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We consider the dynamics of a stochastic cobweb model with linear demand and a backward-
bending supply curve. In our model, forward-looking expectations and backward-looking ones are
assumed, in fact we assume that the representative agent chooses the backward predictor with
probability q , 0 q 1, and the forward predictor with probability (1 − q), so that the expected price
at time t is a random variable and consequently the dynamics describing the price evolution in time
is governed by a stochastic dynamical system. The dynamical system becomes a Markov process
when the memory rate vanishes. In particular, we study the Markov chain in the cases of discrete
and continuous time. Using a mixture of analytical tools and numerical methods, we show that,
when prices take discrete values, the corresponding Markov chain is asymptotically stable. In the
case with continuous prices and nonnecessarily zero memory rate, numerical evidence of bounded
price oscillations is shown. The role of the memory rate is studied through numerical experiments,
this study confirms the stabilizing effects of the presence of resistant memory.
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1. Introduction

The cobweb model is a dynamical system that describes price fluctuations as a result of
the interaction between demand function, depending on current price, and supply function,
depending on expected price.

A classic definition of the cobweb model is the one given by Ezekiel [1] who proposed
a linear model with deterministic static expectation. The least convincing elements of this
initial formulation are the linearity of the functions describing the market and their simple
expectations. For these reasons, several attempts have been made over time to improve the
original model. In a number of papers, nonlinearity has been introduced in the cobweb
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model (see Holmes and Manning [2]) while other authors have considered different kinds
of price expectations (see, among others, Nerlove [3], Chiarella [4], Hommes [5], Gallas and
Nusse [6]). In Balasko and Royer [7], Bischi and Naimzada [8] and Mammana and Michetti
[9, 10] an infinite memory learning mechanism has been introduced in the nonlinear cobweb
model. A more sophisticated cobweb model is the one proposed by Brock and Hommes [11]
where heterogeneity is introduced via the assumption that agents have different beliefs, that
is, rational and naive expectations. The authors assume that different types of agents have
different beliefs about future variables and provide an important contribution to the literature
evaluating heterogeneity.

Research into the cobweb model has a long history, but all the previous papers have
studied deterministic cobweb models. The dynamics of the cobweb model with a stochastic
mechanism has not yet been studied. In this paper, we consider a stochastic nonlinear cobweb
model that generalizes the model of Jensen and Urban [12] assuming that the representative
entrepreneur chooses between two different predictors in order to formulate their expectations:

(1) backward predictor: the expectation of future price is the weighted mean of
past observations with decreasing weights given by a (normalized) geometrical
progression of parameter ρ (0 ≤ ρ ≤ 1) called memory rate; (see Balasko and Royer
[7]);

(2) forward predictor: the formation mechanism of this expectation takes into account
the market equilibrium price and assumes that, in the long run, the current price will
converge to it.

Our study tries to answer the criticism of the economists regarding the total lack of rationality
in the expectations introduced in dynamical price-quantity models. In fact, we assume that
agents are aware of the market equilibrium price and therefore we associate forward-looking
expectations to backward-looking ones.

At each time, the representative entrepreneur chooses the backward predictor with
probability q (0 ≤ q ≤ 1) and the forward predictor with probability (1 − q). This corresponds
to introducing heterogeneity in beliefs, in fact we are assuming that, on average, a fraction q of
agents uses the first predictor, while a fraction (1 − q) of agents chooses the second one.

In recent years, several models in which markets are populated by heterogeneous agents
have been proposed as an alternative to the traditional approach in economics and finance,
based on a representative (and rational) agent. Kirman [13] argues that heterogeneity plays
an important role in the economic model and summarizes some of the reasons why the
assumption of heterogeneous agents should be considered. Nevertheless, it is obvious that
heterogeneity implies a shift from simple analytically tractable models with a representative,
rational agent to a more complicated framework so that a computational approach becomes
necessary.

The present work represents a contribution to this line of research: as in Brock and
Hommes [11] we assume different groups of agents even if no switching between groups
is possible. Besides, our case can be related to the deterministic limit case studied in Brock
and Hommes [11], when the intensity of choice of agents goes to zero and agents are equally
shared between two groups. The new element with respect to such a limit case is that we admit
random changes to the fractions of agents around the mean.

Moreover, even though our assumption is the same as considering (on average) fixed
time proportions of agents, the fraction of agents employing trade rules based on past prices
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increases as q increases. In fact the parameter q can be understood as a sort of external signal
of the market price fluctuations. More specifically, increasing values of q correspond to greater
irregularity of the market. In our framework, this means that for high values of q, a greater
fraction of agents expect that the price will follow the trend implied by previous prices instead
of going toward its fundamental value, and they will prefer to use trading rules based on past
observed events.

In the model herewith proposed, the time evolution of the expected price is described
by a stochastic dynamical system. (Recent works in this direction are those by Evans and
Honkapohja [14] and Branch and McGough [15].) More precisely, since for simplicity we start
considering a discrete time dynamical system, the expected price is a discrete time stochastic
process. In particular the expected price is a random variable at any time.

