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1. Introduction

There are good reasons to find “eventually periodic solutions” of difference equations of the
form

xn = F
(
n, xn−1, xn−2, . . . , xn−m

)
, n ∈ {0, 1, 2, . . .}. (1.1)

For instance, the well-known logistic population model

xn = λxn−1
(
L − xn−1

)
, n ∈ {0, 1, 2, . . .} (1.2)

is of the above form, and the study of the existence of its periodic solutions leads to chaotic
solutions. As another example in [1], Chen considers the equation

xn = xn−1 + g
(
xn−k−1

)
, n ∈ {0, 1, 2, . . .}, (1.3)
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where k is a nonnegative integer, and g : R → R is a McCulloch-Pitts type function

g(ξ) =

{
−1, ξ ∈ (σ,∞),
1, ξ ∈ (−∞, σ],

(1.4)

in which σ ∈ R is a constant which acts as a threshold. Chen showed that all solutions
of (1.3) are eventually periodic and pointed out that such a result may lead to more
complicated dynamical behavior of a more general neural network. Recently, Zhu andHuang
[2] discussed the periodic solutions of the following difference equation:

xn = axn−1 + (1 − a)f
(
xn−k

)
, n ∈ {0, 1, 2, . . .}, (1.5)

where a ∈ (0, 1), k is a positive integer, and f : R → R is a signal transmission function of
the form (1.9). In particular, they obtained the following theorem.

Theorem A. Let p, q ∈ {0, 1, 2, . . .}. If

κ ∈
(

ap+1,
ap

(
1 − ak−1)

(
1 − ak+p−1)

)

∩
(

1 − aq + ap+q+k, 1 − aq+1(1 − ak+p)

1 − a2k+p+q

)

, (1.6)

then (1.5) has an eventually (2k + p + q)-periodic solution {xn}∞n=−k.

In this paper, we consider the following delay difference equation:

xn = anxn−1 + bnf
(
xn−k

)
, n ∈ {0, 1, 2, . . .}, (1.7)

where {an}∞n=0 and {bn}∞n=0 are positive ω-periodic sequences such that an + bn ≤ 1 for n ≥ 0.
The integer k is assumed to satisfy

k = lω + 1, (1.8)

for some nonnegative integer l. The function f can be chosen in a number of ways. Here, f is
a filtering function of the form

f(x) =

{
1, x ∈ (0, κ],
0, x ∈ (−∞, 0] ∪ (κ,∞),

(1.9)

where the positive number κ can be regarded as a threshold term. Therefore, if ω = 1, then
an = a, bn = b, and k = l + 1 so that (1.7) reduces to

xn = axn−1 + bf
(
xn−l−1

)
, (1.10)

which includes (1.5) as a special case.
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When l = 0, we have

xn = axn−1 + bf
(
xn−1

)
, (1.11)

which will also be included in the following discussions.
Let Ω denote the set of real finite sequences of the form {φ−k, φ−k+1, . . . , φ−1}. Given

φ = {φ−k, . . . , φ−1} ∈ Ω, if we let x−k = φ−k, . . . , x−1 = φ−1, then we may compute x0, x1, . . .
successively from (1.7) in a unique manner. Such a sequence x = {xn}∞n=−k is called a solution
of (1.7) determined by φ ∈ Ω. Recall that a positive integer η is a period of the sequence
{xn}∞n=−k if xη+n = xn for all n ≥ −k and that τ is the least period of {xn}∞n=−k if τ is the least
among all periods of {xn}∞n=−k. The sequence {xn}∞n=−k is said to be τ-periodic if τ is the least
period of {xn}∞n=−k. In case {xn}∞n=−k is not periodic, it may happen that for some N ≥ −k, the
subsequence {xn}∞n=N is τ-periodic. Such a sequence is said to be eventually τ-periodic. In
other words, let us call {yj}∞j=−k a translate of {xn}∞n=−k if yj = xj+N+k for j ∈ {−k,−k + 1, . . .},
where N is some integer greater than or equal to −k. Then, {xn}∞n=−k is eventually τ-periodic
if one of its translates is τ-periodic.

We will seek eventually periodic solutions of (1.7). This is a rather difficult question
since the existence question depends on the sequences {an}, {bn}, the “delay” k, and the
control term κ.

Throughout this paper, empty sums are taken to be 0 and empty products to be 1.
We will also need the following elementary facts. If the real sequence {xn}∞n=−1 satisfies the
recurrence relation

xn = anxn−1 + bn, n ∈ {0, 1, 2, . . .}, (1.12)

then

x0 = a0x−1 + b0,

x1 = a1x0 + b1

= a1
(
a0x−1 + b0

)
+ b1

= a1a0x−1 + a1b0 + b1,

x2 = a2x1 + b2

= a2
(
a1a0x−1 + a1b0 + b1

)
+ b2

= a2a1a0x−1 + a2a1b0 + a2b1 + b2,

(1.13)

and by induction,

xn = α0,nx−1 +
α0,n

α0,0
b0 +

α0,n

α0,1
b1 + · · · + α0,n

α0,n
bn

= α0,n

(

x−1 +
b0
α0,0

+
b1
α0,1

+ · · · + bn
α0,n

)

,

(1.14)
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where

α0,j =
j∏

n=0

an, j ∈ {0, 1, 2, . . .}. (1.15)

Since {an} and {bn} are positive ω-periodic sequences, we see further that

α0,mω+i =
(
α0,ω−1

)m
α0,i, i ∈ {0, . . . , ω − 1}; m ∈ {0, 1, 2, . . .}, (1.16)

that

mω+i∑

j=0

bj

α0,j
=
(

b0
α0,0

+ · · · + bω−1
α0,ω−1

)
+
(

bω
α0,ω

+ · · · + b2ω−1
α0,2ω−1

)

+ · · · +
(

b(m−1)ω
α0,(m−1)ω

+ · · · + bmω−1
α0,mω−1

)
+
(

bmω

α0,mω
+ · · · + bmω+i

α0,mω+i

)

