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1. Introduction

A part-metric related (PMR) inequality chain is a chain of inequalities of the form

min
1≤i≤n

{
ai,

1
ai

}
≤ f

(
a1, . . . , an

) ≤ max
1≤i≤n

{
ai,

1
ai

}
, (1.1)

which is closely related to the well-known part metric [1] and has important applications in
the study of difference equations [2–13]. Below are three previously known PMR inequality
chains:

min
1≤i≤4

{
ai,

1
ai

}
≤ a1 + a2 + a3a4

a1a2 + a3 + a4
≤ max

1≤i≤4

{
ai,

1
ai

}
(see [5]), (1.2)

min
1≤i≤k

{
ai,

1
ai

}
≤ a1 + · · · + ak−2 + ak−1ak

a1a2 + a3 + · · · + ak
≤ max

1≤i≤k

{
ai,

1
ai

}
(see [11]), (1.3)

min
1≤i≤5

{
ai,

1
ai

}
≤ (1 +w)a1a2a3 + a4 + a5

a1a2 + a1a3 + a2a3 +wa4a5
≤ max

1≤i≤5

{
ai,

1
ai

}
, 1 ≤ w ≤ 2 (see [13]). (1.4)
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In this article, we establish the following PMR inequality chain:

min
1≤i≤2p−1

{
ai,

1
ai

}
≤ hw(a1, . . . , a2p−1) ≤ max

1≤i≤2p−1

{
ai,

1
ai

}
, (1.5)

where hw will be defined in the next section, p − 2 ≤ w ≤ p − 1. When p = 3, chain (1.5) reduces
to chain (1.4). On this basis, we prove that the difference equation

xn = hw

(
xn−2p+1, . . . , xn−1

)
, n = 1, 2, . . . , (1.6)

with positive initial conditions admits a globally asymptotically stable equilibrium c = 1.

2. Main results

This section establishes the main results of this paper. For a function f(a1, . . . , a2p−1), let

f
(
a1, . . . , a2p−1

)|
i1∼ir = f

(
a1, . . . , a2p−1

)|
aij=m,1≤j≤r . (2.1)

Lemma 2.1. Let a1, . . . , an, b1, . . . , bn > 0. Then min1≤i≤n{ai/bi} ≤ (a1 + · · · + an)/(b1+
· · · + bn) ≤ max1≤i≤n{ai/bi}. One equality in the chain holds if and only if a1/b1 = · · · = an/bn.

For p ≥ 3 and w > 0, define a function hw : (R+)
2p−1 → R+ as follows:

hw

(
a1, . . . , a2p−1

)
=
(1 +w)

∏p

i=1ai +
∏2p−1

i=p+1ai ×
∑2p−1

i=p+1

(
1/ai

)
∏p

i=1ai ×
∑p

i=1

(
1/ai

)
+w

∏2p−1
i=p+1ai

. (2.2)

Below are two examples of this function:

hw

(
a1, . . . , a5

)
=

(1 +w)a1a2a3 + a4 + a5

a1a2 + a1a3 + a2a3 +wa4a5
,

hw

(
a1, . . . , a7

)
=

(1 +w)a1a2a3a4 + a5a6 + a5a7 + a6a7

a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4 +wa5a6a7
.

(2.3)

For brevity, let hw = hw(a1, . . . , a2p−1). Note that, for each ar , hw is linear fractional in ar .
As a consequence, hw is monotone in ar . Through simple calculations, we get the following
two lemmas.



Xiaofan Yang et al. 3

Lemma 2.2. Let p ≥ 3, a1, . . . , a2p−1 > 0,m = min1≤i≤2p−1{ai}, 1 ≤ r ≤ p.

(1) If hp−2 is increasing in ar , then hp−2 ≤ (p − 1)/
∑p

i=1,i/=r(1/ai). The equality holds if and only
if hp−2 is constant in ar .

(2) If hp−2 is strictly decreasing in ar , then hp−2 ≤ hp−2|ar=m. The equality holds if and only if
ar = m.

Lemma 2.3. Let p ≥ 3, a1, . . . , a2p−1 > 0,m = min1≤i≤2p−1{ai}, p + 1 ≤ r ≤ 2p − 1.

(1) If hp−2 is increasing in ar , then hp−2 ≤ ∑2p−1
i=p+1,i/=r(1/ai)/(p − 2). The equality holds if and

only if hp−2 is constant in ar .

(2) If hp−2 is strictly decreasing in ar , then hp−2 ≤ hp−2|ar=m. The equality holds if and only if
ar = m.

Theorem 2.4. Let p ≥ 3, a1, . . . , a2p−1 > 0. Then min1≤i≤2p−1{ai, 1/ai} ≤ hp−2 ≤
max1≤i≤2p−1{ai, 1/ai}. One of the two equalities holds if and only if a1 = · · · = a2p−1 = 1.

