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1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables defined on the probability space (Ω,F, P)
with value in a real space R and let Sn =

∑n
i=1Xi. We say that the sequence {Xn, n ≥ 1} satisfies

the strong law of large numbers (SLLN) if there exists some increasing sequence {bn, n ≥ 1}
and some sequence {an, n ≥ 1} such that

∑n
i=1

(
Xi − ai

)

bn
−→ 0 a.s. as n −→ ∞. (1.1)

In this paper, we consider the strong law of large numbers for sequences of dependent random
variables which are said to be ρ∗-mixing. To introduce the concept of ρ∗-mixing sequence, we
need the maximal correlation coefficient defined as follows:

ρ∗(k) = sup
S,T

(

sup
X∈L2(FS), Y∈L2(FT )

cov(X,Y )√
VarX ·VarY

)

, (1.2)

where S, T are the finite subsets of positive integers such that dist (S, T) = infx∈S,y∈T |x − y| ≥ k
and FW is the σ-field generated by the random variables {Xi, i ∈ W ⊂ N}.
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Definition 1.1. A sequence of random variables {Xn, n ≥ 1} is said to be a ρ∗-mixing sequence
if

lim
n→∞

ρ∗(n) < 1. (1.3)

ρ∗-mixing random variables were investigated by many authors. Various moment
inequalities for sums and maximum of partial sums can be found in papers by Bradley
[1], Bryc and Smoleński [2], Peligrad [3], Peligrad and Gut [4], and Utev and Peligrad [5].
These inequalities are used in many papers concerning the problems of invariance principle
(Utev and Peligrad [5]), CLT (Peligrad [3]), or complete convergence for some stochastically
dominated sequence of ρ∗-mixing random variables (Cai [6]), and for an array of rowwise ρ∗-
mixing random variables (Zhu [7]). They will be also important in our further consideration.

The aim of this paper is to give some sufficient conditions for SLLN for a sequence of
ρ∗-mixing random variables without assumptions of identical distribution and stochastical
domination. The result presented in this paper is obtained by using the maximal type
inequality and the following strong law of large numbers proved by Fazekas and Klesov [8].

Theorem 1.2 (Fazekas and Klesov [8]). Let {bn, n ≥ 1} be a nondecreasing, unbounded sequence of
positive numbers. Let {αn, n ≥ 1} be nonnegative numbers. Let r be a fixed positive number. Assume
that for each n ≥ 1:

E
[
max
1≤i≤n

∣
∣Si

∣
∣
]r ≤

n∑

i=1

αi. (1.4)

If

∞∑

i=1

αi

bri
< ∞, (1.5)

then

lim
n→∞

Sn

bn
= 0 a.s. (1.6)

Using this theorem, we are going to show that classical Kolmogorov, Chung, and
Teicher’s strong law of large numbers for independent random variables {Xn, n ≥ 1} (Chung
[9] and Teicher [10]) can be generalized to the case of ρ∗-mixing sequences.

In our further consideration, we need the following result.

Lemma 1.3 (Utev and Peligrad [5]). Let {Xn, n ≥ 1} be a ρ∗-mixing sequence with EXn = 0,
E|Xn|q < ∞, n ≥ 1, q ≥ 2. Then, there exists a positive constant c such that

Emax
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣

q

≤ c

[
n∑

i=1

E
∣
∣Xi

∣
∣q +

(
n∑

i=1

EX2
i

)q/2]

, ∀n ≥ 1. (1.7)

Let C denote a constant which is not necessary the same in its each appearance.
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2. The main result

Let {ϕn, n ≥ 1} be a sequence of nonnegative, even, continuous and nondecreasing on (0,∞)
functions ϕn : R→R

+ with limx→∞ϕn(x) = ∞ and such that for all n ≥ 1 and 1 < p ≤ 2:

(a) ϕn(x)/x ↘ or (b) ϕn(x)/x ↗, ϕn(x)/xp ↘ as x −→ ∞. (2.1)

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables and let {bn, n ≥ 1} be an
increasing sequence of positive real numbers. Let 1 < p ≤ 2.