We note that the successful development of ad hoc stochastic cobweb models to describe
the time evolution of the prices of commodities, will make possible to use these models to
describe fluctuations in price derivatives having the commodities, has underlying assets. The
stochastic cobweb model presented here can be considered as a first step in the study of a more
general class of models.

The paper is organized as follows. In Section 2, we formulate the model in its general
form. In Section 3, we consider the case where the memory rate is equal to zero, that is,
the case with naive versus forward-looking expectations, so that the agent remembers only
the last observed price. In this case we proceed as follows. First, we approximate the initial
model with a new one having discrete states. Consequently we obtain a finite states stochastic
process without memory, that is, a Markov chain. We determine the probability distribution
of the random variable of the process solution of the Markov chain and, using a mixture of
analytical tools and numerical methods, we show that its asymptotic behavior depends on
the parameter of the logistic equation describing the price evolution that we call μ. Second,
we extend the analysis to the corresponding continuous time Markov process and we obtain
the Chapman-Kolmogorov forward equation. In Section 4, we propose an empirical study
of the initial model (i.e., the model with continuous states), that is, we do the appropriate
statistics of a sample of trajectories of the model generated numerically. In particular, we obtain
the probability density function of the random variable describing the expected price as a
function of time and we study these densities in the limit when time goes to infinity. Numerical
evidence of bounded price oscillations is shown and the role of the memory rate, that is, the
role of backward-looking expectations, is considered. The results obtained on the stochastic
cobweb model confirm that the system becomes less and less complex as the memory rate
increases, this behaviour is similar to the one observed in the deterministic cobweb model (see
Mammana and Michetti [10]). Note that the model considered in Section 4 is not a Markov
chain.

2. The model

We consider a cobweb-type model with linear demand and a backward-bending supply curve
(i.e., a concave parabola). (This formulation for the supply function was proposed in Jensen
and Urban [12].) A supply curve of this type is economically justified, for instance, by the
presence of external economies, that is by the advantage that businesses do not gain from their
individual expansion, but rather from the expansion of the industry as a whole (see Sraffa
[16]).
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According to the previous considerations, demand and supply are given by

Dt+1 = D
(
pt+1
)
= a + bpt+1,

St+1 = S
(
Pet
)
= c + dPet + e

(
Pet
)2
,

(2.1)

where Dt+1, St+1 are, respectively, the amount of goods demanded by consumers and the
amount of goods supplied by the entrepreneurs at time t + 1; and a, b, c, d, e are real constants
such that b < 0, d > 0 and e < 0. In our model pt, Pet are, respectively, the price of the goods at
time t and the expectation at time t of the price at time t + 1.

The market clearing equation Dt+1 = St+1 gives a quadratic and convex relationship
between pt+1 and Pet , that is:

pt+1 = D−1(S
(
Pet
))

(2.2)

that can be rearranged to obtain the well-known logistic map(the logistic map can be obtained
from (2.2) by a linear transformation in the variable Pet ):

pt+1 = fμ
(
Pet
)
= μPet

(
1 − Pet

)
, 1 < μ < 4. (2.3)

This last formulation is the same as the one reached by Jensen and Urban [12]. As a matter of
fact, we will consider pt ∈ [0, 1], for all t, where interesting dynamics occurs.

The map fμ is a function of expectations so that we are considering two different
formulations for the expectation formation mechanism. Despite the fact that in an uncertain
context, economic agents do not have a perfect forecasting ability and therefore need to apply
some sort of extrapolative method to formulate hypotheses on the future level of prices, we
assume that they are aware of the market equilibrium level.

2.1. Backward-looking expectation

We consider the backward-looking component to extract the future expected market price
value from the prices observed in the past through an infinite memory process (this iterative
scheme is known as Mann iteration, see Mann [17]). The use of this type of learning mechanism
is rather “natural” if the agent uses all the information available, that is, all the historical
price values. In our model Pet is the weighted mean of the previous values taken by the real
variable pt, measured with decreasing weights given by the terms of a (normalized) geometric
progression of parameter ρ (0 ≤ ρ ≤ 1), called memory rate:

Pet =
t∑

k=0

ρt−k

Wt
pk, ρ ∈ (0, 1), Wt =

t∑

k=0

ρt−k =
1 − ρt+1

1 − ρ . (2.4)

Note that when ρ→0, naive or static expectations are considered; while when ρ→1, (2.4)
becomes the arithmetic mean of past prices. This kind of expectations have been used by
several authors such as Balasko and Royer [7], Bischi and Naimzada [8], Invernizzi and
Medio [18], and Aicardi and Invernizzi [19]. They have also been studied in Michetti [20]
and in Mammana and Michetti [10] where the model studied here has been considered
in the deterministic contest. (Equation (2.3) with backward expectation as in (2.4) has an
equivalent autonomous limit form describing the expectation prices dynamics, that is Pet+1 =
−μ(1 − ρ)(Pet )

2 + [μ(1 − ρ) + ρ]Pet that can be used to study the asymptotic behaviour of
the sequence {Pet }∞t=0 and consequently of the sequence {pt}∞t=0 through fμ. See Aicardi and
Invernizzi [19] and Bischi et al. [21].)
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2.2. Forward-looking expectation

We consider a forward-looking expectation creation mechanism. In order to introduce a more
sophisticated predictor, we assume that the representative supplier of the goods knows the
market equilibrium price, namely P�, but at the same time he knows that the process leading
to the equilibrium is not instantaneous. In other words, we do not assume that prices come
back to their equilibrium value P� instantaneously, as was assumed in Mammana and Michetti
[10].