=
(

b0
α0,0

+ · · · + bω−1
α0,ω−1

){
1 +

1
α0,ω−1

+ · · · + 1

(α0,ω−1)
m−1

}

+
1

(α0,ω−1)
m

{
b0
α0,0

+ · · · + bi
α0,i

}

(1.17)

for i ∈ {0, . . . , ω − 1} and m ∈ {0, 1, 2, . . .}, and that

xmω+i = α0,mω+i

(

x−1 +
mω+i∑

j=0

bj

α0,j

)

= (α0,ω−1)
mα0,ix−1 + α0,ω−1

1 − αm
0,ω−1

1 − α0,ω−1
α0,iβ0,ω−1 + α0,iβ0,i

(1.18)

for i ∈ {0, . . . , ω − 1} and m ∈ {0, 1, 2, . . .}, where

β0,j =
j∑

k=0

bk
α0,k

, j ∈ {0, 1, . . . , ω − 1}. (1.19)

2. Convergence of solutions

The filtering function f will return 0 for inputs that fall below 0 or above the threshold
constant κ. For this reason, we will single out some subsets of Ω as follows:

Ω− =
{{

φ−k, . . . , φ−1
} ∈ Ω | φi ≤ 0, − k ≤ i ≤ −1},

Ω∗ =
{{

φ−k, . . . , φ−1
} ∈ Ω | 0 < φi ≤ κ, − k ≤ i ≤ −1},

Ω+ =
{{

φ−k, . . . , φ−1
} ∈ Ω | φi > κ, − k ≤ i ≤ −1}.

(2.1)
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Let x = {xn}∞n=−k be the solution of (1.7) determined by φ ∈ Ω−. By (1.7),

x0 = a0x−1 + b0f
(
x−k

)
= a0x−1 ≤ 0,

x1 = a1x0 + b1f
(
x−k+1

)
= a1x0 = a1a0x−1 ≤ 0.

(2.2)

By induction, we may see that

xn = anan−1 · · ·a1a0x−1 ≤ 0, n ∈ {0, 1, 2, . . .}. (2.3)

Since

0 ≤ lim
n→∞

a0a1 · · ·an−1an ≤ lim
n→∞

(
max

{
a0, a1, . . . , aω−1

})n+1 = 0, (2.4)

we see that limn→∞xn = 0.
Next, let x = {xn}∞n=−k be the solution of (1.7) determined by φ ∈ Ω∗. If κ ≥ 1, then by

(1.7),

0 < x0 = a0x−1 + b0 ≤ a0κ + b0 = a0κ − a0 + a0 + b0 ≤ a0(κ − 1) + 1 ≤ κ,

0 < x1 = a1x0 + b1 ≤ a1
(
a0κ + b0

)
+ b1 = a1κ + b1 ≤ κ.

(2.5)

By induction, we see that

0 < xn = anxn−1 + bn ≤ anκ + bn ≤ κ, n ∈ {0, 1, 2, . . .}. (2.6)

By (1.7), we see that

xn = anxn−1 + bnf
(
xn−k

)
= anxn−1 + bn, n ∈ {0, 1, 2, . . .}. (2.7)

In view of (1.18), we see further that

lim
m→∞

xmω+i = Ai, i ∈ {0, 1, . . . , ω − 1}, (2.8)

where

Ai = α0,i

(
α0,ω−1β0,ω−1
1 − α0,ω−1

+ β0,i

)
, i ∈ {0, 1, . . . , ω − 1}. (2.9)

Next, let x = {xn}∞n=−k be the solution of (1.7) determined by φ ∈ Ω+. Then, by (1.7),

x0 = a0x−1 + b0f
(
x−k

)
= a0x−1, (2.10)
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and by induction,

xn = anan−1 · · ·a0x−1, n ∈ {0, 1, 2, . . .}. (2.11)

Although x−1 > κ, since (2.4) holds, we see that {xn} is a strictly decreasing sequence tending
to 0. Hence, there is a nonnegative integer j such that xj−1 > κ but xj ≤ κ. Then, κ ≥ xj >
xj+1 > xj+2 > · · · > xj+k−1. If we let φ = {xj , xj+1, . . . , xj+k−1}, then φ ∈ Ω∗. If κ ≥ 1, then by what
we have shown above, the solution {x̃n} of (1.7) determined by φ satisfies limm→∞x̃mω+i = Ai

for i ∈ {0, 1, . . . , ω−1}. By uniqueness, x̃n = xn+j+k for n ≥ 0. In other words, the translate {x̃n}
of the solution {xn}∞n=−k satisfies limm→∞x̃mω+i = Ai for i ∈ {0, 1, . . . , ω − 1}.

We summarize the above discussions by means of the following result.

Lemma 2.1. A solution x = {xn}∞n=−k determined by φ ∈ Ω− will tend to 0; and if κ ≥ 1, then a
solution x = {xn}∞n=−k determined by φ ∈ Ω∗ ∪Ω+ will satisfy (2.8) or one of its translates will satisfy
it.

Lemma 2.2. If 0 < κ < min{1,max{A0, A1, . . . , Aω−1}}, then for any solution {xn} of (1.7)
determined by a φ ∈ Ω∗ ∪Ω+, there exists an integerm ∈ {0, 1, . . .} such that {xm−k, . . . , xm−1} ∈ Ω∗
and xm ∈ (κ, 1).

