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The purpose of this paper is to propose a version of causality testing that focuses on how the sign of
the returns affects the causality results. We replace the traditional VAR specification used in the
Granger causality test by a discrete-time bivariate noisy Mackey glass model. Our test reveals
interesting and previously unexplored relationships in US economic series, including inflation,
metal, and stock returns.
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1. Introduction

Since the concept of Granger causality was first proposed [1], there has been a growing body
of research devoted on the subject of causal relationships between economic variables. Among
the central goals of that research are (i) the elucidation of the connections that exist between
different components of an economic system,with all its complexity and (ii) the use of causality
links (where detected) in designing efficient economic policies. Granger’s pioneering work on
linear causality has been extended and adapted to take into account nonlinear dependencies
in the quantities studied, as in [2, 3] and more recently [4, 5], among others.

The contribution of this paper is to propose a nonlinear version of Granger causality
test, which conditions on samples of the causing series being positive or negative. This
“asymmetric” causality test, which builds on [6], is a way to “sharpen” the usual version
of causality testing in which the series being tested are considered in their entirety, all at
once. Asymmetric causality testing can reveal interesting information about the inherent
dynamics of the processes studied. For example, detection of a causality relationship does
not give information on whether a positive or negative shock has significant predictive value.
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Conversely, lack of an apparent causality relationship does not preclude the existence of
causality when we condition for certain features, such as a positive or negative sign.

The remainder of this paper is organized as follows. In Section 2, we describe a model
to be used for studying causality relationships, together with a Granger-type asymmetric
causality test. We replace the linear VAR specification used by Granger by a discrete-time,
noisy Mackey-Glass model, in order to detect nonlinear “links” between the variables studied.
The choice of model is not unique and was guided by the recently investigated ability of the
model to reproduce properties of real economic data [7–9]. The deterministic Mackey-Glass
equation has also been used in the neural network literature [10, 11]. Section 3 discusses the
application of our test in real economic series which include data on US inflation, as well as
metal and stock returns.

2. A test for nonlinear asymmetric causality

The causality test proposed in this paper extends the test for nonlinear Granger causality
introduced in [6]. In its symmetric version, it assumes an underlying process with a special
type of nonlinear structure, known as the bivariate noisy Mackey-Glass (hereafter “M-G”)
model [7]. The model is as follows:
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Xt−τ1

1 +Xc1
t−τ1

− δ11Xt−1 + α12
Yt−τ2

1 + Yc2
t−τ2
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t−τ2

− δ22Yt−1 + ut ut∼N(0, 1),

(2.1)

where t = τ, . . . ,N, τ = max(τ1, τ2) and X0, . . . , Xτ−1, Y0, . . . , Yτ−1 are given. The αij , and δij are
parameters to be estimated, τi are integer delays, and ci are constants. The model (2.1) can
produce various types of dependencies by adjusting the parameters ci and τi. The principal
advantage of (2.1) over simple VAR alternatives is that the M-G terms are able to capture
more complex dependent dynamics in a time series. As discussed in [7, 12], the presence
of statistically significant M-G terms in a pair of series suggests nonlinear feedback as the
generating mechanism of the interdependences between X and Y .

The M-G-based causality test attempts to detect whether past samples of a variable Y
have a significant nonlinear effect (of the type Yt−τ2/(1 + Yc2

t−τ2)) on the current value of another
variable X. Operationally, the test is similar to the linear Granger causality test, except that the
models fitted to the series are M-G processes. One begins by estimating the parameters of an
M-Gmodel that best fits the given series, using ordinary least squares. To test for causality from
Y to X, a second M-G model is estimated, under the constraint α12 = 0. The latter equation is
our null hypothesis. Let ε̂t, ̂θt be the residuals produced by the unconstrained and constrained
best-fit M-G models, respectively. We compute and compare the sums of squared residuals
Sc =

∑N
t=1

̂θt and Su =
∑N

t=1ε̂t. Let nfree = 4 be the number of free parameters in our M-G model
and nrest r = 1 be the number of parameters set to zero when estimating the constrained model.
If the test statistic
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)

