0j) satisfy Reλk(Aj0) ≤
−ρ00 < 0; for all t ∈ R0+, for all k ∈ σ0j(σ0j ≤ n), for all j ∈ p; that is, A0 j are constant stability
matrices with prescribed stability abscissa.

A parallel result to Theorem 2.12(i)-(ii) is the following.

Theorem 3.4. The subsequent properties hold.

(i) Assume that

(i.a) the matrix functions Aj(t), for all j ∈ q ∪ { 0 } are subject to Assumption 2.1;

(i.b) the switching law σ is such that Q ′ ( t) < 0, (3.3), for all t ∈ R 0+

for some time-differentiable real symmetric positive definite matrix function P : R 0+ →
R n×n and some real symmetric positive definite matrix functions Si : R0+ → Rn×n (∀i ∈
q). Thus, the system (2.1) is globally asymptotically Lyapunov’s stable independent of the
delays (i.e., for all delays hi ∈ [0,∞), for all i ∈ q). A necessary condition is AT

0 (t)P(t) +
P(t)A0(t) + Ṗ(t) < 0, for all t ∈ R0+ what implies that A0(t) is a stability matrix of
prescribed stability abscissa on R 0+ except eventually on a real subinterval of finite measure
of R 0+.

(ii) Assume that

(ii.a) Aj(t) = Aji, for all j ∈ q ∪ {0}, for all t ∈ R0+ for some i ∈ p (eventually being
dependent on t) satisfying Assumption 3.3;
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(ii.b) the switching law σ is such that STrf(σ) = ∅ (i.e., it generates reset switching instants
only) with STr(σ) being arbitrary, namely, the set of reset times is either any arbitrary
strictly increasing sequence of nonnegative real values (i.e., the resetting switching
never ends) or any finite set of strictly ordered nonnegative real numbers with a finite
maximal (i.e., the resetting switching ends in finite time);

(ii.c)

Q∗′i :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT
0iP
∗ + P ∗A0i +

q∑

i=1

S∗i P ∗A1i · · · P ∗Aqi

AT
1iP
∗ −S∗1 0 · · · 0

... 0
...

. . .
...

AT
qiP

∗ 0 · · · −S∗q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0; ∀i ∈ p (3.4)

for some Rn×n � P ∗ = P ∗T > 0, Rn×n � S∗i = S∗i
T > 0 (∀i ∈ q). Thus,

the switched system (2.1), obtained from switches among resetting systems (2.4),
is globally asymptotically Lyapunov’s stable and also globally exponentially stable
independent of the delays for all i ∈ q. If (3.4) is replaced withQ∗′i ≤ −2εI(q+1)n < 0,
for all i ∈ q, and some ε ∈ R + then the state trajectory decays exponentially with
rate (−ε) < 0.

Parallel results to Corollaries 2.13–2.15 are direct from Theorem 3.4 with the
replacements A0(t) → A∗0 (a constant stability matrix), A0j(t) → A∗0j , for all j ∈ p (a set of
constant stability matrices with prescribed stability abscissa for the resetting configurations).
Also, the subsequent result for global asymptotic stability independent of the delays, which
is close to Theorem 2.16, follows by replacing Assumptions 2.2–2.4 by Assumptions 3.1–3.3.

Theorem 3.5. Under Assumptions 2.1 and 3.1–3.2, the following properties hold.

(i) The switched system (2.1) is globally asymptotically Lyapunov’s stable independent of the
delays, that is, for any delays hi ∈ [0,∞), for all i ∈ p and any switching law σ such that

(a) the switching instants are arbitrary;

(b) max(ess sup ‖Ȧ0(t)‖ : t ∈ R0+) is sufficiently small compared to the absolute value
of the prescribed stability abscissa of A0(t);

(c) the support testing matrix of distributional derivatives ΓAd0(t) of the same matrices
are semidefinite negative for all time instants, where the conventional derivatives do
not exist (i.e., ifȦ0(t) = ΓAd0(t)(t)δ(0)) .

(ii) The switched system (2.1) is globally exponentially stable independent of the delays if

(a) max(ess sup ‖Ȧ0(t)‖ : t ∈ R0+) is sufficiently small compared to the absolute value
of the prescribed stability abscissa of A0(t);

(b) max(‖ΓAd0(t)(t)‖ : Ȧ0(t) = ΓAd0(t)(t)δ(0), ∀t ∈ ST(σ)) is sufficiently small
compared to the time intervals in between any two consecutive switching instants.
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If Assumptions 2.1 and 3.1–3.3 hold, then

(iii) the switched system (2.1) is globally exponentially stable independent of the delays if
max(ess sup ‖Ȧ0(t)‖ : t ∈ R0+) is sufficiently small compared to the absolute value of
the prescribed stability abscissa ofA0(t) and, furthermore, the switching law σ is such that