Proof. First let {xn}∞n=−k be the solution of (1.7) determined by a φ ∈ Ω∗. If xn ∈ (0, κ] for all
n ∈ {−k,−k + 1, . . .}, then

xn = anxn−1 + bnf
(
xn−k

)
= anxn + bn, n ∈ {0, 1, 2, . . .}, (2.12)

so that by (1.18), we see that

lim
m→∞

xmω+i = Ai, i ∈ {0, 1, . . . , ω − 1}. (2.13)

But, this is contrary to our assumption that 0 < κ < min{1,max{A0, A1, . . . , Aω−1}}. Hence,
there is some nonnegative integer m such that xn ∈ (0, κ] for n ∈ {−k,−k + 1, . . . , m − 1} but
xm ∈ (−∞, 0] ∪ (κ,∞). Note that

xm = amxm−1 + bmf
(
xm−k

)
> 0, (2.14)

which implies that xm ∈ (κ,∞). Moreover, since xm−1 ∈ (0, κ] ⊂ (0, 1), we then have

xm = amxm−1 + bm < am + bm ≤ 1, (2.15)

so that xm ∈ (κ, 1).
Next, let {xn}∞n=−k be the solution of (1.7) determined by a φ ∈ Ω+. As seen in the

discussions immediately preceding Lemma 2.1, there is a nonnegative integer j such that
{xj , xj+1, . . . , xj+k−1} ∈ Ω∗. If xn ∈ (0, κ] for all n ∈ {j, j +1, . . .}, then as we have just explained,
a translate {x̃n} of {xn}will satisfy

lim
m→∞

x̃mω+i = Ai, i ∈ {0, 1, . . . , ω − 1}. (2.16)
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This is again a contradiction. Hence, we may conclude our proof in a manner similar to the
above discussions. The proof is complete.

From the proof of Lemma 2.2, we see that if κ ∈ (0,min{1,max{A0, A1, . . . , Aω−1}}),
then to study the limiting behavior of a solution {xn}∞n=−k determined by φ in Ω∗ ∪ Ω+, we
may assume without loss of generality that φ ∈ Ω∗ and x0 ∈ (κ, 1). As an example, let us
consider (1.11), where we recall that a, b > 0 and a + b ≤ 1.

Example 2.3. Let ab/(1 − a2) ≤ κ < b/(1 − a2). Then, (1.11) has a 2-periodic solution {xn}∞k=−1
with x−1 ∈ (0, κ] and x0 ∈ (κ, 1). Indeed, let us choose x−1 = ab/(1 − a2) (and hence, x0 =
b/(1 − a2)). Then,

0 < x−1 =
ab

1 − a2
≤ κ,

κ < x0 = ax−1 + b =
b

1 − a2
< 1.

(2.17)

Furthermore,

x1 = ax0 =
ab

1 − a2
∈ (0, κ],

x2 = ax1 + b = a· ab

1 − a2
+ b =

b

1 − a2
= x0,

(2.18)

so that x1 = x3 = x5 = · · · and x2 = x4 = x6 = · · · and x1 /=x2.

3. Existence of eventually periodic solutions

Recall that G[0](u) = u, G[1](u) = G(u), G[2](u) = (G ◦ G)(u) = G(G(u)), . . . , G[j](u) =
G(G[j−1](u)) are the zeroth, first, second, and so forth and the jth iterate of the function G(u).
Also, recall the fact that if {un}∞n=0 is a sequence that satisfies

un+1 = G
(
un

)
, n ∈ {0, 1, 2, . . .}, (3.1)

then {un} is a τ-periodic sequence if and only if

u0 = G[τ](u0
)
,

u0 /=G[j](u0
)
, j = 1, 2, . . . , τ − 1.

(3.2)

For convenience, denote

αn =
n∏

j=1

aj , βn =
n∑

j=1

bj

αj
, n ∈ {1, 2, . . .}. (3.3)

Since

αnβn + αn = a1 · · ·an + a2 · · ·anb1 + a3 · · ·anb2 + · · · + bn ≤ 1, (3.4)
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we see that

αnβn
1 − αn

≤ 1, n ∈ {1, 2, . . .}. (3.5)

Theorem 3.1. Let k = lω + 1, p = τω − 1, and q = σω − 1, where l, τ, σ ∈ {1, 2, . . . , k − 1}. Let

I1(p) =

[

ατ
ω

(

αl
ω +

(
1 − αl

ω

)

1 − αω
αωβω

)

,
αp

(
1 − αl

ω

)
αωβω

(
1 − αpα

l
ω

)(
1 − αω

)

)

,

I2(p, q) =

[

M,
ατ+σ+l
ω

(
1 − αl

ω

)
+
(
1 − ασ

ω

)

(
1 − ατ+σ+2l

ω

)(
1 − αω

) αωβω

)

,

(3.6)

where

M = max
{
αnα

τ+l
ω

(
αl
ω +

1 − αl
ω

1 − αω
αωβω

)
+ αnβn : n ∈ {0, 1, . . . , q}

}
. (3.7)

If κ ∈ I1(p) ∩ I2(p, q) and

0 < κ < min
{

αnβn
1 − αn

: n ∈ {1, 2, . . . , k − 1}
}
, (3.8)

then (1.7) has an eventually (2k+p+q)-periodic solution {xn}∞n=−k (which can be explicitly generated).

Proof. From the condition that l, τ, σ ∈ {1, 2, . . . , k−1},we have k−1 ≥ ω. By (3.5), we see that

1 ≥ A0

= α0,0

(
α0,ω−1β0,ω−1
1 − α0,ω−1

+ β0,0

)

=
1

1 − αω

(
a0αωβ0,ω−1 + b0 − b0αω

)

=
1

1 − αω

(
a0αω

(
b0
a0

+
b1

a0a1
+ · · · + bω−1

a0 · · ·aω−1

)
+ b0 − b0αω

)

=
αωβω
1 − αω

> κ.

(3.9)

Hence, κ < max{A0, A1, . . . , Aω−1}. Thus, 0 < κ < min{1,max{A0, A1, . . . , Aω−1}}. By Lemmas
2.1 and 2.2, we may look for our desired eventually periodic solution {xn}∞n=−k determined by
φ ∈ Ω∗ such that x0 ∈ (κ, 1).