Assume that {ϕn, n ≥ 1} satisfies (a) in (2.1) with

(A)
∞∑

i=2

b
−p
i E

(
ϕ
p

i

(∣
∣Xi

∣
∣
)

ϕ
p

i

(
bi
)
+ ϕ

p

i

(∣
∣Xi

∣
∣
)

)
i−1∑

j=1

b
p

j E

(
ϕ
p

j

(∣
∣Xj

∣
∣
)

ϕ
p

j

(
bj
)
+ ϕ

p

j

(∣
∣Xj

∣
∣
)

)

< ∞, (2.2)

(B)
∞∑

n=1

P
[∣
∣Xn

∣
∣ ≥ an

]
< ∞, (2.3)

for some sequence {an, n ≥ 1} of positive numbers such that

(C)
∞∑

n=1

E

(
ϕ
2p
n

[
min

(∣
∣Xn

∣
∣, an

)]

ϕ
2p
n

(
bn
)
+ ϕ

2p
n

(∣
∣Xn

∣
∣
)

)

< ∞, (2.4)

or {ϕn, n ≥ 1} satisfies (b) in (2.1) with

(
A1

) ∞∑

i=2

b
−p
i E

(
ϕi

(∣
∣Xi

∣
∣
)

ϕi

(
bi
)
+ ϕi

(∣
∣Xi

∣
∣
)

)
i−1∑

j=1

b
p

j E

(
ϕj

(∣
∣Xj

∣
∣
)

ϕj

(
bj
)
+ ϕj

(∣
∣Xj

∣
∣
)

)

< ∞, (2.5)

and (B) for some sequence {an, n ≥ 1} of positive numbers such that

(
C1

) ∞∑

n=1

E

(
ϕ2
n

[
min

(∣
∣Xn

∣
∣, an

)]

ϕ2
n

(
bn
)
+ ϕ2

n

(∣
∣Xn

∣
∣
)

)

< ∞. (2.6)

Then,

b−1n
n∑

i=1

{
Xi − E

(
XiI

[∣
∣Xi

∣
∣ < bi

])} −→ 0 a.s. n −→ ∞. (2.7)

Proof. Let X′
i = XiI[|Xi| < bi], X∗

i = X′
i − EX′

i, S
′
n =

∑n
i=1X

∗
i , and Sn =

∑n
i=1Xi.

Then,
∞∑

n=1

P
[
X′

n /=Xn

]

=
∞∑

n=1

P
[∣
∣Xn

∣
∣ ≥ bn

] ≤
∞∑

n=1

P
[
2ϕ2r

n

(∣
∣Xn

∣
∣
) ≥ ϕ2r

n

(
bn
)
+ ϕ2r

n

(∣
∣Xn

∣
∣
)]

≤ C
∞∑

n=1

{

E

(
ϕ2r
n

(∣
∣Xn

∣
∣
)

ϕ2r
n

(
bn
)
+ ϕ2r

n

(∣
∣Xn

∣
∣
) · I[|Xn| ≥ an

]
)

+ E

(
ϕ2r
n

(∣
∣Xn

∣
∣
)

ϕ2r
n

(
bn
)
+ ϕ2r

n

(∣
∣Xn

∣
∣
) · I[∣∣Xn

∣
∣ < an

]
)}

≤ C

{ ∞∑

n=1

P
[∣
∣Xn

∣
∣ ≥ an

]
+

∞∑

n=1

E

(
ϕ2r
n

[
min

(∣
∣Xn

∣
∣, an

)]

ϕ2r
n

(
bn
)
+ ϕ2r

n

(∣
∣Xn

∣
∣
)

)}

< ∞

(2.8)
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for r = p in the case (a) or r = 1 in the case (b). Hence, the sequences {Xn, n ≥ 1} and {X′
n,

n ≥ 1} are equivalent in Khinchin’s sense.
Thus, we need only to show that

S′
n

bn
−→ 0 a.s. n −→ ∞. (2.9)

By Lemma 1.3, for q = 4, we have

E
[
max
1≤i≤n

∣
∣S′

i

∣
∣
]4 ≤ C

[
n∑

i=1

EX∗
i
4 +

(
n∑

i=1

EX∗
i
2

)2]

≤ C

(

2
n∑

i=1

EX∗
i
4 + 2

n∑

i=2

EX∗
i
2
i−1∑

j=1

EX∗
j
2

)

≤ C

[

EX′
1
4 +

n∑

i=2

(

EX′
i
4 + EX′

i
2
i−1∑

j=1

EX′
j
2

)]

.