(a) At reset-free switching instants, max(‖ΓAd0(t)(t)‖ : Ȧ0(t) = ΓAd0(t)(t)δ(0), ∀t ∈
STrf(σ)) is sufficiently small compared to the time intervals in between any two
consecutive reset switching instants;

(b) there exists a common Krasovsky-Lyapunov functional V (t, xt) defined with constant

matrices P(t) → P = P
T
> 0 and Si(t) → Si = S

T

i > 0, for all i ∈ q ∪ { 0} in (3.1)
for all the time-invariant resetting systems (2.4) and some of the conditions (b.1)-
(b.2) of Theorem 2.16 hold for all t ∈ ST r(σ) under the resetting action P(t+) = P ;
for all i ∈ q ∪ { 0}.

4. Simulation examples and potential future research

In this section, some simulation examples showing numerically the application of the results
introduced below are carried out. The section contains two examples: one related to the
delay-dependent stability property introduced in Section 2 and another concerning the delay-
independent one considered in Section 3. The resetting systems and the remaining potential
jumps in any parameters are considered without explicit separation of the two phenomena
since such a separation is not relevant for stability properties.

4.1. Delay-dependent stability

Consider the delay system ẋ(t) = A0(t)x(t) + A1(t)x(t − h), where h = 0.75 second and each
resetting system (2.4) with p = 2 is defined by

A01(t) =

⎛

⎝−1.3
cos t

4
0 −2.5

⎞

⎠ , A11(t) =
(
−2.2 a(t)

0 −2.1

)
,

A02(t) =

⎛

⎝−1
sin t

4
0 −2

⎞

⎠ , A12(t) =
(
−1.5 b(t)

0 −2

)
(4.1)

with a(t) = 1/(�t� + t + 1) and b(t) = t/(�t�2 + 1), where �·� denotes the largest integer not
larger than (·) and �·� denotes the smallest integer not smaller than (·). Note that a(t) and
b(t) are discontinuous functions at integer values of time. A graphical representation of these
functions is shown in Figures 1 and 2.

Initially, it will be checked that Theorem 2.16(ii) conditions hold. Firstly, the switching
instants between resetting systems have been selected arbitrarily and defined by Figure 3.

Secondly, the time derivatives of the resetting systems defined above are given on each
real interval (k, k + 1) ⊂ R with k ∈N by

Ȧ01 =

⎛

⎝0
− sin t

4
0 0

⎞

⎠ , Ȧ11 =
(

0 ȧ(t)
0 0

)
, Ȧ02 =

⎛

⎝0
cos t

4
0 0

⎞

⎠ , Ȧ12 =
(

0 ḃ(t)
0 0

)

(4.2)
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Evolution of a(t)

Figure 1: Graphical representation of a(t).
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Time (s)
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)

Evolution of b(t)

Figure 2: Graphical representation of b(t).

with ȧ(t) = −1/(k + t + 1); ḃ(t) = 1/((1 + k)2 + 1). Thus, the “sufficiently smallness condition”
mentioned in Theorem 2.16(i) is fulfilled according to its proof in Appendix A if 2(ρ0/K0)

2 >
ess supt∈R0+/ST(σ)‖

∑1
j=0Aj‖, where λmax(P(t)) ≤ K0/2ρ0 for the existing unique symmetric

positive definite solution P(t) of (
∑1

j=0A
T
j )P(t)+P(t)(

∑1
j=0Aj) = −In. Numerical computations

lead to 10.33 = 2(ρ0/K0)
2 > ess supt∈R0+/ST(σ)‖

∑1
j=0Aj‖ = 1.25 which guarantees the fulfilment

the second item of the theorem. Finally, from Figures 1 and 2 above it becomes apparent
that the distributional derivative at integer time instants (where the ordinary derivative does
not exist) is negative since a(t) > a(t+) and b(t) > b(t+) for all t ∈ N. Therefore, from
Theorem 2.16(ii), the space-state trajectories of the solution asymptotically converge to zero
as time evolves as Figure 4 shows.
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Figure 3: Sequence of switching instants between resetting systems.

The phase plane is shown in Figure 5, where it can be appreciated the convergence
of the state evolution to the origin. Note that delay-dependent stability is achieved. As
simulations show, the system becomes unstable as delay exceeds a certain threshold. Global
asymptotic stability is guaranteed within the delay variation interval [0, 1].