Our assumption is consistent with the conclusion reached in many dynamical cobweb
models (see, e.g., Hommes [5] and Gallas and Nusse [6]) where it is proved that prices
converge to the steady state, that is, to the equilibrium price, only in the long-run. According
to such considerations we use the following equation to describe the forward-looking
expectation:

Pet = P� + γ
(
pt − P�

)
, γ ∈ (0, 1), P� =

μ − 1
μ

, μ > 1, (2.5)

where P� > 0 is the long-run equilibrium price. We note that P� is independent of the
expectation mechanism introduced. According to (2.5), the agent expects a weighted mean
between the last observed price and the equilibrium price. The economic intuition behind the
choice made in (2.5) is the following: if pt > P� (pt < P�) the agent expects that the price
decreases (increases) toward its equilibrium value; in other words, the expected price moves
in the direction of the equilibrium value.

2.3. Choosing between expectations

We assume that the representative agent chooses between the two predictors (the backward
and the forward predictors) as follows:

Pet =

⎧
⎪⎨

⎪⎩

t∑

k=0

ρt−k

Wt
pk, with probability q, 0 ≤ q ≤ 1,

P� + γ
(
pt − P�

)
, with probability (1 − q),

(2.6)

that is, Pet is a random variable and consequently the dynamical system (2.3) describing the
price evolution in time is a stochastic dynamical system, in fact the sequence of the prices
pt+1, t = 0, 1, . . ., is a sequence of random variables, that is, it is a discrete time stochastic process
obtained through the repeated application of fμ to Pet as shown in (2.3). Via (2.6), heterogeneity
in beliefs is introduced, more specifically (2.6) translates the assumption that on average, a
fraction q of the agents is “backward-looking” while a fraction 1 − q of the agents is “forward-
looking.”

In this paper, we want to study the stochastic process pt, t = 0, 1, . . ., both from the
theoretical and the numerical points of view (in this last case we will use elementary numerical
methods and statistical simulations). In particular we want to describe the probability
distribution of the discrete time stochastic process pt, t = 0, 1, . . . as a function of the parameters
defining the model.
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3. Naive versus forward-looking expectations

3.1. The discrete time stochastic process

We consider the discrete time stochastic process pt, t = 0, 1, . . ., with memory rate ρ equal
to zero, that is, static and forward-looking expectations are assumed. Lack of memory is the
crucial assumption to obtain the price dynamics described by a Markov process.

Let xt be a possible value of the price, then our stochastic process evolves according to
the conditional probability of going from state xt at time t to state xt+1 at time t + 1. Let this
Markovian conditional probability be denoted by ψ(pt+1 = xt+1 | pt = xt).

According to the Markov property, sometime called memoryless property, the state of
the system at the future time t + 1 depends only on the system state at time t and does not
depend on the state at earlier times. The Markov property can be stated as follows: ψ(pt+1 =
xt+1 | pt = xt, . . . , p0 = x0) = ψ(pt+1 = xt+1 | pt = xt), for all possible choices of the states
x0, x1, . . . , xt, xt+1 and of the time t. In order to obtain a Markov process given by a random
variable Pt which takes only discrete values at time t = 0, 1, . . ., we first discretize model (2.3)
assuming

Pt+1 = f
(
Pet
)
=

⎧
⎪⎨

⎪⎩

0, if pt+1 = fμ
(
Pet
)
= 0,

n, if pt+1 = fμ
(
Pet
) ∈
(
n − 1

10
,
n

10

]
, n = 1, 2, . . . , 10,

(3.1)

so that the price assumes 11 values (0, 1, . . . , 10). Consider the following new variables resulting
from a discretization of the interval [0, 1] in the way such that

(i) p̃t = 0 if pt = 0 and p̃t = n/10 if pt ∈ ((n − 1)/10, n/10, ], n = 1, 2, . . . , 10, while

(ii) Pt = 0 if pt = 0 and Pt = n if pt ∈ ((n − 1)/10, n/10, ], n = 1, 2, . . . , 10.