(2.10)

By Theorem 1.2 applied with

α1 = EX′
1
4
, αi = EX′

i
4 + EX′

i
2
i−1∑

j=1

EX′
j
2 for i = 2, 3, . . . , n, (2.11)

we see that in order to show (2.9) it is enough to prove that

∞∑

i=1

αi

b4i
< ∞, (2.12)

which holds if

∞∑

i=1

EX′
i
4

b4i
< ∞,

∞∑

i=2

EX′
i
2

b4i

i−1∑

j=1

EX′
j
2
< ∞. (2.13)

Put I :=
∑∞

i=1P[|Xi| ≥ ai]. Then, we have

∞∑

i=1

EX′
i
4

b4i
≤

∞∑

i=1

E
(
XiI

[∣
∣Xi

∣
∣ < min

(
ai, bi

)])4

b4i
+ I ≤

∞∑

i=1

E
(∣
∣Xi

∣
∣2pI

[∣
∣Xi

∣
∣ < min

(
ai, bi

)])

b
2p
i

+ I.

(2.14)

Moreover, we note that

a

b
· I[a ≤ b] ≤ 2 · a

a + b
∀a, b > 0. (2.15)

Hence, in case (a)we get, by (B) and (C),

∞∑

i=1

EX′
i
4

b4i
≤

∞∑

i=1

E

(
ϕ
2p
i

(∣
∣Xi

∣
∣
)

ϕ
2p
i

(
bi
) I

[∣
∣Xi

∣
∣ < min

(
ai, bi

)]
)

+I ≤ 2
∞∑

i=1

E

(
ϕ
2p
i

[
min

(∣
∣Xi

∣
∣, ai

)]

ϕ
2p
i

(
bi
)
+ ϕ

2p
i

(∣
∣Xi

∣
∣
)

)

+I < ∞,

(2.16)
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while in case (b) we get, by (B) and (C1),

∞∑

i=1

EX′
i
4

b4i
≤ 2

∞∑

i=1

E

(
ϕ2
i

[
min

(∣
∣Xi

∣
∣, ai

)]

ϕ2
i

(
bi
)
+ ϕ2

i

(∣
∣Xi

∣
∣
)

)

+ I < ∞. (2.17)

Using the fact that

b−4i E
(
X′

i
2)
E
(
X′

j
2) ≤ b

−2p
i E

∣
∣X′

i

∣
∣pE

∣
∣X′

j

∣
∣p ∀ j < i (2.18)

both in either case (a)

∞∑

i=2

EX′
i
2

b4i

i−1∑

j=1

EX′
j
2

≤
∞∑

i=2

E
∣
∣X′

i

∣
∣p

b
2p
i

i−1∑

j=1

E
∣
∣X′

j

∣
∣p ≤ 4

∞∑

i=2

b
−p
i E

(
ϕ
p

i

(∣
∣Xi

∣
∣
)

ϕ
p

i

(
bi
)
+ ϕ

p

i

(∣
∣Xi

∣
∣
)

)
i−1∑

j=1

b
p

j E

(
ϕ
p

j

(∣
∣Xj

∣
∣
)

ϕ
p

j

(
bj
)
+ ϕ

p

j

(∣
∣Xj

∣
∣
)

)

< ∞,

(2.19)

or case (b)

∞∑

i=2

EX′
i
2

b4i

i−1∑

j=1

EX′
j
2

≤
∞∑

i=2

E
∣
∣X′

i

∣
∣p

b
2p
i

i−1∑

j=1

E
∣
∣X′

j

∣
∣p ≤ 4

∞∑

i=2

b
−p
i E

(
ϕi

(∣
∣Xi

∣
∣
)

ϕi

(
bi
)
+ ϕi

(∣
∣Xi

∣
∣
)

)
i−1∑

j=1

b
p

j E

(
ϕj

(∣
∣Xj

∣
∣
)

ϕj

(
bj
)
+ ϕj

(∣
∣Xj

∣
∣
)

)

∞.

(2.20)

Thus, we have established (2.9) and consequently (2.7).