4.2. Delay-independent stability

This example is devoted to the delay independent stability ensured by Theorem 3.5(i). Thus,
consider the system ẋ(t) = A0(t)x(t) +A1(t)x(t − h) and the resetting systems

A01 =

⎛

⎝−1
1
2

0 −3

⎞

⎠ , A02 =
(
−2.5 2

0 −1.6

)
, A1 =

(
−2.5 a(t)

0 −1.6

)
(4.3)

with a(t) = 2 + 1/(1 + t)n/10 and n = �t�. Again, this function possesses bounded
discontinuities at integer values of time as Figure 6 shows.

Furthermore, the conditions of Theorem 3.5(i) are especially easy to verify since the
resetting matrices A0i are time-invariant and hence its time-derivatives are identically zero.
The switching sequence is the same as depicted in Figure 3. Figures 7, 8, 9, and 10 show the
convergence of the state trajectories of the system to zero for different values of the delay
showing the delay independence property.

4.3. Potential future research

It is convenient to point out that the above ideas could be used for a better adjustment in
Biology and Ecology mathematical models which have received increasing attention recently
concerning epidemic propagation, species evolution, predation, and so forth (see, e.g., [25–
35]), which can also include delays to better fix the trajectory solutions. For instance, a control
theory point of view is given in [29] for the standard Beverton-Holt equation in Ecology
which has two parameterizing sequences, namely, the environment carrying capacity (related
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Figure 4: Convergence to zero of the state-trajectories.
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Figure 5: Phase portrait of the evolution of the system.

to a favorable or not habitat for the population) and the intrinsic growth rate (related to the
population ability to grow). The inverse of the environment carrying capacity is the control
variable. The objective is that the solution trajectory matches a prescribed reference one.
The stability results and the matching properties are revisited in [30] for the generalized
Beverton-Holt equation which possesses two extra parameterizing sequences, namely, the
harvesting quota (related to human intervention like, fishing/hunting) and the independent
consumption (related to perturbations in the population levels). The above two models
are discrete with a one-step delay. Other control variables apart from the carrying capacity
inverse are taken in [31] and comparative results with the former case are provided. Finally,
a modified generalized Beverton-Holt is discussed in [32] which is a more complex model
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Figure 6: Graphical representation of a(t).
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Figure 7: State trajectories evolution for a delay of 1.75 seconds.

than the former model in [30]. This model has a delay of two sampling periods, the new one
introduces a penalty in the dynamics for large levels of populations. The strategy seems to be
appropriate for certain populations of insects which have several reproduction cycles per year
and whose population tends to blast in very short periods of time what makes it to fall after
very much as a result. If a comparative is made between the various (standard, generalized,
and modified generalized) models, one sees that the foreseen population evolution might
depend significantly on the chosen model. Therefore, a switching model strategy between
several kinds of single models each one subject to a set of distinct parameterizations could be
useful to better adjust experimental data.
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Figure 8: State trajectories evolution for a delay of 7.25 seconds.
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Figure 9: State trajectories evolution for a delay of 15.8 seconds.

5. Conclusions

This paper has been devoted to the investigation of the stability of switched linear time-
varying systems with internal constant point delays. The switching laws are allowed to
possess two kinds of switching instants, in general. The reset instants are those related to
switching the current system parameterization to some configuration within a prescribed set.
At switching time instants which are not reset instants, any bounded jump of any of the
system parameter function associated either with the delay-free or with delayed dynamics
for any of the delays is allowed. The system delay-free matrix as well as the matrices of
delayed dynamics is allowed to be time-varying and eventually time differentiable. Also,
either the delay-free system matrix or the system matrix obtained by zeroing the matrices of
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Figure 10: State trajectories evolution for a delay of 35.8 seconds.

dynamics of all nonzero delays are assumed to be stability matrices with prescribed stability
abscissa for all time. The first assumption is used to obtain results for stability dependent
on the sizes of the delays, while the second one is used for results concerning asymptotic
stability independent of the delays. The parametrical bounded jumps at switching instants
may be interpreted equivalently as Dirac impulses of the corresponding time derivatives.
Global asymptotic stability and exponential stability results are obtained dependent on and
independent of the sizes of the delays. Stability results are guaranteed based on the existence
of a Krasovsky-Lyapunov functional through simple tests of negative definiteness of matrices
for sufficiently small norms of the parametrical time derivatives, where such derivatives
exist, compared to the above mentioned stability abscissas. In addition, the existence of a
minimum residence time at each eventual resetting configuration is required to guarantee
global asymptotic stability in the event that the Krasovsky-Lyapunov functional candidate
has a positive jump at some reset switching instant.