Proof. Letm = min1≤i≤2p−1{ai}, M = max1≤i≤2p−1{ai}.
We prove only hp−2 ≤ max{M, 1/m} because min{M, 1/m} ≤ hp−2 can be proved simi-

larly. We proceed by distinguishing two possible cases.
Case 1. There is a permutation i1, . . . , i2p−1 of 1, 2, . . . , 2p − 1 such that for each 1 ≤ k ≤ 2p − 1,
either aik = m or hp−2|i1∼ik−1 is strictly decreasing in aik . Then

hp−2 ≤ hp−2|i1 ≤ · · · ≤ hp−2|i1∼i2p−1 =
1
2

(
m +

1
m

)
≤ max

{
m,

1
m

}
≤ max

{
M,

1
m

}
. (2.4)

Case 2. There is a partial permutation i1, . . . , ir of 1, 2, . . . , 2p − 1 (1 ≤ r ≤ 2p − 2) such that (a)
for each 1 ≤ k ≤ r, either aik = m or hp−2|i1∼ik−1 is strictly decreasing in aik , and (b) for each
t ∈ {1, . . . , 2p − 1} − {i1, . . . , ir}, ait/=m and hp−2|i1∼ir is increasing in at. Then

m < M, hp−2 ≤ hp−2|i1 ≤ hp−2|i1∼i2 ≤ · · · ≤ hp−2|i1∼ir . (2.5)

Since r ≤ 2p − 2, there is t ∈ {1, . . . , 2p − 1} − {i1, . . . , ir}. If t ∈ {1, . . . , p} − {i1, . . . , ir}, it
follows from (2.5) and Lemma 2.2 that

hp−2 ≤ hp−2|i1∼ir ≤
(p − 1)∑p

i=1,i/=t

(
1/ai

)|i1∼ir ≤ max
1≤i≤p,i/=t

{
ai

}|i1∼ir ≤ M ≤ max
{
M,

1
m

}
. (2.6)

Whereas if t ∈ {p + 1, . . . , 2p − 1} − {i1, . . . , ir}, it follows from (2.5) and Lemma 2.3 that

hp−2≤ hp−2|i1∼ir ≤
∑2p−1

i=p+1,i/=t

(
1/ai

)
(p − 2)|i1∼ir

≤ max
p+1≤i≤2p−1,i/=t

{
1
ai

}
|i1∼ir ≤

1
m

≤ max
{
M,

1
m

}
. (2.7)

Hence, hp−2 ≤ max{M, 1/m} is proven.
Second, we prove that a1 = · · · = a2p−1 = 1 if hp−2 = max{M, 1/m}. The claim of “a1 =

· · · = a2p−1 = 1 if hp−2 = min{M, 1/m}” can be treated similarly. To this end, we need to prove
the following.

Claim 1. If hp−2 = max{M, 1/m}, then there is a permutation i1, . . . , i2p−1 of 1, . . . , 2p − 1 such
that for each 1 ≤ k ≤ 2p − 1, either aik = m or hp−2|i1∼ik−1 is strictly decreasing in aik .



4 Discrete Dynamics in Nature and Society

Proof of Claim 1. On the contrary, assume that Claim 1 is not true. Then there is a partial permu-
tation i1, . . . , ir of 1, 2, . . . , 2p − 1 (1 ≤ r ≤ 2p − 2) such that (a) for each 1 ≤ k ≤ r, either aik = m
or hp−2|i1∼ik−1 is strictly decreasing in aik , and (b) for each t ∈ {1, . . . , 2p − 1} − {i1, . . . , ir}, ait/=m
and hp−2|i1∼ir is increasing in at. One of the following two cases must occur.
Case 1. There is t ∈ {1, . . . , 2p − 1} − {i1, . . . , ir} such that hp−2|i1∼ir is strictly increasing in at. If
t ∈ {1, . . . , p} − {i1, . . . , ir}, it follows by (2.5), (2.6), and Lemma 2.2 that

hp−2 ≤ hp−2|i1∼ir <
(p − 1)∑p

i=1,i/=t

(
1/ai

)|
i1∼ir

≤ max
1≤i≤p,i/=t

{
ai

}|i1∼ir ≤ max
{
M,

1
m

}
. (2.8)

A contradiction occurs. Whereas if t ∈ {p + 1, . . . , 2p − 1} − {i1, . . . , ir}, it follows by (2.5), (2.7),
and Lemma 2.3 that

hp−2 ≤ hp−2|i1∼ir <
∑2p−1

i=p+1,i/=t

(
1/ai

)
(p − 2)|i1∼ir

≤ max
p+1≤i≤2p−1,i/=t

{
1
ai

}
|i1∼ir ≤ max

{
M,

1
m

}
. (2.9)

Again a contradiction occurs.
Case 2. For each t ∈ {1, . . . , 2p − 1} − {i1, . . . , ir}, hp−2|i1∼ir is constant in at.