Define

gn(u) = αnu + αnβn for n ∈ {0, 1, 2, . . .},
hn(u) = anu for n ∈ {0, 1, 2, . . .},

(3.10)
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and the mapping g by

g(x) =
(
gq+1 ◦

(
hω ◦ · · · ◦ h1

)[τ+l] ◦ gk−1
)
(x). (3.11)

We will show that

g(x) = ατ+σ+l
ω

(
αl
ωx +

αωβω
(
1 − αl

ω

)

1 − αω

)
+
αωβω

(
1 − ασ

ω

)

1 − αω
, (3.12)

and that g maps D0 = (κ, 1) into D0 with a fixed point x∗ ∈ D0, where

x∗ =
βωα

τ+σ+l+1
ω

(
1 − αl

ω

)
+ βωαω(1 − ασ

ω

)

(
1 − ατ+σ+2l

ω

)(
1 − αω

) . (3.13)

The first assertion is easy to show. Indeed, since

gk−1(x) = αk−1x + αk−1βk−1,

(
hω ◦ · · · ◦ h1

)[τ+l](x) =
(
aω · · ·a1

)τ+l
x = ατ+l

ω x,

gq+1(x) = αq+1x + αq+1βq+1,

(3.14)

we see that

((
hω ◦ · · · ◦ h1

)[τ+l] ◦ gk−1
)
(x) = ατ+l

ω

(
αk−1x + αk−1βk−1

)
,

g(x) = αq+1α
τ+l
ω

(
αk−1x + αk−1βk−1

)
+ αq+1βq+1

= ατ+σ+l
ω

(
αl
ωx +

αωβω
(
1 − αl

ω

)

1 − αω

)
+
αωβω

(
1 − ασ

ω

)

1 − αω
.

(3.15)

We now show the second assertion. Note that the linear maps gn and hn satisfy

gmω(u) = αmωu + αmωβmω = αm
ωu +

(
1 − αm

ω

)

1 − αω
αωβω, m ∈ {0, 1, 2, . . .},

hmω ◦ hmω−1 ◦ · · · ◦ h1(u) = αm
ωu, m ∈ {0, 1, 2, . . .}.

(3.16)

Let gn(D0) = Dn for n ∈ {1, . . . , k − 1}. Since φ ∈ Ω∗ and x0 ∈ D0, it is clear that the solution
{xn} of (1.7) satisfies

xn = gn
(
x0
)
, n ∈ {1, . . . , k − 1}. (3.17)

Moreover, it is easy to prove that

Dn =
(
gn(κ), gn(1)

)
, n ∈ {1, . . . , k − 1}. (3.18)
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Indeed, we have

κ < αnκ + αnβn = gn(κ) < αn + αnβn = gn(1) < αn + βn ≤ 1, n ∈ {1, 2, . . . , k − 1}. (3.19)

That is, Dn ⊂ D0 holds for all n ∈ {0, . . . , k − 1}. Let n1 be the largest integer such that xn > κ
for n ∈ {0, 1, . . . , n1 + k − 1}. Then, from (1.7), we can obtain

xn+k−1 = an+k−1 · · ·ak

(
αl
ωx0 +

αωβω
(
1 − αl

ω

)

1 − αω

)
, n ∈ {

1, 2, . . . , n1 + k
}
, (3.20)

which implies that xn+k−1 ∈ Dn+k−1 for n ∈ {1, 2, . . . , n1 + k}, where

Dn+k−1 = an · · ·a1gk−1
(
D0

)

=

(

αn

(

αl
ωκ +

αωβω
(
1 − αl

ω

)

1 − αω

)

, αn

(

αl
ω +

αωβω
(
1 − αl

ω

)

1 − αω

))

.
(3.21)

Since κ ∈ I1(p), we have

κ <
αp

(
1 − αl

ω

)
αωβω

(
1 − αpα

l
ω

)(
1 − αω

) , (3.22)

that is,

κ < αp

(
αl
ωκ +

(
1 − αl

ω

)
αωβω

(
1 − αω

)
)

< αp−1

(
αl
ωκ +

(
1 − αl

ω

)
αωβω

(
1 − αω

)
)

< · · · < αl
ωκ +

(
1 − αl

ω

)

(
1 − αω

)αωβω,

αp

(
αl
ω +

1 − αl
ω

1 − αω
αωβω

)
< αp−1

(
αl
ω +

1 − αl
ω

1 − αω
αωβω

)
< · · · < αl

ω +

(
1 − αl

ω

)

(
1 − αω

)αωβω ≤ 1,

(3.23)

which shows that Dn+k−1 ⊂ D0 for n ∈ {0, 1, . . . , p}. Thus, n1 ≥ p and

xn+k−1 ∈ Dn+k−1 ⊂ (0, κ] for n ∈ {p + 1, . . . , p + k}. (3.24)
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In fact, from κ ∈ I1(p),we have

xp+k = ap+kxp+k−1 + bp+kf
(
xp

)

= ap+kxp+k−1

= ap+kap+k−1xp+k−2

= · · · = ap+k · · ·ak

(
αl
ωx0 +

1 − αl
ω

1 − αω
αωβω

)

= αp+1

(
αl
ωx0 +

1 − αl
ω

1 − αω
αωβω

)

= ατ
ω

(
αl
ωx0 +

1 − αl
ω

1 − αω
αωβω

)

≤ κ,

xp+k+1 = ap+k+1xp+k + bp+k+1f
(
xp+1

)
= ap+k+1xp+k < κ,

(3.25)

and, by induction,

xp+2k−1 = ap+2k−1xp+2k−2 + bp+2k−1f
(
xp+k−1

)

= ap+2k+1xp+2k−2 < κ.
(3.26)

Then, it is easy to see that n1 = p.
Taking n = p + k in (3.20), we have

x2k+p−1 = a2k+p−1 · · ·akgk−1
(
x0
)

= ak+p · · ·a1gk−1
(
x0
)

= ατ+l
ω

(

αl
ωx0 +

αωβω
(
1 − αl

ω

)

1 − αω

)

.