Appendix

A. Mathematical Proofs

A.1. Proof of Theorem 2.12

(i) Denote by xt the strip of state-trajectory solution x(t+τ) of the system (2.1) for τ ∈ [−h, 0].
Consider the Krasovsky-Lyapunov functional candidate:

V (t, xt) = xT (t)P(t)x(t) +
q∑

i=1

q∑

j=0

∫−hj

−hi−hj

∫ t

t+θ
xT (τ)Sijx(τ)dτ dθ (A.1)

which is nonnegative and radially unbounded since V (t, xt) → ∞ as ‖xt‖ :=
sup−h≤τ≤0‖x(τ)‖ → ∞, with h := max1≤i≤q(hi), since all the eigenvalues of P(t) and Sij(t)
positive and uniformly bounded from above and below for all t ∈ R0+. This also implies
that Ṗ(t) cannot be neither positive definite nor negative definite for all t ∈ R0+. Direct
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calculations via (2.9) yield V̇ (t, xt) ≤ −xT (t)Q(t)x(t) < 0, for all t ∈ R0+ if and only if
x(t) = (xT (t), xT (t − h1), . . . , xT (t − hq))

T
/= 0. Then, V (t, xt) ≤ V (0, ϕ) < ∞ and V (t, xt) → 0

as t → ∞ for any given bounded function of initial conditions what imply that ‖xt‖ < ∞,
for all t ∈ R0+ and ‖xt‖ → 0 as t → ∞. The global asymptotic stability has been proven. To
prove the last part of Property (i), note that (2.9) implies

(
q∑

j=0

AT
j (t)

)
P(t) + P(t)

(
q∑

j=0

Aj(t)

)
+ Ṗ(t) +

q∑

i=1

q∑

j=0

ĥiSij < 0, ∀t ∈ R0+

=⇒
(

q∑

j=0

AT
j (t)

)
P(t) + P(t)

(
q∑

j=0

Aj(t)

)
+ Ṗ(t) < 0.

(A.2)

Since Ṗ(t) < 0, for all t ∈ R0+ is impossible from the preceding part of the proof, it
has to exist a nonnecessarily connected subinterval SR ⊂ R0+ such that (

∑q

j=0A
T
j (t))P(t) +

P(t)(
∑q

j=0Ai(t)) < 0, for all t ∈ SR. Now, proceed by contradiction to prove that SR has infinite
measure with a connected component of infinite measure by assuming that the system (2.1)
is globally asymptotically stable in the following cases.

(1) SR has finite measure so that the complement SR in R0+ is nonconnected with
infinite measure with a component being necessarily of infinite measure (otherwise,
SR has infinite measure). Thus, (

∑q

j=0A
T
j (t))P(t) + P(t)(

∑q

j=0Aj(t)) ≥ 0 or indefinite

for all t ∈ SR. Since SR has finite measure and SR has a component of infinite
measure, it exists a sufficiently large finite t0 ∈ R0+ such that SR � t ≥ t0 so that
‖xt‖ → 0 as t → ∞ is impossible what leads to a contradiction.

(2) Both intervals SR and SR have infinite measures so that they are nonconnected
and have infinite components each of them with finite measure. Thus, asymptotic
stability is also impossible.

As conclusion, (
∑q

j=0Aj(t)) is a stability matrix for all t ∈ R0+ except possibly within
an interval of finite measure.

(ii) Denote by zt the strip of state-trajectory solution z(t + τ), for τ ∈ [−h, 0] and any
resetting system. Consider the Krasovsky-Lyapunov functional candidate for all the resetting
systems:

V ∗(t, zt) = zT (t)P ∗z(t) +
q∑

i=1

q∑

j=0

∫−hj

−hi−hj

∫ t

t+θ
zT (τ)S∗ijz(τ)dτ dθ. (A.3)

The real functional (A.1) is a common Krasovsky-Lyapunov functional for all p distinct
resetting systems for all delays hi ∈ [0, ĥi] (∀i ∈ q), provided that zt ≡ z(t + τ), for all τ ∈
[−ĥ, 0] and ĥ := max1≤i≤q(ĥi) since the ith resetting system (2.4) satisfies from (2.11)

V̇ ∗i (t, zt) ≤ z
T (t)Q∗i z(t) < 0; ∀i ∈ q, ∀t ∈ R0+ (A.4)
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for all nonzero z(t) where z(t) := (zT (t), zT (t − h1), . . . , zT (t − hq))T and accordingly

V̇ ∗(t, xt) ≤ −
∣∣∣∣min

i∈q
xT (t)Q∗i x(t)

∣∣∣∣ ≤ 0, ∀t ∈ R0+ (A.5)

for all nonzero x(t) where x(t) := (xT (t), xT (t − h1), . . . , xT (t − hq))
T for the switched system

(2.1) since

STrf(σ) = ∅ =⇒ STr(σ) = STr(σ)

=⇒ −
(

max
i∈p

λmax
(
Q∗i
))
zT (t)z(t) ≤ V̇ ∗(t, zt)