First, let us show that {1, . . . , p} ⊆ {i1, . . . , ir}. Otherwise, there is t ∈ {1, . . . , p} − {i1,
. . . , ir}. By Lemma 2.2, we have

hp−2|i1∼ir =
(p − 1)∑p

i=1,i/=t

(
1/ai

)|
i1∼ir

. (2.10)

If there is s ∈ {1, . . . , p} − {i1, . . . , ir , t}, it follows from (2.10) that hp−2|i1∼ir is strictly increasing
in as, a contradiction occurs. So, {1, . . . , p} − {i1, . . . , ir} = {t} and thus

max
{
M,

1
m

}
= hp−2 ≤ hp−2|i1∼ir = hp−2(a1, . . . , a2p−1)|ai1=···=air=m = m < M, (2.11)

from which a contradiction follows. So, {1, . . . , p} ⊆ {i1, . . . , ir}.
According to the previous argument, there is t ∈ {p + 1, . . . , 2p − 1} − {i1, . . . , ir}. By

Lemma 2.3, we get

hp−2|i1∼ir =
∑2p−1

i=p+1,i/=t

(
1/ai

)
(p − 2)|i1∼ir

. (2.12)

If there is s ∈ {p + 1, . . . , 2p − 1} − {i1, . . . , ir , t}, it follows from (2.12) that hp−2|i1∼ir is strictly
decreasing in as, a contradiction. So, {p + 1, . . . , 2p − 1} − {i1, . . . , ir} = {t} and thus

a1 = · · · = at−1 = at+1 = · · · = a2p−1 = m. (2.13)

By (2.13) and (2.2), we get

hp−2 = hp−2|i1∼ir =
(p − 1)m3 +m + (p − 2)at

pm2 + (p − 2)mat
. (2.14)
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Since hp−2|i1∼ir is constant in at, and (d/dat)hp−2|i1∼ir = ((p − 1)(p − 2)m2(1 − m2))/

[pm2 + (p − 2)mat]
2, we derive m = 1. From (2.12) and (2.13), we get hp−2|i1∼ir = 1/m. Since

hp−2 = max{M, 1/m}, all equalities in chains (2.5) and (2.7) hold. These plus m = 1 yield
hp−2|i1∼ir = 1/m = 1 ≥ M, from which we derive M = m = 1. So, at = 1 = m. This is a
contradiction. Claim 1 is proved.

By Claim 1 and hp−2 = max{M, 1/m}, all equalities in (2.4) must hold. This plus
Lemma 2.2 yields a1 = · · · = a2p−1 = m and hp−2(m, . . . ,m) = (m + 1/m)/2 = m. This implies
a1 = · · · = a2p−1 = 1.

Theorem 2.5. Let p ≥ 3, a1, . . . , a2p−1 > 0. Then, min1≤i≤2p−1{ai, 1/ai} ≤ hp−1 ≤
max1≤i≤2p−1{ai, 1/ai}. One of the two equalities holds if and only if a1 = · · · = ap = 1/
ap+1 = · · · = 1/a2p−1.

Proof. By Lemma 2.1 and (2.2), we get

hp−1 ≤ max
{
a1, . . . , ap,

1
ap+1

, . . . ,
1

a2p−1

}
≤ max

1≤i≤2p−1

{
ai,

1
ai

}
,

hp−1 ≥ min
{
a1, . . . , ap,

1
ap+1

, . . . ,
1

a2p−1

}
≥ min

1≤i≤2p−1

{
ai,

1
ai

}
.

(2.15)

The second claim follows immediately from Lemma 2.1.
We are ready to present the main result of this paper.

Theorem 2.6. Let p ≥ 3, p − 2 ≤ w ≤ p − 1, a1, . . . , a2p−1 > 0. Let

ak = hw

(
ak−2p+1, . . . , ak−1

)
, k = 2p, 2p + 1, . . . . (2.16)

Then min1≤i≤2p−1{ai, 1/ai} ≤ ak ≤ max1≤i≤2p−1{ai, 1/ai}, k = 2p, 2p + 1, . . .. If k ≥ 2p + 1, then one
of the two equalities holds if and only if a1 = · · · = a2p−1 = 1.