Then

Pet =

⎧
⎨

⎩

p̃t with probability q,

γp̃t + (1 − γ)P�, with probability (1 − q).
(3.2)

Finally we associate each value of the price with a state

Pt = s iff Pt = s − 1, s = 1, 2, . . . , 11 (3.3)

so that we obtain the state set S = {1, 2, . . . , 11}.
Note that the corresponding process may be treated as a discrete-time Markov chain,

whose state space is S = {1, 2, . . . , 11} (we use a state space S made of eleven states numbered
from 1 to 11 for simplicity). The transition matrix is given by A = [ψij], i, j ∈ S, where ψij =
ψ(Pt+1 = j | Pt = i), i, j ∈ S, is the transition probability of going from state i to state j, i, j ∈ S.
We have ψij ∈ [0, 1], i, j ∈ S and

∑
j∈Sψij = 1, i ∈ S.

It is easy to see that the transition probabilities ψij of models (2.3), (3.1), (3.3) depend
only on the value of the current state i and the value of the following state j, regardless of the
time t when the transition occurs, consequently the Markov chain considered is homogeneous.
The homogeneity property implies that the m-step state transition probability

ψ
(m)
ij = ψ

{
Pt+m = j | Pt = i

}
, i, j ∈ S, m = 1, 2, 3, . . . , (3.4)

is also independent of t and it can be defined as

ψ
(m)
ij =

∑

k∈S
ψ
(m−1)
ik

ψ
(m−1)
kj

, i, j ∈ S, m = 2, 3, . . . , (3.5)
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so that the m-step transition matrix A(m) is given by

A(m) = Am. (3.6)

We are interested in the probability that Pt is in state j ∈ S at time t, when at time 0P0 it
is in state k with probability one.

Let the probability vector be denoted by π(m) = (π1(m), . . . , π11(m)), where πj(m) is the
probability that Pt is in state j after m steps, j ∈ S. The probability distribution can be obtained
through

π(m) = π(m − 1)A = π(0)Am. (3.7)

Note that π(0) = (π1(0), π2(0), . . . , π11(0)) and that πi(0) = δik, i = 1, 2, . . . , 11, where δik is the
Kronecher delta.

Recall that a subset Λ ⊂ S is closed if ψij = 0, for all (i, j) : i ∈ Λ, j /∈Λ, while Λ is irreducible
if for all pairs (i, j) ∈ Λ there exists a positive integer k such that ψ(k)

ij > 0. The subset Λ is
reducible if it is not irreducible. Finally we recall the notions of recurrent and transient states. A
state i is called recurrent (transient) if

∑∞
m=1ψ

(m)
ii = ∞ (< ∞). (Regarding these definitions see,

e.g., Feller [22].)
We now assume γ = 0.5 and we prove a general result about the Markov chain for some

values of μ.

Proposition 3.1. For all μ ∈ (1, 3.6), the transition matrix A is reducible.

Proof. Consider Pt+1 = j = 11. If no state Pt = i /= j ∈ S exists such that fμ(Pet ) ∈ (0.9, 1] ⇒
μPet (1 − Pet ) > 0.9 then A is reducible. This last inequality has no solution if μ ∈ (1, 3.6), hence
j = 11 cannot be reached by another state. The proposition is proved.

We now fix the value of the parameter μ in (3.3), (3.1) in order to determine the transition
matrixA and to obtain the invariant distribution. In fact, some numerical insight will be helpful
to draw some general conclusions on the qualitative properties of the process considered.

In a first experiment, we assume μ = 2 and γ = 0.5, in this case we obtain a transition
matrix A(11 × 11) whose nonzero entries are ψ1,1 = ψ2,3 = ψ3,5 = ψ9,5 = ψ10,3 = ψ11,1 = q,
ψ1,5 = ψ2,6 = ψ3,6 = ψ9,6 = ψ10,6 = ψ11,5 = 1 − q and ψi,6 = 1, 4 ≤ i ≤ 8.

As previously proved A is reducible, moreover by simply rearranging the order of the
states in A, it is possible to see that {6} is the unique closed set of the chain and that it is an
absorbing state. This result holds for other values of μ as stated in the following proposition.

Proposition 3.2. Assume γ = 0.5. For all μ ∈ (μk, μk+1], k = 0, 1, . . . , 4, where μk = 10/(10 − k) and
μk+1 = 10/(10 − (k + 1)), the state k + 2 is an absorbing state.

Proof. Assume μ ∈ (μk, μk+1], k = 0, 1, . . . , 4.
Let

pt ∈
(
k

10
,
k + 1

10

]
=⇒ p̃t =

k + 1
10

, Pt = k + 1, (3.8)

hence Pt = k + 2.
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First consider that with probability q also Pet = p̃t hence fμ(Pet ) = fμ((k + 1)/10). Notice
that fμ is increasing in μ then fμ(Pet ) ∈ (fμk(P

e
t ), fμk+1(P

e
t )]. Trivial computations show that

fμk
(
Pet
)
=
k + 1

10
9 − k
10 − k >

k

10
, as k = 0, 1, . . . , 4; fμk+1

(
Pet
)
=
k + 1

10
. (3.9)

As a consequence fμ(Pet ) ∈ (k/10, (k + 1)/10] and consequently Pt+1 = k + 1 implying that
Pt+1 = k + 2.