≤ −
(

min
i∈p

λmin
(
Q∗ii
))
zT (t)z(t) < 0

(A.6)

for any t ∈ R0+ such that z(t)/= 0, where λmax(·) and λmin(·) stand for maximum and minimum
eigenvalues of real symmetric matrices. Thus, if (2.9) holds then the candidate (A.3) is
a common Krasovsky-Lyapunov functional for all the resetting systems, and then for the
switched system (2.1) which is then globally asymptotically Lyapunov’s stable. Furthermore,
the Krasovsky-Lyapunov functional of the switched system (2.1) fulfils from (A.3)–(A.6):

V̇ ∗
(
t, xt
)

V ∗
(
t, xt
) ≤ −δ < 0 =⇒ V ∗

(
t, xt
)
≤ e−δTV ∗

(
t − T, xt−T

)
≤ Ke−δtV ∗(0, ϕ) (A.7)

for all t ∈ R0+, for some finite K ∈ R+, where δ := |maxi∈p λmax(Q∗i )|/λmin(P ∗) > 0. Then, from
(A.7) and (A.3)

λmin
(
P ∗
)
xT (t)x(t) ≤ V ∗

(
t, xt
)
≤ e−δTV ∗

(
t − T, xt−T

)
≤ Ke−δtV ∗(0, ϕ)

≤ KK1e
−δt sup
−ĥ≤τ≤0

∥∥ϕ(τ)
∥∥2

2

=⇒
∥∥x(t)

∥∥
2 ≤
√
KK1e

−(δ/2 ) t sup
−ĥ≤τ≤0

∥∥ϕ(τ)
∥∥

2

(A.8)

for all t ∈ R0+, and someK ∈ R+, whereK1 := λmax(P ∗)+(q+1)maxi∈p, j∈q∪{0}λmax(Sij) and ĥ :=
maxi∈qĥi and ‖·‖2 denotes the �2 (or spectral) vector norm or the corresponding induced ones
for matrices. Then, the system (2.1) is globally exponentially stable for all delays hi ∈ [0, ĥi],
for all i ∈ q. The modification of (2.11)-(2.12) with Qi ≤ −2εI(q+1)n < 0, for all i ∈ q leads
directly to an exponential decay of ‖x(t)‖2 with rate δ = 2 ε from a similar slightly extended
proof.

(iii) If Assumption 2.4 holds then (
∑q

j=0A
T
ji)P

∗ + P ∗(
∑q

j=0Aji) < 0 for any P ∗ = P ∗ T > 0.

Thus, it exists a sufficiently small ĥ := maxi∈qĥi such that (2.9) holds for all hi ∈ [0, ĥi], since
R∗i > 0; for all i ∈ q.

If Property (i) holds then (
∑q

j=0A
T
ji)P

∗ + P ∗(
∑q

j=0Aji) +
∑q

i=1

∑q

j=0ĥiSij < 0 what implies

(
∑q

j=0A
T
ji)P

∗ + P ∗(
∑q

j=0Aji) < 0 since
∑q

i=1

∑q

j=0ĥiSij ≥ 0 for any ĥi ≥ 0, for all i ∈ q. Thus,
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Qid := Block Diag ((
∑q

j=0A
T
ji)P

∗ + P ∗(
∑q

j=0Aji) +
∑q

i=1

∑q

j=0ĥiSij < 0, − R∗1, . . . , − R∗q) < 0,

for all i ∈ q and then Qi < 0, for all hi ∈ [0, ĥi] and sufficiently small ĥ := maxi∈qĥi since from
(2.11) ‖Qi − Qid‖ is a monotonically increasing function of the argument (ĥ1, . . . , ĥq) being
zero if ĥi = 0, for all i ∈ q. Then, Property (i) holds for a sufficiently small ĥ.

A.2. Derivation of the inequality (2.17)

It follows from the subsequent inequalities:

∥∥M∗∥∥
2 ≤

q∑

i=0

∥∥A∗i
∥∥

2,
∥∥M(t)

∥∥
2 ≤

q∑

i=0

∥∥Ai(t)
∥∥

2,

∥∥M
(
t+
)
−M(t)

∥∥
2≤

q∑

i=0

∥∥Ai

(
t+
)
−Ai(t)

∥∥
2,

∥∥M
(
t+
)
−M∗∥∥

2 ≤
q∑

i=0

∥∥Ai

(
t+
)
−A∗i
∥∥

2,

∥∥Δ̃i

(
t+
)
− Δ̃i(t)

∥∥
2 =
∥∥(Ãi

(
t+
)
− Ãi(t)

)
M∗ +A∗i

(
M
(
t+
)
−M(t)

)

+
(
Ãi

(
t+
)(
M
(
t+
)
−M∗) + Ãi(t)

(
M(t) −M∗))∥∥

2

≤
∥∥Ai

(
t+
)
−Ai(t)