Proof. Regard hw as a linear fractional function in w, which is monotone in w. By Theorems 2.4
and 2.5, we obtain

a2p ≥ min
{
hp−2

(
a1, . . . , a2p−1

)
, hp−1

(
a1, . . . , a2p−1

)} ≥ min
1≤i≤2p−1

{
ai,

1
ai

}
,

a2p ≤ max
{
hp−2

(
a1, . . . , a2p−1

)
, hp−1

(
a1, . . . , a2p−1

)} ≤ max
1≤i≤2p−1

{
ai,

1
ai

}
,

a2p+1 ≥ min
{
hp−2

(
a2, . . . , a2p

)
, hp−1

(
a2, . . . , a2p

)} ≥ min
2≤i≤2p

{
ai,

1
ai

}
≥ min

1≤i≤2p−1

{
ai,

1
ai

}
,

a2p+1 ≤ max
{
hp−2

(
a2, . . . , a2p

)
, hp−1

(
a2, . . . , a2p

)} ≤ max
2≤i≤2p

{
ai,

1
ai

}
≤ max

1≤i≤2p−1

{
ai,

1
ai

}
.

(2.17)

Working inductively, we conclude that for k = 2p, 2p + 1, . . .,

ak ≥ min
{
hp−2

(
ak−2p+1, . . . , ak−1

)
, hp−1

(
ak−2p+1, . . . , ak−1

)} ≥ min
1≤i≤2p−1

{
ai,

1
ai

}
, (2.18)

ak ≤ max{hp−2(ak−2p+1, . . . , ak−1), hp−1(ak−2p+1, . . . , ak−1)} ≤ max
1≤i≤2p−1

{
ai,

1
ai

}
. (2.19)
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Claim 2. If a2p+1 = max
1≤i≤2p−1

{ai, 1/ai}, then a1 = · · · = a2p−1 = 1.

Proof of Claim 2. By (2.19), we get

a2p+1 = max
{
hp−2

(
a2, . . . , a2p

)
, hp−1

(
a2, . . . , a2p

)}
= max

1≤i≤2p−1

{
ai,

1
ai

}
. (2.20)

Here, we encounter two possible cases.
Case 1. a2p+1 = hp−2(a2, . . . , a2p) = max1≤i≤2p−1{ai, 1/ai}. By Theorem 2.4, we get a2 = · · · =
a2p = 1 and, hence, a2p+1 = 1. Then 1 = a2p+1 = max1≤i≤2p−1{ai, 1/ai} = max{a1,
1/a1}, implying a1 = 1.
Case 2. a2p+1 = hp−1(a2, . . . , a2p) = max1≤i≤2p−1{ai, 1/ai}. By Theorem 2.5, we get

a2 = · · · = ap+1 =
1

ap+2
= · · · = 1

a2p
, (2.21)

and consequently,

a2p+1 = hp−1(a2, . . . , a2p) = a2. (2.22)

Then,

max
1≤i≤2p−1

{
ai,

1
ai

}
= a2p+1 =

1
a2p

≤ 1
min

{
hp−2

(
a1, . . . , a2p−1

)
, hp−1

(
a1, . . . , a2p−1

)}

≤ max
1≤i≤2p−1

{
ai,

1
ai

}
.

(2.23)

Hence, all equalities in this chain hold. In particular, we have

min
{
hp−2

(
a1, . . . , a2p−1

)
, hp−1

(
a1, . . . , a2p−1

)}
= min

1≤i≤2p−1

{
ai,

1
ai

}
. (2.24)

If hp−2(a1, . . . , a2p−1) = min1≤i≤2p−1{ai, 1/ai}, it follows from Theorem 2.4 that a1 = · · · =
a2p−1 = 1. Now, assume that hp−1(a1, . . . , a2p−1) = min1≤i≤2p−1{ai, 1/ai}. By Theorem 2.5, we
get

a1 = · · · = ap =
1

ap+1
= · · · = 1

a2p−1
. (2.25)

Equations (2.21) and (2.25) imply that a1 = · · · = a2p−1 = 1. Claim 2 is proven.

By Claim 2 and working inductively, we get that if ak = max1≤i≤2p−1{ai, 1/ai} for some
k ≥ 2p + 1, then a1 = · · · = a2p−1 = 1.
Similarly, we can show that a1 = · · · = a2p−1 = 1 if ak = min1≤i≤2p−1{ai, 1/ai} holds for

some k ≥ 2p + 1.
As an application of Theorem 2.6, we have the following theorem.

Theorem 2.7. Let p ≥ 3, p − 2 ≤ w ≤ p − 1. The difference equation

xn = hw

(
xn−2p+1, . . . , xn−1

)
, n = 1, 2, ..., (2.26)

with positive initial conditions admits the globally asymptotically stable equilibrium c = 1.

The proof of this theorem is similar to those in [11, 13], and hence is omitted.
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