Second, with probability (1 − q), we have

Pet = 0.5p̃t + 0.5P ∗ =
k + 1

20
+
μ − 1

2μ
, (3.10)

hence fμ(Pet ) = fμ(0.5p̃t + 0.5P ∗); again fμ is increasing in μ and, trivially, we have

fμk
(
Pet
)
=

2k + 1
20

19 − 2k
20 − 2k

>
k

10
, while fμk+1

(
Pet
)
=
k + 1

10
. (3.11)

Using the same arguments employed before, we conclude that the state k + 2 is mapped into
the state k + 2.

Hence ψk+2,k+2 = 1.

As proved in Proposition 3.2, we can conclude that our chain admits an absorbing state
if μ ∈ (0, 2], confirming the result obtained with our simulations.

Let us recall some mathematical results concerning the stability of Markov chains (for
further details see, among others, Feller [22] and Meyn and Tweedie [23]). A stationary
distribution is a probability distribution π verifying the equation πA = π . If there exists one,
and only one, probability distribution π such that ‖π(0)Am − π‖→0 as m→∞ for every initial
probability distribution π(0), we say that the Markov chain is asymptotically stable .

In our case, for μ = 2, the Markov chain is asymptotically stable. In fact the limit
distribution π = (π1, π2, . . . , π11), where πj = limm→∞πj(m), j ∈ S, is the distribution
πj = δj,6, j ∈ S, and this result holds for every initial probability distribution π(0).

The asymptotic behaviour of the probability distribution changes if we consider a
different value of μ, for example μ = 2.8 (notice that for this value of μ Proposition 3.2 does
not hold). In this case we obtain a transition matrix A whose nonzero entries are as follows:
ψ1,1 = ψ2,4 = ψ3,6 = ψ4,7 = ψ8,7 = ψ9,6 = ψ10,4 = ψ11,1 = q, ψ1,8 = ψ2,8 = ψ3,8 = ψ4,8 = ψ8,8 = ψ9,7 =
ψ10,6 = ψ11,6 = 1 − q and ψi,8 = 1, 5 ≤ i ≤ 7.

Rearranging the order of the states in A, it is easy to deduce that A is reducible (as
proved in Proposition 3.1): the set Λ = {7, 8} ⊂ S is closed and irreducible, consequently the
states j = 7 and j = 8 are recurrent while all the other states are transient. Moreover, considering
the irreducible matrix

A =

(
0 1
q 1 − q

)

(3.12)

we obtain the invariant distribution given by (the nonzero elements of the invariant
distribution are obtained by looking at the left eigenvectors of matrix A )

π =
[
0, 0, 0, 0, 0, 0, q/(q + 1), 1/(q + 1), 0, 0

]
. (3.13)
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Figure 1: Probability distributions after m-time steps obtained using function (3.3) with μ = 2, γ = 0.5,
q = 0.6 and initial condition P0 = 2 with probability one, that is πi(0) = δi,2, i = 1, 2, . . . , 11.

11109876543210
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0
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1

π
j(
m
)

m = 1

(a)

11109876543210
j
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0.4

0.6

0.8

1

π
j(
m
)
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(b)

Figure 2: Probability distributions after m-time steps obtained using (3.3) with μ = 2.8, γ = 0.5, q = 0.6, and
initial condition P0 = 2 with probability one, that is, πi(0) = δi,2, i = 1, 2, . . . , 11.

The following simulations support our analysis. We choose q = 0.6 and we calculate the
probability distribution of the state variable after m-steps for several initial conditions.

First of all we consider the case μ = 2. In Figure 1 we start from the initial condition
P0 = 2 with probability one, that is from πi(0) = δi,2, i ∈ S. After the first step two states can be
reached with different probabilities. After the third step we have that the state j = 6 is reached
with probability equal to one as supported by the previous considerations. This situation does
not change if the number of steps taken is increased since j = 6 is the unique asymptotic state.
It should be kept in mind that for a given initial distribution π(0) we define an asymptotic state
as a state j ∈ S such that πj /= 0.

In Figure 2 we calculate the probability distribution for m = 1 and m = 150 when μ = 2.8.
Our simulation proves that two equilibrium prices will be approached in the long run with
different probabilities.

Moreover, considering simulations for different values of μ it seems that as μ increases
the process becomes more complicated, this was already known in the case of the deterministic
logistic map (see, e.g., Devaney [24]). In fact several asymptotic states can be reached
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43.532.521.51
μ
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j

Figure 3: Asymptotic states versus μ for γ = 0.5, q = 0.6, and an arbitrary initial condition.

as μ increases. More precisely, starting from the same initial condition we have found different
numbers of asymptotic states corresponding to different values of μ.