Corollary 2.2. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables satisfying the condition

∞∑

i=1

E

( ∣
∣Xi

∣
∣rt

ir +
∣
∣Xi

∣
∣rt

)

< ∞ (2.21)

with r = p for 0 < t < 1 and all 1 < p ≤ 2 , or r = 2/t for 1 ≤ t < 2 .
Then,

n−1/t
n∑

i=1

{
Xi − E

(
XiI

[∣
∣Xi

∣
∣ < i1/t

])} −→ 0 a.s. as n −→ ∞, (2.22)

Proof. Let an = bn = n1/t for any 0 < t < 2. Then, the assumption (B) of Theorem 2.1 is fulfilled.
Indeed we see

(B) :
∞∑

n=1

P
[∣
∣Xn

∣
∣ ≥ an

]

=
∞∑

n=1

P
[∣
∣Xn

∣
∣ ≥ n1/t] ≤ C

∞∑

n=1

P
[
2
∣
∣Xn

∣
∣rt ≥ nr +

∣
∣Xn

∣
∣rt
]
< C ·

∞∑

n=1

E

( ∣
∣Xn

∣
∣rt

nr +
∣
∣Xn

∣
∣rt

)

< ∞

(2.23)

by (2.21)with r = p for 0 < t < 1 or r = 2/t for 1 ≤ t < 2.
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Let now 0 < t < 1. Then, for ϕn(x) = xt, x > 0, n ≥ 1, the conditions (A) and (C) with
1 < p ≤ 2 are fulfilled:

(A) :
∞∑

i=2

b
−p
i E

(
ϕ
p

i

(∣
∣Xi

∣
∣
)

ϕ
p

i

(
bi
)
+ϕp

i

(∣
∣Xi

∣
∣
)

) i−1∑

j=1

b
p

j E

( ϕ
p

j

(∣
∣Xj

∣
∣
)

ϕ
p

j

(
bj
)
+ϕp

j

(∣
∣Xj

∣
∣
)

)

≤
( ∞∑

i=1

E

( ∣
∣Xi

∣
∣pt

ip+
∣
∣Xi

∣
∣pt

))2

<∞,

(2.24)

by (2.21)with r = p.

(C) :
∞∑

n=1

E

(
ϕ
2p
n

[
min

(∣
∣Xn

∣
∣, an

)]

ϕ
2p
n

(
bn
)
+ϕ2p

n

(∣
∣Xn

∣
∣
)

)

=
∞∑

n=1

E

([
min

(∣
∣Xn

∣
∣, an

)]2pt

n2p+
∣
∣Xn

∣
∣2pt

)

≤
∞∑

n=1

E

( ∣
∣Xn

∣
∣2pt

n2p+
∣
∣Xn

∣
∣2pt

I
[∣
∣Xn

∣
∣ ≥ n1/t]

)

+
∞∑

n=1

E

( ∣
∣Xn

∣
∣2pt

∣
∣Xn

∣
∣pt

((
np/

∣
∣Xn

∣
∣pt

) ·np+
∣
∣Xn

∣
∣pt

)I
[∣
∣Xn

∣
∣<n1/t]

)

≤ C
∞∑

n=1

P
[∣
∣Xn

∣
∣ ≥ n1/t]+

∞∑

n=1

E

( ∣
∣Xn

∣
∣pt

np +
∣
∣Xn

∣
∣pt

)

< ∞

(2.25)

by (2.23) and (2.21) with r = p, 1 < p ≤ 2.
Thus, by Theorem 2.1, we have

n−1/t
n∑

i=1

{
Xi − E

(
XiI

[∣
∣Xi

∣
∣ < i1/t

])} −→ 0 a.s. as n −→ ∞ (2.26)

for 0 < t < 1.
Now, we need to show that (2.26) also holds for 1 ≤ t < 2.
Let ϕn(x) = x2. Then, for p = 2, by the similar calculations as in case 0 < t < 1, we get

(
A1

)
:

∞∑

i=2

b
−p
i E

(
ϕi

(∣
∣Xi

∣
∣
)

ϕi

(
bi
)
+ϕi

(∣
∣Xi

∣
∣
)

) i−1∑

j=1

b
p

j E

(
ϕj

(∣
∣Xj

∣
∣
)

ϕj

(
bj
)
+ϕj

(∣
∣Xj

∣
∣
)

)

≤
( ∞∑

i=1

E

( ∣
∣Xi

∣
∣2

i2/t+
∣
∣Xi

∣
∣2

))2

< ∞

(2.27)

by (2.21)with r = 2/t and

(
C1

)
:

∞∑

n=1

E

(
ϕ2
n

[
min

(∣
∣Xn

∣
∣, an

)]

ϕ2
n

(
bn
)
+ ϕ2

n

(∣
∣Xn

∣
∣
)

)