/nrest r

Su/
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N − nfree − 1
) ∼Fnrest r ,N−nfree−1 (2.2)
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is greater than a specified value, then we reject the null hypothesis that Y causes X (recall that
SF follows an F distribution under the null hypothesis.) The p-value for the test is computed from

p = 1 − Fcdf
nrest r ,N−nfree−1

(

SF, nrest r ,N − nfree − 1
)

, (2.3)

where Fcdf
a,b

is the cumulative distribution function for the Fa,b distribution. The test requires
prior selection of the parameters of the M-G process, namely, τ1, τ2, c1, c2. The best delays
τ1, τ2, are to be chosen on the basis of likelihood ratio tests and the Schwarz criterion. We
will refer to the above test as “symmetric” to distinguish it from its specialized counterpart
described next.

Regardless of the causality relationships identified in the pair X and Y , we would
like to know whether those relationships hold when conditioning for positive or negative
returns. For example, one may want to know whether positive returns observed in one
series give predictive information that is more significant than that given by negative
returns; alternatively, there may be settings in which causality exists only in a subset of
the observations, (e.g., for positive returns). To investigate such relationships, we consider
an “asymmetric” causality test that conditions on the causing series being nonnegative or
nonpositive. Briefly, the asymmetric test is based on the M-G test described above, where
the best M-G model is calculated using only those observations that satisfy the appropriate
condition on the returns. To make matters concrete, suppose that in model (2.1)we would like
to test whether nonnegative returns in the series Y cause the series X. An observation (Xi, Yi)
is included for regression only if Y (t−τ2) ≥ 0. The same restricted set of observations is used to
compute the model corresponding to the null hypothesis (in this case α12 = 0). The procedure
is then repeated, with the order of the series reversed (to investigate whether positive returns
inX cause Y ) and again with the subset of observations that correspond to nonpositive returns.

In this work, we have chosen to condition on the sign of the causing series because of
its practical relevance. Of course, nonpositivity (resp., nonnegativity) is by no means the only
type of conditioning possible, so that in addition to varying the choice of dynamics fitted to the
series, one can test for causality given various other events (e.g., start/end of the week, price
movement thresholds, etc.).

3. Results and discussion

We applied our test to two pairs of series. The first pair included US consumer price (CPI)
and metal price (MET) indices. The consumer price index data are from the BLS CPI—all
urban consumers CUUROOOOAA0 index, reported in Free Lunch. BLS producer price index
WPU10 for metals and metal products from the BLS website. In the second pair, the metal
price index was replaced by the Dow-Jones stock price index (PSDJ). The Dow Jones Stock
Prices Index includes the NBER series #11009 representing 20 stocks until 1928, and 30 stocks
thereafter, ending on 12/1968. Beginning in 01/1969, it is updated from the Dow Jones Index
for Industrials: 30 Industries (index 1920 = 100, monthly end)—reported in Free Lunch. The
series contained monthly observations from 01/1960 to 07/2002 (511 obs.) and were not
seasonally adjusted. That metal price index was selected because it is one of the commodity
price series having a significant impact on manufacturing activities, and hence inflation. Prior
to causality testing, we performed the Dickey-Fuller test [13, 14] to identify unit roots in all
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Table 1: Test for nonlinear causality (symmetric case). If P > .05, then at 5% we accept the null hypothesis
that A does not cause B. The parameters for the M-G model were τ1 = 3, τ2 = 1, and c1 = c2 = 2.

Relation (A→B) F-statistic Probability
DLCPI → DLMET 4.5745 0.0329
DLMET → DLCPI 3.9202 0.0483

Table 2: Test for nonlinear causality (asymmetric case for positive returns). If P > .05, then at 5% we accept
the null hypothesis that A does not cause B. The parameters for the M-G model were τ1 = 3, τ2 = 1, and
c1 = c2 = 2.

Relation (A→B) F-statistic Probability
DLCPIp→ DLMET 2.6389 0.1049
DLMETp→ DLCPI 18.9806 1.6E-5

Table 3: Test for nonlinear causality (asymmetric case for negative returns). If P > .05, then at 5%we accept
the null hypothesis that A does not cause B. The parameters for the M-G model were τ1 = 3, τ2 = 1, and
c1 = c2 = 2.