The diagram of Figure 3 represents a sort of final-states diagram: for μ chosen in the
interval I = [1, 4], the probability distribution after m-time steps, with m big enough (we
have considered m = 500) and an arbitrarily chosen initial state (we have chosen P0 = 3
with probability one, that is πi(0) = δi,3, i ∈ S), has been calculated and depicted versus the
correspondent value of μ. Moreover, after a large number of simulations, we have observed
that the final-states diagram does not change when different initial conditions are considered
so that Figure 3 seems to hold for every initial distribution π(0). The empirical result described
here is in agreement with the result proved in Proposition 3.2, furthermore we can conclude
that the absorbing state existing for μ ≤ 2 is also an asymptotic state.

The situation is quite different for greater values of μ. For example, our calculation shows
that there exists a value μ ∈ (3.33, 3.34) such that the process converges to a unique asymptotic
state if μ ∈ [3.33, μ) while five asymptotic states are possible as soon as the parameter value μ
is crossed. According to these considerations, μ can be understood as a sort of bifurcation value
or critical value since the number of long-run states changes going across μ = μ. In Figure 4, we
simulate the two cases μ = 3.33 and μ = 3.34 using a large number of time steps m, in order to
show how the asymptotic probability distribution obtained changes.

This study allows us to conclude that, in the case with naive versus forward-looking
expectations, there exists a unique asymptotic distribution whose behaviour becomes more
complicated as μ increases, according to the fact that nonlinearity implies nontrivial dynamics.

Obviously, the quantitative results are not independent of the number of states
considered, in any case it is possible to verify that the qualitative results (i.e., the increase
in complexity as μ increases) still hold. As a matter of fact, note that a similar scenario occurs
when we consider the model in a deterministic contest with naive expectations. In fact, in this
case, the price sequence converges to a fixed point or to a 2-period cycle depending on the
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Figure 4: Probability distributions after m-time steps obtained using (3.3) with γ = 0.5, q = 0.6, and initial
condition P0 = 2 with probability one, that is, πi(0) = δi,2, i = 1, 2, . . . , 11, with different values of μ : μ =
3.33 (panel (a)) and μ = 3.34 (panel (b)).

value of μ, and the process as μ increases produces orbits tending towards high-period cycles
(see Devaney [24]).

3.2. The continuous-time stochastic process

In this section we move on to the continuous-time Markov process, we calculate the probability
distribution solving the appropriate system of ordinary differential equations and we compare
it with the probability distribution obtained by statistical simulation of the appropriate
continuous-time limit of the stochastic process defined by (2.3), (3.1), (3.3). (About the
mathematical concepts related to continuous Markov processes see Ethier and Kurtz [25].)

In particular, we start looking at the transition matrix B = B(Δt) over the time interval
Δt > 0. Using (3.7) and taking time steps of length Δt, we obtain that the following relation
holds π((m + 1)Δt) = π(mΔt)B(Δt).

Assuming mΔt = t, we have π(t + Δt) = π(t)B and when Δt goes to zero and m goes to
infinity in order to guarantee mΔt = t with t > 0 fixed, it is easy to deduce the following system
of ordinary differential equations called Chapman-Kolmogorov’s forward equations:

dπ

dt
(t) = π(t)Q, t > 0, (3.14)
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where the initial condition of (3.14) is π(0) = π0, where π0 is a given probability distribution
and Q = limΔt→0((B(Δt)− I)/Δt) is called infinitesimal generator matrix, whose entries are the
transition rates.

It is well known that the solution of (3.14) is given by

π(t) = π0e
Qt, (3.15)

where eQt =
∑∞

n=0((Qt)
n/n!). In order to define the transition matrix over the time interval Δt,

B(Δt), in terms of the infinitesimal generator matrix Q, we consider that the probability vector
π(t + Δt) can be expressed as follows:

π(t + Δt) = π(t) +
dπ

dt
Δt +O

(
Δt2
)
= π(t)[I +QΔt] +O

(
Δt2
)
, Δt −→ 0, (3.16)

where O(·) is the Landau symbol.
Since the interval [t0, t] is divided into m-time steps of length Δt, we have

π(t)[I +QΔt] +O
(
Δt2
)
= π0[I +QΔt]t/Δt+1 +O

(
Δt2
)
, Δt −→ 0, (3.17)

so that we have

π(t + Δt) = π0[I +QΔt]t/Δt+1 +O
(
Δt2
)
, Δt −→ 0. (3.18)

Then, the transition matrix B is given by

B(Δt) = I +QΔt. (3.19)

From (3.15) we have that calculating the exponential of the generator matrix Q times t;
and acting with this “exponential matrix” on π(0) we obtain the probability vector π(t) for
an arbitrary value of t > 0. Moreover, we observe that the matrix Q = [rij]i,j∈S defined as
Q = A− I, where A is the one-step transition matrix defined in the previous section and I is the
identity matrix, is an infinitesimal generator matrix. In fact it is easy to verify that the following
properties hold (see Inamura [26]):

(1)
∑11

j=1rij = 0, 1 ≤ i ≤ 11;

(2) 0 ≤ −rii ≤ 1, 1 ≤ i ≤ 11;

(3) rij ≥ 0, 1 ≤ i, j ≤ 11, with i /= j.