∥∥
2

(
q∑

j=0

∥∥A∗j
∥∥

2

)
+ ‖A∗i ‖2

∥∥∥∥∥

(
q∑

j=0

∥∥Aj

(
t+
)
−Aj(t)

∥∥
2

)∥∥∥∥∥
2

+
∥∥Ai

(
t+
)
−A∗i
∥∥

2

(
q∑

j=0

∥∥Aj

(
t+
)
−A∗j
∥∥

2

)

+
∥∥Ai(t) −A∗i

∥∥
2

(
q∑

j=0

∥∥Aj(t) −A∗j
∥∥

2

)

≤ a+
(

q∑

j=0

∥∥A∗j
∥∥

2
+ (q + 1)‖A∗i ‖2 + (q + 1)a+ +

q∑

j=0

∥∥Aj(t) −A∗j
∥∥

2

)

+
∥∥Ai(t) −A∗i

∥∥
2

[
(q + 1)a+ +

q∑

j=0

∥∥Aj(t) −A∗j
∥∥

2 +
q∑

j=0

∥∥Aj(t) −A∗j
∥∥

2

]

≤ a+
(

q∑

j=0

∥∥A∗j
∥∥

2 + (q + 1)‖A∗i ‖2 + (q + 1)
(
a + a+

)
)

+ (q + 1)
(
2a + a+

)
a, ∀i ∈ q ∪ {0}.

(A.9)

Proof of Theorem 2.16. (i) It can be considered by the obvious nature of the process that
the switching set ST(σ) of the switching law σ is defined by the discrete set of times
where the time derivative of some of the entries of some of the delay-free or delayed
matrices of dynamics does not exist, or equivalently, is impulsive which translated in
a bounded discontinuity of the corresponding matrix function at such a time instant.
Conversely, a bounded discontinuity of any of such matrices is equivalent to a distributional
time derivative. Thus, if Assumptions 2.1–2.3 hold then (

∑q

j=0Aj(t)) is a stability matrix,
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for all t ∈ R0+, so that a positive definite symmetric P(t) has to exist as a unique solution
to the following matrix Lyapunov equation Q(t) in (2.9) takes the form

(
q∑

j=0

AT
j (t)

)
P(t) + P(t)

(
q∑

j=0

Aj(t)

)
= −In, (A.10)

where In is the nth identity matrix. Taking time-derivatives in (A.9) yields to the subsequent
matrix Lyapunov equation:

(
q∑

j=0

AT
j (t)

)
Ṗ(t) + Ṗ(t)

(
q∑

j=0

Aj(t)

)
= −
(

q∑

j=0

ȦT
j (t)

)
P(t) − P(t)

(
q∑

j=0

Ȧj(t)

)
. (A.11)

Thus, the unique solutions to the above Lyapunov equations are, respectively,

P(t) =
∫∞

0
e(
∑q

j=0A
T
j (t))τe(

∑q

j=0Aj (t))τdτ, (A.12)

Ṗ(t) =
∫∞

0
e(
∑q

j=0A
T
j (t))τ

((
q∑

j=0

ȦT
j (t)

)
P(t) + P(t)

(
q∑

j=0

Ȧj(t)

))
e(
∑q

j=0Aj (t))τdτ, (A.13)

with

λmax(P(t)) = ‖P(t)‖2 ≤
K0

2ρ0
, (A.14)

|λmax(Ṗ(t))| = ‖Ṗ(t)‖2 ≤
K0λmax(P(t))

ρ0

∥∥∥∥∥

q∑

j=0

Ȧj(t)

∥∥∥∥∥
2

≤
K2

0

2ρ2
0

∥∥∥∥∥

q∑

j=0

Ȧj(t)

∥∥∥∥∥
2

≤
K2

0γ2

2ρ2
0

, (A.15)

provided that
∑q

j=0‖Ȧj(t)‖2 ≤ γ2∈ R0+, from Assumptions 2.3.

Remark A.1. Note that P(t), (A.12), may be (pointwise) equivalently calculated from the
linear algebraic system below of n2 unknowns (the entries of P(t) at each time) and n2 × n2

coefficient matrix which is equivalent to the matrix equation (A.10):

[(
q∑

j=0

AT
j (t)

)
⊗ In + In ⊗

(
q∑

j=0

AT
j (t)

)]
vec
(
P(t)
)

= vec
(
− In
)
= −
(
eT1 , e

T
1 , . . . , e

T
1

)T

⇐⇒ vec
(
P(t)
)
=

[(
q∑

j=0

AT
j (t)

)
⊗ In + In ⊗

(
q∑

j=0

AT
j (t)

)]−1

vec
(
− In
)T
,

(A.16)
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where “⊗” defines the Kronecker (or direct) product of matrices and vec(M) :=
(mT

1 , m
T
2 , . . . , m

T
n)

T ∈ Rnm if M = (m1, m2, . . . , mn)
T is an n ×m real matrix of rows mT

i (i ∈ n)
each of m components. Note that the coefficient matrix of the above algebraic system is
everywhere nonsingular since P(t) exists and it is unique for all time.