(3.27)

Let n2 be the largest integer such that xn+2k+p−1 ∈ (0, κ] for n ∈ {0, 1, . . . , n2}. Then, it follows
from (1.7) that

xn+2k+p−1 =
n+2k+p−1∏

j=2k+p

ajx2k+p−1 +
n+2k+p−1∏

j=2k+p

aj

n+2k+p−1∑

j=2k+p

bj

a2k+p · · ·aj

= αnx2k+p−1 + αnβn

= αnα
τ+l
ω

(
αl
ωx0 +

1 − αl
ω

1 − αω
αωβω

)
+ αnβn

= gn
(
x2k+p−1

)

(3.28)

for n ∈ {1, 2, . . . , n2+k}. This implies that xn+2k+p−1 ∈ Dn+2k+p−1 for n ∈ {1, 2, . . . , n2+k}, where
Dn+2k+p−1 = (gn(hω ◦ · · · ◦ h1)

[τ+l]gk−1)(D0).
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Substituting (3.21)with n1 = p into (3.28), we have

Dn+2k+p−1 =
(
gn ◦

(
hω ◦ · · · ◦ h1

)[τ+l]
gk−1(κ), gn

(
hω ◦ · · · ◦ h1

)[τ+l]
gk−1(1)

)

=
(
αnα

τ+l
ω

(
αl
ωκ +

1 − αl
ω

1 − αω
αωβω

)
+ αnβn, αnα

τ+l
ω

(
αl
ω +

1 − αl
ω

1 − αω
αωβω

)
+ αnβn

)

(3.29)

for n ∈ {1, 2, . . . , n2 + k}. Since κ ∈ I2(p, q),we have

αnα
τ+l
ω

(
αl
ω +

1 − αl
ω

1 − αω
αωβω

)
+ αnβn ≤ κ for n ∈ {0, 1, . . . , q}. (3.30)

From (3.29), we further have

xn+2k+p−1 ∈ Dn+2k+p−1 ⊂ (0, κ] for n ∈ {0, 1, . . . , q}. (3.31)

By (3.8), (3.24), (3.28), and (3.31) as well as κ ∈ I2(p, q), we have

x2k+p+q = a2k+p+qx2k+p+q−1 + b2k+p+q

= a2k+p+q

(
αqα

τ+l
ω

(
αl
ωx0 +

1 − αl
ω

1 − αω
αωβω

)
+ αqβq

)
+ b2k+p+q

= aq+1

(
αqα

τ+l
ω

(
αl
ωx0 +

1 − αl
ω

1 − αω
αωβω

)
+ aq+1αqβq

)
+ bq+1

= ατ+σ+l
ω

(
αl
ωx0 +

1 − αl
ω

1 − αω
αωβω

)
+
1 − ασ

ω

1 − αω
αωβω

> ατ+σ+l
ω

(
αl
ωκ +

1 − αl
ω

1 − αω
αωβω

)
+
1 − ασ

ω

1 − αω
αωβω > κ,

x2k+p+q+1 = a2k+p+q+1x2k+p+q + b2k+p+q+1

> a1κ + b1 > κ,

x2k+p+q+2 = a2k+p+q+2x2k+p+q+1 + b2k+p+q+2

> a2
(
a1κ + b1

)
+ b2 > κ,

...

x2k+p+q+k−1 = a2k+p+q+k−1x2k+p+q+k−2 + b2k+p+q+k−1

=
2k+p+q+k−1∏

j=2k+p+q+1

ajx2k+p+q +
2k+p+q+k−1∏

j=2k+p+q+1

aj

2k+p+q+k−1∑

j=2k+p+q+1

bj

a2k+p+q+1 · · ·aj

= αk−1x2k+p+q + αk−1βk−1

> αk−1κ + αk−1βk−1

> κ.

(3.32)
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Hence,

xn+2k+p−1 ∈ Dn+2k+p−1 ⊂ D0 for n ∈ {q + 1, . . . , q + k}, (3.33)

which implies that n2 = q. In particular, taking n = q + 1 in (3.33) and (3.28), we have,
respectively,

x2k+p+q ∈ D2k+p+q ⊂ D0,

x2k+p+q = g
(
x0
)
= ατ+σ+l

ω

(
αl
ωx0 +

αωβω
(
1 − αl

ω

)

1 − αω

)
+
αωβω

(
1 − ασ

ω

)

1 − αω
.

(3.34)

Since g is a linear map sending D0 into D0, then it is easy to see that it has a unique
fixed point x∗ in D0 which satisfies (3.13).

Next, we assert that there is a φ∗ ∈ Ω∗ such that the solution {xn} determined by φ∗

satisfies x0 = x∗, and that {xn} is a periodic solution of (1.7) with minimal period 2k + p + q.
To see this, we choose φ−1 = (x∗ − b0)/a0 and arbitrary φ−2, . . . , φ−k ∈ (0, κ]. Then, clearly, the
solution {xn} of (1.7) determined by φ−k, . . . , φ−1 will satisfy x0 = x∗. Furthermore, we may
show that x−1 = φ−1 ∈ (0, κ]. Indeed, from

ατ+σ+l
ω + αω > ασ

ω + ατ+σ+2l+1
ω , (3.35)

we have

ατ+σ+l
ω

(
1 − αl

ω

)
+
(
1 − ασ

ω

)
> 1 − αω − ατ+σ+2l

ω + ατ+σ+2l+1
ω ,

ατ+σ+l
ω

(
1 − αl

ω

)
+
(
1 − ασ

ω

)

1 − ατ+σ+2l
ω

>
(
1 − αω

)
=

αωβω
(
1 − αω

)

αωβω
>

b0
(
1 − αω

)

αωβω
,

(3.36)

hence,

x∗ =
βωα

τ+σ+l+1
ω

(
1 − αl

ω

)
+ βωαω

(
1 − ασ

ω

)

(
1 − ατ+σ+2l

ω

)(
1 − αω

) > b0. (3.37)