We present some simulations to compare the numerical solution obtained from
computing (3.15) with the statistical distribution obtained from simulations of the appropriate
continuous time limit of the stochastic process defined by (2.3), (3.1), (3.3).

In Figure 5, we consider the case μ = 2.8 and we observe that as Δt→0 and m→ + ∞
in such a way that the product Δt ·m is equal to a constant value t > 0, the statistical
distribution approaches the solution obtained solving numerically (3.14) with the appropriate
initial condition, that is computing (3.15).

Figure 6 confirms that the same conclusion holds if we consider the parameter value
μ = 3.34.
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Figure 5: Solution obtained using finite differences and solution obtained using statistical simulation at
time t = 4 for μ = 2.8, γ = 0.5, q = 0.6, and initial condition P0 = 3 with probability one, that is πi(0) =
δi,3, i = 1, 2, . . . , 11. We compare the results obtained using different values of the time discretization step
Δt.
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Figure 6: Solution obtained using finite differences and solution obtained using statistical simulation for
μ = 3.34, at time t = 8 for μ = 3.34, γ = 0.5, q = 0.6, and initial condition P0 = 3 with probability one,
that is πi(0) = δi,3, i = 1, 2, . . . , 11. We compare the results obtained using different values of the time
discretization step Δt.

4. The role of the memory rate: numerical simulations

We now come back to the initial model with discrete time, continuous states, ρ is not necessarily
zero and performs some numerical simulations for several choices of the parameters. In this
way it is possible to compare different markets made up by agents applying naive and infinite-
memory expectations, each of them versus forward-looking ones.
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Our simulations have been performed as follows:

(i) we want to depict a trajectory starting at time zero from an initial condition P0,
concentrated with probability one in one state, from time t = 0 to time t = m. We
extract an m-dimensional random vector q′ whose i th component is denoted with q′i
made of m random numbers independent and uniformly distributed in the interval
[0, 1]. At step i of the trajectory simulation we compare q′i to the given value of q
and we choose consequently the expectation-mechanism formation and we apply the
map (2.3). Repeating this procedure at each time step, we depict the trajectory of the
stochastic dynamical system in the plane (t, Pt). Obviously, different extractions of
the random vector q′ correspond, in general, to different trajectories of the stochastic
dynamical system;

(ii) we repeat the previous procedure several times, that is, we extract a large number
of vectors q′ of random numbers so that we obtain a sufficiently large number of
trajectories of the stochastic dynamical system. In this way for any given time t we
have constructed a sample of the possible outcomes for Pt. It is then straightforward
to draw an approximate probability distribution of the random variable Pt.

This procedure is in agreement with the consideration of a market made of a large
number of agents and with the heterogeneity of beliefs, that is, with the assumption that, on
average, agents distribute between the two predictors in the fractions q and (1−q), respectively.

We first assume ρ = 0 as done in the previous section. Our goal is to find numerically
the distribution of the random variable Pt at time t and to consider the behaviour of this
distribution as t→∞.

We represent the evolution in time of Pt for γ = 0.5 and q = 0.6. In Figure 7, in panel (a),
three different trajectories are depicted for μ = 2.9; in panel (b) the probability distributions
are presented for several values of the time variable t. Note that when t is big enough, the
equilibrium price P� � 0.65517 is approached by the stochastic cobweb model.

Completely different behaviours are observed if we change the value of the parameter
μ. For example, let us choose μ = 3.4 while the other parameters are the same as those used in
the previous simulations. In Figure 8, we show for these new parameter values the results of
the same simulation shown in Figure 7.

When μ = 3.4 the trajectories do not approach the equilibrium price but they continue to
move into a bounded interval even in the long run.

This behaviour is closely related to that exhibited by the deterministic cobweb model
with naive expectations and with the dynamics of the logistic map. In fact as μ increases the
deterministic cobweb model produces more and more complex dynamics. Similarly, in the
stochastic contest, prices no longer converge to the equilibrium value, but fluctuate infinitely
many times. Consider now ρ /= 0. We want to understand how the memory rate affects the
asymptotic probability distribution of our stochastic model. Assume μ = 3.4 as in the previous
simulation and let ρ increase from zero toward one. An interesting observation is that as the
memory rate ρ increases, the unique equilibrium price is reached after a number of time steps
which decrease, thus confirming the stabilizing effects of the presence of resistant memory. The
same effect has been observed in the deterministic contest. This consideration is confirmed by
the simulation shown in Figure 9 representing the trajectories depicted for several increasing
values of ρ.



Serena Brianzoni et al. 15

151050
t

0.4

0.5

0.6

0.7

0.8

P
t

(a)

10.50
Pt

0

100

200

300

400

π

t = 2

10.50
Pt

0

200

400

600

800

1000

π

t = 30

(b)

Figure 7: (a) Three trajectories produced by the stochastic process defined by (2.3) for P0 = 0.6 with
probability one, μ = 2.9, γ = 0.5, q = 0.6, and ρ = 0; (b) Probability distributions at different time values for
the model considered in panel (a). The probability distributions are approximated starting from a sample
made of 1000 individuals.