=
∞∑

n=1

E

([
min

(∣
∣Xn

∣
∣, an

)]4

n4/t +
∣
∣Xn

∣
∣4

)

≤ C
∞∑

n=1

P
[∣
∣Xn

∣
∣ ≥ n1/t] +

∞∑

n=1

E

( ∣
∣Xn

∣
∣2

n2/t +
∣
∣Xn

∣
∣2

)

< ∞

(2.28)

by (2.23) and (2.21) with r = 2/t.
Therefore, by Theorem 2.1, we get (2.26) for 1 ≤ t < 2.
This completes the proof of Corollary 2.2.
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Corollary 2.3. Let {X,Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with E|X|t < ∞,
0 < t < 2. Let

P
[∣
∣Xi

∣
∣ > x

] ≤ CP
[|X| > x

]
(2.29)

for all x > 0, i ≥ 1 and some positive constant C.
Moreover, when 1 ≤ t < 2, let EX = 0. Then,

n−1/t
n∑

i=1

Xi −→ 0 a.s. as n −→ ∞. (2.30)

Proof. We first note that (2.29) implies

E
(∣
∣Xi

∣
∣sI

[∣
∣Xi

∣
∣ < a

]) ≤ C
{
E
(|X|sI[|X| < a

])
+ asP

[|X| ≥ a
]}

(2.31)

for any a > 0 and s > 0.
Put now an = bn = n1/t for any 0 < t < 2.
It is easy to see that E|X|t < ∞, (2.29) and (2.31) with s = rt imply convergence of the

series:

∞∑

n=1

E

( ∣
∣Xn

∣
∣rt

nr +
∣
∣Xn

∣
∣rt

)

(2.32)

for r = p, (1 < p ≤ 2) in the case 0 < t < 1 and r = 2/t in the case 1 ≤ t < 2.
We have

∞∑

n=1

E

( ∣
∣Xn

∣
∣rt

nr +
∣
∣Xn

∣
∣rt

)

=
∞∑

n=1

E

( ∣
∣Xn

∣
∣rt

nr +
∣
∣Xn

∣
∣rt

I
[∣
∣Xn

∣
∣ < n1/t]

)

+
∞∑

n=1

E

( ∣
∣Xn

∣
∣rt

nr +
∣
∣Xn

∣
∣rt

I
[∣
∣Xn

∣
∣ ≥ n1/t]

)

≤
∞∑

n=1

E

(∣
∣Xn

∣
∣rt

nr
I
[∣
∣Xn

∣
∣ < n1/t]

)

+
∞∑

n=1

P
[∣
∣Xn

∣
∣ ≥ n1/t]

≤ C

{ ∞∑

n=1

E

( |X|rt
nr

I
[|X| < n1/t]

)

+
∞∑

n=1

P
[|X| ≥ n1/t]

}

≤ C

{ ∞∑

n=1

E
(|X|t+t(r−1)I[|X| < n1/t])

n1+1/t · t(r−1) + E|X|t
}

< ∞.

(2.33)

Because of Corollary 2.2, this proves that (2.26) holds for any 0 < t < 2.
To complete the proof we should show that

n−1/t
∣
∣
∣
∣
∣

n∑

i=1

E
(
XiI

[∣
∣Xi

∣
∣ < i1/t

])
∣
∣
∣
∣
∣
−→ 0 as n −→ ∞ (2.34)

for any 0 < t < 2.
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For 0 < t < 1 and I1 := n−1/t∑n
i=1i

1/tP[|X| ≥ i1/t], we have

n−1/t
∣
∣
∣
∣
∣

n∑

i=1

E
(
XiI

[∣
∣Xi

∣
∣ < i1/t

])
∣
∣
∣
∣
∣
≤ n−1/t

n∑

i=1

E
(∣
∣Xi

∣
∣I
[∣
∣Xi

∣
∣ < i1/t

])

≤ C

{

n−1/t
n∑

i=1

E
(|X|I[|X| < i1/t

])
+ I1

}

≤ C

{

n−1/t
n∑

i=1

E
(|X|I[|X| < n1/t]) + I1

}

≤ C
{
n1−1/tE

(|X|I[|X| < n1/t]) + I1
}

= C

{

n1−1/t
n∑

j=1

E
(|X|I[j − 1 ≤ |X|t < j

])
+ I1

}

.