Thus, φ−1 = (x∗ − b0)/a0 > 0. Next, from

0 ≤ ατ+σ+2l
ω − ατ+σ+3l

ω , (3.38)
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we get

ατ+l
ω − 1 ≤ ατ+2l

ω + ατ+l
ω

(
1 − αl

ω

) − 1 − α2τ+σ+4l
ω − α2τ+σ+3l

ω

(
1 − αl

ω

)
+ ατ+σ+2l

ω , (3.39)

so that

ατ+l
ω − 1

1 − ατ+σ+2l
ω

≤ ατ+2l
ω + ατ+l

ω

(
1 − αl

ω

) − 1,

1 +
ατ+σ+l
ω − ασ

ω

1 − ατ+σ+2l
ω

≤ ασ+τ+2l
ω + ασ+τ+l

ω

(
1 − αl

ω

)
+ 1 − ασ

ω,

ατ+σ+l+1
ω

(
1 − αl

ω

)
+ αω

(
1 − ασ

ω

)

1 − ατ+σ+2l
ω

≤ ασ+τ+2l+1
ω + ασ+τ+l+1

ω

(
1 − αl

ω

)
+ αω

(
1 − ασ

ω

)
,

ατ+σ+l+1
ω

(
1 − αl

ω

)
+ αω

(
1 − ασ

ω

)

(
1 − ατ+σ+2l

ω

)(
1 − αω

) ≤ ασ+τ+2l+1
ω

1 − αω
+
ασ+τ+l+1
ω

(
1 − αl

ω

)

1 − αω
+
αω

(
1 − ασ

ω

)

1 − αω
.

(3.40)

On the other hand, by (3.5), we have

αω

1 − αω
≤ 1

βω
, (3.41)

so that

ατ+σ+l+1
ω βω

(
1 − αl

ω

)
+ αωβω

(
1 − ασ

ω

)

(
1 − ατ+σ+2l

ω

)(
1 − αω

) ≤ ασ+τ+2l
ω +

ασ+τ+l+1
ω βω

(
1 − αl

ω

)

1 − αω
+
αωβω

(
1 − ασ

ω

)

1 − αω

= ασ+τ+l
ω

(
αl
ω +

1 − αl
ω

1 − αω
αωβω

)
+
αωβω

(
1 − ασ

ω

)

1 − αω

= ασ+τ+l
ω

(
αl
ω +

1 − αl
ω

1 − αω
αωβω

)
+ ασωβσω

= a0αqα
τ+l
ω

(
αl
ω +

1 − αl
ω

1 − αω
αωβω

)
+ a0αqβq + b0.

(3.42)

In view of our assumption that κ ∈ I2(p, q), we may now see that x−1 ≤ κ.
In view of the above discussions, we see that 0 < xn ≤ κ for n ∈ {−k, . . . ,−1}, xn > κ

for n ∈ {0, . . . , p + k − 1}, and 0 < xn ≤ κ for n ∈ {p + k, . . . , p + 2k + q − 1}. Since x∗ is the
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unique fixed point of g(x) in D0, we have g(x∗) = x∗, g[2](x∗) = x∗, . . . , g[n](x∗) = x∗, and so
forth, and hence,

x2k+p+q = g
(
x∗) = x∗,

x2k+p+q+1 = a2k+p+q+1x2k+p+q + b2k+p+q+1f
(
xk+p+q+1

)

= a1x
∗ + b1 = x1 > κ,

...

xp+2k+q+k−1 = ap+2k+q+k−1xp+2k+q+k−2 + bp+2k+q+k−1f
(
xp+q+2k−1

)

= ak−1xp+2k+q+k−2 + bk−1
= ak−1xk−2 + bk−1 = xk−1 > κ,

xp+2k+q+k = ap+2k+q+kxp+2k+q+k−1 + bp+2k+q+kf
(
xp+q+2k

)

= akxk−1 = xk > κ,

xp+2k+q+k+1 = ap+2k+q+k+1xp+2k+q+k + bp+2k+q+k+1f
(
xp+q+2k+1

)

= ap+2k+q+k+1xp+2k+q+k

= ak+1xk = xk+1 > κ,

...

xp+2k+q+k+p−1 = ap+2k+q+k+p−1xp+2k+q+k+p−2 + bp+2k+q+k+p−1f
(
xp+q+2k+p−1

)

= ap+2k+q+k+p−1xp+2k+q+k+p−2
= ak+p−1xk+p−2 = xk+p−1 > κ,

xp+2k+q+k+p = azp+2k+q+k+pxp+2k+q+k+p−1 + bp+2k+q+k+pf
(
xp+q+2k+p

)

= ap+kxp+k−1 + bp+kf
(
xp

)

= ak+pxk+p−1 = xk+p ≤ κ,

...

x2k+p+q+2k+p+q−1 = a2k+p+q−1x2k+p+q+2k+p+q−2 + bp+2k+q−1f
(
x2k+p+q+k+p+q−1

)

= a2k+p+q−1x2k+p+q−2 + b2k+p+q−1
= x2k+p+q−1 ≤ κ,

x2(2k+p+q) = g[2](x∗) = g
(
x2k+p+q

)
= g

(
x∗) = x∗,

(3.43)

and so forth. Thus,

xn > κ for n ∈ {0, . . . , p + k − 1},
0 < xn ≤ κ for n ∈ {p + k, . . . , p + 2k + q − 1},

xn > κ for n ∈ {p + 2k + q, . . . , p + 2k + q + p + k − 1},
0 < xn ≤ κ for n ∈ {

p + 2k + q + p + k, . . . , 2(p + 2k + q) − 1
}
,

(3.44)

and so forth.
By induction, we may see that xn > κ for n ∈ {m(p + 2k + q), . . . , m(p + 2k + q) + p + k −

1}, 0 < xn ≤ κ for n ∈ {m(p+2k+q)+p+k, . . . , (m+1)(p+2k+q)−1},wherem ∈ {0, 1, 2, . . .},
and xn(2k+p+q) = x∗, xn(2k+p+q)+1 = x1, . . . , xn(2k+p+q)+2k+p+q−1 = x2k+p+q−1. This shows that {xn}
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is an eventually periodic solution of (1.7), whose minimal period is 2k + p + q. The proof is
complete.