Thus, one gets from (2.9) that Q (t) ≤ Q̂ (t), for all t ∈ R 0+ \ ST (σ), where

Q̂(t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
(

1 −
K2

0γ2

2ρ2
0

)
In +

q∑

i=1

q∑

j=0

ĥiSij ĥ1P(t)A1(t)M(t) · · · ĥqP(t)Aq(t)M(t)

ĥ1M
T (t)AT

1 (t)P(t) −R1 0 · · · 0
... 0

...

. . .
...

ĥ qM
T (t)AT

q (t)P(t) 0 · · · −Rq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A.17)

provided that ĥ is sufficiently small and 2(ρ0/K0)
2 > γ2 ≥ ess supt∈R0+\ST(σ)‖

∑q

j=0Ȧj(t)‖2. On
the other hand, one has for t ∈ ST (σ)

Q̂(t+) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜̇P(t)δ(0) ĥ1P (t)A1
(
t+
)
M
(
t+
)

· · · ĥ qP(t)Aq

(
t+
)
M
(
t+
)

ĥ1M
T
(
t+
)
AT

1

(
t+
)
P(t) 0 0 · · · 0

... 0
...

. . .
...

ĥqM
T
(
t+
)
AT
q

(
t+
)
P(t) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A.18)

where δ(0) is the unity scalar Dirac distribution centered at t = 0 and ˜̇P(t) = Ṗ(t+) − Ṗ(t)
subject to

P
(
t+
)
=
∫∞

0
e
(
∑q

j=0A
T
j (t

+))τ
e(
∑q

j=0Aj(t+))τdτ,

Ṗ
(
t+
)
=
∫∞

0
e(
∑q

j=0A
T
j (t

+))τ

((
q∑

j=0

(
ȦT
j (t) + ΓTAdj(t)

)
)
P(t)

+ P(t)

(
q∑

j=0

(
Ȧj(t) + ΓAdj(t)

)
))

e(
∑q

j=0Aj (t+))τdτ

(A.19)
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so that

∣∣λmax
(
Ṗ( t)
) ∣∣ ≤

K 2
0 γ2

2 ρ2
0

;
∣∣λmax

(
Ṗ
(
t+
)) ∣∣ ≤

K 2
0

(
γ2 +

∑q

j =0

∥∥ ΓAdj ( t)
∥∥

2
δ (0)
)

2 ρ2
0

,

0 < λmax
(
P ( t)

)
≤ K0

2 ρ0
; 0 < λmax

(
P
(
t+
))
≤
K0
(
1 +
∑q

j =0

∥∥ ΓAdj ( t)
∥∥

2

)

2 ρ0
,

(A.20)

with ΓAdj ( t) := Aj ( t +) − Aj (t), or equivalently Ȧj ( t +) − Ȧj (t ) = ΓAdj ( t) δ (0), being a real
n-matrix whose entries are zero if Aj(t) is continuous at time t and each nonzero entry is the
amplitude of any impulse at the time derivative. Thus, one gets from (A.18)

Q̂
(
t+
)
− Q̂(t)

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K2
0

(∑q

j=0

∥∥ΓAdj (t)
∥∥

2

)

2ρ2
0

δ(0)In ĥ1ϑ1λmax
(
P(t)
)
E · · · ĥqϑqλmax

(
P(t)
)
E

ĥ1ϑ1λmax
(
P(t)
)
E 0 0 · · · 0

... 0
...

. . .
...

ĥqϑ qλmax
(
P(t)
)
E 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A.21)

where ϑi ≤ ‖ΓAdi(t)‖2(
∑q

j=0‖ΓAdj (t)‖2
), for all i ∈ q ∪ {0} and E is a real n × (q + 1)n-matrix

with all its entries being unity. Since Q̂(t) < 0, it follows from (A.21) that if the matrix∑q

j =0 ΓAdj ( t) ≤ 0, for all t ∈ ST (σ), then the (1,1) block-matrix in (A.18) is semidefinite

negative for any (sufficiently small) ĥ compared to (
∑q

j=0‖ΓAdj (t)‖2
) and ϑ := max(ϑi : i ∈

q ∪ {0}) provided that 2(ρ0/K0)
2 > γ2 ≥ ess supt∈R0+\ST(σ)‖

∑q

j=0 Ȧj(t)‖2
, for all t ∈ R0+ \ ST(σ).