(2.35)

But
∞∑

n=1

P
[|X| ≥ n1/t] ≤ CE|X|t < ∞, (2.36)

so by Kronecker’s lemma we get

I1 := n−1/t
n∑

i=1

i1/tP
[|X| ≥ i1/t

] −→ 0 as n −→ ∞. (2.37)

Moreover, we note

∞∑

j=1

j1−1/tE
(|X|I[j − 1 ≤ |X|t < j

]) ≤
∞∑

j=1

E
(|X|I[j − 1 ≤ |X|t < j

])
= E|X|t < ∞, (2.38)

and by Kronecker’s lemma

n1−1/t
n∑

j=1

E
(|X|I[j − 1 ≤ |X|t < j

]) −→ 0 as n −→ ∞, (2.39)

which together with (2.35) and (2.37) gives (2.34) for 0 < t < 1.
Let 1 ≤ t < 2. First, we will show that

lim
n→∞

P

[∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣
> εn1/t

]

= 0. (2.40)

To achieve this, we put Yi = XiI[|Xi| < n1/t] for 1 ≤ i ≤ n.
Because of EXi = 0 and E|X|t < ∞, we have

n−1/t
∣
∣
∣
∣
∣

n∑

i=1

EYi

∣
∣
∣
∣
∣
≤ n−1/t

n∑

i=1

E
(∣
∣Xi

∣
∣I
[∣
∣Xi

∣
∣ ≥ n1/t]) ≤ CE

(|X|tI[|X| ≥ n1/t]) −→ 0 as n −→ ∞.

(2.41)
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Therefore, for large enough n, we obtain

P

[∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣
> εn1/t

]

≤
n∑

i=1

P
[∣
∣Xi

∣
∣ ≥ n1/t] + P

[∣
∣
∣
∣
∣

n∑

i=1

(Yi − EYi)

∣
∣
∣
∣
∣
> εn1/t

]

. (2.42)

Hence, we need only to show that
n∑

i=1

P
[∣
∣Xi

∣
∣ ≥ n1/t] −→ 0 as n −→ ∞, (2.43)

P

[∣
∣
∣
∣
∣

n∑

i=1

(
Yi − EYi

)
∣
∣
∣
∣
∣
> εn1/t

]

−→ 0 as n −→ ∞. (2.44)

By E|X|t < ∞, we get
∞∑

n=1

1
n

n∑

i=1

P
[∣
∣Xi

∣
∣ ≥ n1/t] ≤ C

∞∑

n=1

P
[|X| ≥ n1/t] ≤ CE|X|t < ∞, (2.45)

which implies (2.43).
By Lemma 1.3 and (2.23)with s = 2,
∞∑

n=1

1
n
P

[∣
∣
∣
∣
∣

n∑

i=1

(
Yi − EYi

)
∣
∣
∣
∣
∣
> εn1/t

]

≤ C
∞∑

n=1

n−(1+2/t)
n∑

i=1

EY 2
i

≤ C

{ ∞∑

n=1

n−(1+2/t)
n∑

i=1

E
(
X2I

[|X| < n1/t]) +
∞∑

n=1

n−(1+2/t)
n∑

i=1

n2/tP
[|X| ≥ n1/t]

}

≤ C

{ ∞∑

n=1

n−2/t
n∑

j=1

E
(
X2I

[
j − 1 ≤ |X|t < j

])
+

∞∑

n=1

P
[|X| ≥ n1/t]

}

≤ C

{ ∞∑

k=1

E
(
X2I

[
k − 1 ≤ |X|t < k

]) ∞∑

n=k

n−2/t + E|X|t
}

≤ C

{ ∞∑

k=1

k−2/t+1E
(
X2I

[
k − 1 ≤ |X|t < k

])
+ E|X|t

}

≤ C

{ ∞∑

k=1

kP
[
k − 1 ≤ |X|t < k

]
+ E|X|t

}

< CE|X|t < ∞

(2.46)

which gives (2.44).
Thus, we have established that (2.40) holds true. Equations (2.40) and (2.26) imply (2.34)

which completes the proof of Corollary 2.3.

Corollary 2.3 gives the Marcinkiewicz SLLN for ρ∗-mixing random variables {Xn, n ≥
1} stochastically dominated by a random variable X for 0 < t < 2. The identical result was
obtained by Cai [6] as a consequence of complete convergence theorem. Both of them, for
0 < t < 1, are a special case of more general result of Fazekas and Tómács [11] obtained for
stochastically dominated random variables without assuming any kind of dependence.
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