We remark that in the above result, l cannot be 0.Wemay, however, show the following
by similar considerations.

Theorem 3.2. Let k = 1,

I1 =
[

α3
ωβω(

1 − α3
ω

) ,
α2ω−1αωβω

1 − α3
ω

)
,

I2 =
[
M,

α2ω−1αωβω

1 − α3
ω

)
,

(3.45)

where

M = max
{
αn

α3
ωβω

1 − α3
ω

+ αnβn : n ∈ {0, 1, . . . , ω − 1}
}
. (3.46)

If κ ∈ I1 ∩ I2 and

0 < κ < min
{

αnβn
1 − αn

: n ∈ {1, 2, . . . , ω}
}
, (3.47)

then (1.7) has an eventually 3ω-periodic solution {xn}∞n=−k (which can be generated explicitly).

Proof. Similar to the proof of the Theorem 3.1, set (3.10) and define the mapping g by

g(x) = gω ◦ (hω ◦ hω−1 ◦ · · · ◦ h1
)[2](x). (3.48)

We may show that

g(x) = αω

(
α2
ωx

)
+ αωβω, (3.49)

and that g maps D0 = (κ, 1) into D0 with a unique fixed point x∗ ∈ D0,where

x∗ =
αωβω

1 − α3
ω

. (3.50)

Let us choose

x−1 =
1
a0

(
αωβω

1 − α3
ω

− b0

)
. (3.51)
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By

αω > αω

(
1 − α3

ω

)
>

b0
αωβω

αω

(
1 − α3

ω

)
=

b0
βω

(
1 − α3

ω

)
, (3.52)

we have

αωβω
(
1 − α3

ω

) > b0, (3.53)

and hence,

x−1 =
1
a0

(
αωβω

1 − α3
ω

− b0

)
> 0. (3.54)

Since

α3
ω

(
b0 + αωβω−1

)
= α4

ωβω, (3.55)

then

αωβω

1 − α3
ω

− b0 =
α4
ωβω

1 − α3
ω

+ αωβω−1, (3.56)

and hence,

x−1 =
1
a0

(
αωβω

1 − α3
ω

− b0

)
= αω−1

(
α3
ωβω

1 − α3
ω

)
+ αω−1βω−1 ≤ κ,

x0 =
αωβω

1 − α3
ω

> κ,

x1 = a1x0 =
a1αωβω

1 − α3
ω

> κ,

...

x2ω−1 = a2ω−1 · · ·a1
αωβω

1 − α3
ω

> κ,

x2ω =
α3
ωβω

1 − α3
ω

≤ κ,

...

x3ω−1 = αω−1
α3
ωβω

1 − α3
ω

+ αω−1βω−1 ≤ κ,

x3ω =
α4
ωβω

1 − α3
ω

+ αωβω = x0,

...

(3.57)

so that {xn} is an eventually 3ω-periodic solution of the system (1.7).
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4. Examples and remarks

Let {an}, {bn} be 2-periodic sequences, k = 3, p = 1, q = 1, and

I1 =
[
α2
(
α2 + α2β2

)
,
a1α2β2
1 − a1α2

)
,

I2 =

[

α2
2
(
α2 + α2β2

)
,
α3
2 + 1

1 − α4
2

α2β2

)

∩
[

α1α
2
2
(
α2 + α2β2

)
+ α1β1,

α3
2 + 1

1 − α4
2

α2β2

)

.

(4.1)

Suppose κ ∈ I1 ∩ I2 and

0 < κ < min
{

α1

1 − α1
β1,

α2

1 − α2
β2

}
. (4.2)

Consider the following “delay” difference equation:

xn = anxn−1 + bnf
(
xn−3

)
, n ∈ {0, 1, 2, . . .}. (4.3)

We can check that (4.3) has an eventually 8-periodic solution {xn}∞n=−3 with x0 ∈ (κ, 1).
In fact, as in the proof of Theorem 3.1, let

x∗ =
α4
2β2 + α2β2

1 − α4
2

,

φ−1 =
x∗ − b0
a0

,

(4.4)

and φ−2, φ−3 be arbitrary numbers in (0, κ]. Then, as shown in the proof of Theorem 3.1, the
solution of (4.3) determined by φ−3, φ−2, φ−1 satisfies x−1 = φ−1 ∈ (0, κ] and x0 = x∗.

Since κ ∈ I2, we have x0 > κ.On the other hand, by (3.3), and (α3
2+1)/(1+α

2
2)(1+α2) < 1,

hence

κ < x0 < 1,

x1 = a1x0 + b1f
(
x−2

)
= a1x0 + b1 > a1κ + b1 > κ,

x2 = a2x1 + b2f
(
x−1

)
= a2x1 + b2 = a2

(
a1x0 + b1

)
+ b2

= a1a2x0 + a2b1 + b2 = α2x0 + α2β2 > α2κ + α2β2 > κ,

x3 = a3x2 + b3f
(
x0
)
= a3x2 > a1

(
α2κ + α2β2

)
> κ,

x4 = a4x3 + b4f
(
x1
)
= a4x3 = a2a1

(
α2x0 + α2β2

)

= α2
(
α2x0 + α2β2

)
< α2

(
α2 + α2β2

) ≤ κ,

x5 = a5x4 + b5f
(
x2
)
= a5α2

(
α2x0 + α2β2

)

= a1α2
(
α2x0 + α2β2

)
< α2

(
α2 + α2β2

) ≤ κ,

x6 = a6x5 + b5f
(
x3
)
= a6x5 = a2a1α2

(
α2x0 + α2β2

)

= α2
2
(
α2x0 + α2β2

)
< α2

2
(
α2 + α2β2

) ≤ κ,
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x7 = a7x6 + b7f
(
x4
)
= a7α