Similar results have been observed considering several other parameter values. All the
experiments confirm the well-known result obtained for the deterministic cobweb model with
infinite memory expectation, that is the fact that the presence of resistant memory contributes
to stabilizing the price dynamics.

5. Conclusions

We studied a nonlinear stochastic cobweb model with a parabolic demand function and two
price predictors, called backward-looking (based on a weighted mean of past prices) and
forward-looking (based on a convex combination of actual and equilibrium price), respectively.
The representative agent chooses between expectations, this fact may be interpreted as a
population of economic agents such that, on average, a fraction chooses a kind of expectation
while a different kind of expectation is chosen by the remaining fraction of agents. Since a
random choice between the two price expectations is allowed (a possible motivation is the



16 Discrete Dynamics in Nature and Society

4003002001000
t

0

0.2

0.4

0.6

0.8

1

P
t

(a)

10.50
Pt

0

50

100

150

200

π

t = 3

(b)

10.50
Pt

0

10

20

30

40

50

60

70

π

t = 30

10.50
Pt

0

20

40

60

80

100

120

π

t = 300

(c)

Figure 8: (a) Three trajectories produced by the stochastic process defined by (2.3) for P0 = 0.5 with
probability one, μ = 3.4, γ = 0.5, q = 0.6, and ρ = 0; (b) (c) probability distributions at different time
values for the model considered in panel (a). The probability distributions are approximated starting from
a sample of 1000 individuals.
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Figure 9: Trajectories produced by the stochastic process defined by (2.3) for P0 = 0.5 with probability one,
μ = 3.4, γ = 0.5, q = 0.6, and different values of ρ: (a) ρ = 0.01, (b) ρ = 0.1, (c) ρ = 0.2.
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assumption of heterogeneity in beliefs among agents), we have considered a new element that
is the stochastic term in the well-known cobweb model. In fact, even if research into the cobweb
model has a long history, the existing literature is limited to the deterministic contest. As far
as we know, the dynamics of a cobweb model with expectations decided on the basis of a
stochastic mechanism have not been studied in the literature, so our paper may be seen as a
first step towards this direction, and our results may trigger further studies in this field.

In order to describe the features of the model, we have concentrated on the case in which
the backward predictor is simply a static expectation, so that the stochastic dynamical system
is a Markov process, considered both in discrete and continuous time.

By using an appropriate transformation, it has been possible to study a new discrete
time model with discrete states. In this way we have been able to apply some well-known
results regarding Markov chains with finite states and to prove some general analytical results
about the reducibility of the chain and the existence of an absorbing state for some values
of the parameters. We have also presented numerical simulations confirming our analytical
results. From an empirical point of view, we have observed that the absorbing state is also
an asymptotic state if parameter μ is small enough. On the other hand, for increasing values
of μ, the chain is still reducible although its closed set may be composed of more than one
state providing that cyclical behaviour is admitted in the stochastic cobweb model, as in the
deterministic one. Other evidence is related to the sensitivity of the invariant distribution to
little changes of the parameter μ. The study done for the discrete time stochastic model with
finite states enables us to conclude that as μ increases the process becomes more complicated
confirming the well-known results of the deterministic logistic map.

In a following step we moved to the continuous-time Markov process in order to use
analytical tools on differential equations that made it possible to obtain the exact probability
distribution at any time t. By solving the appropriate system, the probability distribution has
been obtained and some numerical simulations have been presented by calculating the time
limit of the discrete-time Markov chain. We have shown that as the time discretization step
Δt goes to zero, the result of the statistical simulation approaches the probability distribution
obtained analytically.

Finally, we come back to the case with backward expectations with memory. Since
the model become quite difficult to be treated analytically, we presented some numerical
simulations that enable us to consider the role of the memory rate in the stochastic cobweb
model. We have found that the presence of resistant memory affects the asymptotic probability
distribution: it contributes to reducing fluctuations and to stabilizing the price dynamics thus
confirming the standard result in economic literature.
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Urbino, Italy, 1996.

[22] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, Wiley Series in Probability
and Mathematical Statistics, John Wiley & Sons, New York, NY, USA, 2nd edition, 1971.

[23] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Communications and Control
Engineering Series, Springer, London, UK, 1993.

[24] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Studies in Nonlinearity,
Addison-Wesley, Redwood City, Calif, USA, 2nd edition, 1989.

[25] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley Series in
Probability and Mathematical Statistics, John Wiley & Sons, New York, NY, USA, 1986.

[26] Y. Inamura, “Estimating continuous time transition matrices from discretely observed data,” Bank of
Japan Working Paper Series No. 06-E 07, 2006.


	Introduction
	The model
	Backward-looking expectation
	Forward-looking expectation
	Choosing between expectations

	Naive versus forward-looking expectations
	The discrete time stochastic process
	The continuous-time stochastic process

	The role of the memory rate: numerical simulations
	Conclusions
	Acknowledgment
	References