Thus, Property (i) has been proven.
(ii) From (2.9) and (A.15),

Q(t) ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−In +
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2ρ2
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q∑

j=0
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2
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q∑
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q∑

j=0

ĥiSij ĥ1P(t)A1(t)M(t) · · · ĥqP(t)Aq(t)M(t)

ĥ1M
T (t)AT

1 (t)P(t) −R1 0 · · · 0
... 0

...

. . .
...

ĥqM
T (t)AT

q (t)P(t) 0 · · · −Rq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.22)



M. de la Sen and A. Ibeas 29

so that if Q′(t) := Q(t) − Block Diag((K2
0/2ρ2

0‖
∑q

j=0Ȧj(t)‖ − 1)In, 0, . . . , 0),
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t, xt
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ĥi
∥∥Ai(t)

∥∥
2

∥∥Aj(t)
∥∥

2

∥∥x
(
t − hi

)∥∥
2

∥∥x(t)
∥∥

2

≤
(
K2

0γ2

2ρ2
0

− 1
)∥∥x(t)

∥∥2
2 −

q∑

i=1

∥∥x
(
t − hi

)∥∥2
Ri(t)

+ ĥ
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) max0≤i≤q V (t − hi, xt−hi)

min0≤i≤q
(
λmin
(
P
(
t − hi

)))

≤ 1
β

(
K2

0γ2

2ρ2
0

− 1 + o(ĥ)
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(
t, xt
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(A.23)

for all t ∈ R+
0 \ ST(σ), since 0 ≤ λmin(P(t))‖x(t)‖2

2 ≤ V (t, xt) ≤ V (t′, xt′) ≤ V (0, ϕ) < ∞ with
V̇ (t, xt) ≤ 0, for all t(≥ t′), t′ ∈ R0+ from the properties of the Krasovsky-Lyapunov functional
Equation (A.1) used in the proof of Theorem 2.12, where R+ � β := inft∈R0+λmin(P(t)) since
P (t) > 0 , for all t ∈ R 0+ and the “small-o” and “big-O” Landau’s notations mean the
following:

f = o ( s) ⇐⇒ f = O (s)
(
⇐⇒ | f | ≤ k 1 | s | + k 2 , some k1, 2 ∈ R 0+

)
∧ ∃ lim

s→ 0

∣∣∣∣
f

s

∣∣∣∣ = 0.

(A.24)

Thus, if γ2 ≤ 2(ρ0/K0)(1 − ε) for some ε ∈ R + and ĥ is sufficiently small then one gets from
(A.23) that

∥∥x
(
t+
)∥∥2

2 ≤
V
(
t+, xt+

)

β
≤ KVe

−ζTkV
(
t+ − Tk, xt+−Tk

)

≤ KVe
−ζTk(V

(
t − Tk, xt−Tk

)
+
(
V
(
t+ − Tk, xt+−Tk

)
− V
(
t − Tk, xt−Tk

)))

≤ KVKe
−ζtk

(
k∏

i=1

η(ti)

)
max
0≤i≤q

∥∥x
(
t − tk − hi

)∥∥2
2 <∞

≤ KVKe
−ζtk(1 + η)kmax

0≤i≤q

∥∥x
(
t − tk − hi

)∥∥2
2 <∞.

(A.25)
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With the following.
(a) KV ,K ∈ R+ being some constants independent of t.
(b) ST (σ) = { t i : i ∈ N} is defined such that it is a strictly ordered set of switching

instants, t ∈ (tk, tk+1] ∩ R+ provided that t k < t k + 1 ∈ ST (σ) exists so that, Tk := tk − tk−1

(i.e., tk =
∑k

i=1Ti), and t ∈ (tk,∞) for any Tk ∈ R+ and some k ∈ N, otherwise, (i.e., if tk is the
existing maximal element in the set ST(σ) provided that it is of finite cardinal)

η
(
ti
)
≤ 1 + η with η := max

(
V
(
t+ − Tk, xt+−Tk

)
− V
(
t − Tk, xt−Tk

)
: t ∈ R0+

)
. (A.26)

Thus, limt→∞‖x(t)‖2
2 = 0 with exponential convergence rate for any admissible function of

initial conditions of the state-trajectory solution ϕ : [−h, 0] → Rn provided that for some
ε0(< 1) ∈ R+: −ζtk(1 + η)k ≤ 1 − ε0 ⇔ 1 ≤ ln(1 + η) ≤ (ζtk + ln(1 − ε0))/k which is guaranteed,
in particular, if Tk = tk − tk−1 ≥ (1/ζ) ln((1 + η)/(1 − ε0)). Then, Property (ii) follows directly.

(iii) The proof is direct since either Condition (b.1) or Condition (b.2) allow to derive
a similar proof as that proof Property (ii).
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