2
2
(
α2x0 + α2β2

)
+ b7

= α1α
2
2
(
α2x0 + α2β2

)
+ b1 = α1α

2
2
(
α2x0 + α2β2

)
+ α1β1

< α1α
2
2
(
α2 + α2β2

)
+ α1β1 ≤ κ,

x8 = a8x7 + b8f
(
x5
)

= a8x7 + b8 = a8
(
α1α

2
2
(
α2x0 + α2β2

)
+ α1β1

)
+ b8

= α3
2

(
α2x0 + α2β2

)
+ α2β2

= α3
2

(
α2

α4
2β2 + α2β2

1 − α4
2

+ α2β2

)
+ α2β2

=
α4
2β2 + α2β2

1 − α4
2

= x0,

x9 = a9x8 + b9f
(
x6
)
= a9x8 + b9 = a9x0 + b9 = a1x0 + b1 = x1,

x10 = a10x9 + b10f
(
x7
)
= a10x9 + b10 = a2x9 + b2 = a2x1 + b2 = x2,

x11 = a11x10 + b11f
(
x8
)
= a11x10 = a9x2 = x3,

... (4.5)

so that {xn} is an eventually 8-periodic solution of the system (4.3).
Next, let an ≡ a and bn ≡ 1 − a in (1.7). We have

αn

1 − αn
βn =

an

1 − an

(
b

a
+

b

a2
+ · · · + b

an

)

= 1,

ατ
ω

(

αl
ω +

αωβω
(
1 − αl

ω

)

1 − αω

)

= ap+1(αl
ω + 1 − αl

ω

)
= ap+1,

αpαωβω(1 − αl
ω

)

(
1 − αpα

l
ω

)(
1 − αω

) =
ap

(
1 − ak−1)

1 − ap+k−1 ,

αiα
τ+l
ω

(

αl
ω +

αωβω
(
1 − αl

ω

)

1 − αω

)

+ αiβi = ap+k+i + 1 − ai ≤ ap+q+k + 1 − aq, i ∈ {0, . . . , q − 1},

ατ+σ+l
ω

(
1 − αl

ω

)
+
(
1 − ασ

ω

)

(
1 − ατ+σ+2l

ω

)(
1 − αω

) αωβω = 1 − aq+1(1 − ak+p)

1 − ap+q+2k
.

(4.6)

Hence,

I1(p) =

(

ap+1,
ap

(
1 − ak−1)

(
1 − ak+p−1)

)

, I2(p, q) ⊃
(

1 − aq + ap+q+k, 1 − aq+1(1 − ak+p)

1 − a2k+p+q

)

. (4.7)

Form the above, we can see that Theorem A is just a special case of Theorem 3.1, hence
Theorem 3.1 is an extension of Theorem A.
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Further, if k = 1 in (1.7), then the intervals I1 and I2 in Theorem 3.2 are, respectively,

I1 = I2 =
[

a2

1 + a + a2
,

a

1 + a + a2

)
. (4.8)

Corollary 4.1. Let an ≡ a, bn ≡ 1 − a, and k = 1. If

κ ∈ (0, 1) ∩
[

a2

1 + a + a2
,

a

1 + a + a2

)
, (4.9)

then (1.7) has an eventually 3-periodic solution {xn}∞n=−k (which can be generated explicitly).

As our final remark, note that under the conditions of Theorems 3.1 or 3.2 if {x′
n} is an

arbitrary solution of (1.7) with x
′
−k, . . . , x

′
−2, x

′
−1 ∈ (0, κ] such that x

′
0 ∈ (κ, 1), then in view of

the proofs of Theorems 3.1 or 3.2,

lim
j→∞

g[j](x
′
0
)
= x∗ = x0. (4.10)

This shows, by means of the continuity properties of the maps gn and hn, that limn→∞|x′
n −

xn| = 0. Note that the requirement x
′
−k, . . . , x

′
−2, x

′
−1 ∈ (0, κ] with x

′
0 ∈ (κ, 1) is the same as

requiring

x
′
−1 =

1
a0

(
x

′
0 − b0

) ∈
(

1
a0

(
κ − b0

)
,
1
a0

(
1 − b0

)
)
∩ (0, κ]. (4.11)

In other words, let {x′
n} be a solution determined by φ−k, . . . , φ−1 ∈ (0, κ] such that

φ−1 ∈
(

1
a0

(
κ − b0

)
,
1
a0

(
1 − b0

)
)
∩ (0, κ], (4.12)

then {x′
n} will be “attracted” to the periodic solution {xn} in the proofs of Theorems 3.1 or

3.2. We remark that (1 − b0)/a0 > 0. Thus, if

1
a0

(
κ − b0

) ≤ κ, (4.13)

then the above intersection is nonempty. And, if

κ − b0 ≤ 0,
1
a0

(
1 − b0

)
> κ, (4.14)

then

(
1
a0

(
κ − b0

)
,
1
a0

(
1 − b0

)
)
∩ (0, κ] = (0, κ]. (4.15)
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Since a0 and b0 can be chosen in arbitrary manners in Theorems 3.1 and 3.2, such additional
conditions can easily be achieved once κ is determined.

We may illustrate the above discussions by the following example. Let k = 1 and
an = 1/2 = bn for all n ∈ {0, 1, 2, . . .}. According to Corollary 4.1, if

κ ∈ (0, 1) ∩
[
1
7
,
2
7

)
=
[
1
7
,
2
7

)
, (4.16)

then the solution {xn} of (1.7) determined by x0 = x∗ in (3.50), that is, x−1 = 1/7, is eventually
3-periodic. Furthermore, let {x′

n} be the solution determined by x
′
−1 = φ−1. If φ−1 ≤ 0, then by

Lemma 2.1, limn→∞x
′
n = 0. If

φ−1 ∈ (2κ − 1, 1) ∩ (0, κ] = (0, κ], (4.17)

then the solution {x′
n} will satisfy limn→∞|x′

n − xn| = 0. If φ−1 > κ, then by Lemma 2.2, a
translate {yn} of {x′

n}will satisfy limn→∞|yn − xn| = 0.
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