Relation (A→B) F-statistic Probability
DLCPIn→ DLMET 5.9587 0.0150
DLMETn→ DLCPI 4.1406 0.0424

series. For each series CPI, MET, and PSDJ, the test showed that a unit root was present,
therefore the log-differenced version of the series was used, giving us DLCPI, DLMET, and
DLPSDJ, respectively.

3.1. Series DLCPI, DLMET

Table 1 shows the results of our symmetric causality test on the series CPI and MET. The test
identified bidirectional causality, confirming the nonlinear feedback mechanism proposed in
[12, 15]. To find out whether specifying the direction of series movement has a significant
effect on the causality relationships identified, we performed the asymmetric causality test
on the same series. The results are shown in Tables 2 and 3. The exponent “p” (resp., “n”)
indicates that only the positive (resp., negative) values of a series were included. The only
relationship that differs qualitatively from what is identified in the symmetric test is the lack
of M-G feedback between DLCIPp and DLMET. Of course, we cannot exclude other possible
forms of nonlinear causality, however, based on the M-G structure adopted here, the causality
from DLCPI to DLMET is mainly due to the predictive information contained in the negative
DLCPI movements on the DLMET series. We also note that, based on Table 1 only, one could
assert that DLCPI causes DLMET. That statement would be in doubt, however, in the event that
CPImovementwas positive, as Tables 2 and 3 show. The fact that positiveMET returns strongly
affect inflation suggests that one should consider more seriously the impact of asymmetries in
commodity price behavior. As highlighted in [15], the implications of such relationships can
be of profound interest if we take into account the fact that traditional US policy relies heavily
on monetary policy to control inflation effects.
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Table 4: Test for nonlinear causality (symmetric case). If P > .05, then at 5% we accept the null hypothesis
that A does not cause B. The M-G model parameters were τ1 = τ2 = 1, and c1 = c2 = 2.

Relation (A→B) F-statistic Probability
DLCPI → DLPSDJ 0.2014 0.6538
DLPSDJ → DLCPI 0.3002 0.5840

Table 5: Test for nonlinear causality (asymmetric case for positive returns). If P > .05, then at 5% we accept
the null hypothesis that A does not cause B. The M-G model parameters were τ1 = τ2 = 1, and c1 = c2 = 2.

Relation (A→B) F-statistic Probability
DLCPIp→ DLPSDJ 0.4780 0.4896
DLPSDJp→ DLCPI 19.7506 1.0853E-5

Table 6: Test for nonlinear causality (asymmetric case for negative returns). If P > .05, then at 5%we accept
the null hypothesis that A does not cause B. The M-G model parameters were τ1 = τ2 = 1, and c1 = c2 = 2.

Relation (A→B) F-statistic Probability
DLCPIn→ DLPSDJ 53.9845 8.1768E-13
DLPSDJn→ DLCPI 3.7390 0.0537

3.2. Series DLCPI, DLPSDJ

Table 4 shows the results of our symmetric causality test on the series CPI and PSDJ. The test
did not identify M-G causality. When we conditioned on the causing series being positive or
negative, strong unidirectional M-G causality from DLPSDJp to DLCPI and from DLCPIn to
DLPSDJ was revealed (Tables 5 and 6, resp.).

Although the results of our test do not preclude the existence of other models that
“explain” the series interdependence, they do confirm that the M-G model has significant
predictive power when we take into account positive values of PSDJ or negative values of
DLCPI. Furthermore, the coefficients in the best-fit M-G model indicate a positive relation
between DLPSDJp and DLCPI (meaning that the coefficients of both DLPSDJp terms in the
DLCPI equation were positive). This is in line with the empirical findings in [16] which
identified a positive relationship between stock returns and inflation, brought about by
demand shocks (e.g., money supply fluctuations). The coefficients of the DLCPIn terms in
the DLPSDJ equation were both negative, indicating a negative relation between DLCPIn and
DLPSDJ. This agrees with the explanation advanced in [17] that inflation may indirectly be
responsible for negative fluctuations in stock returns via real output movements, when supply
shocks perturb the market.

4. Conclusions

This paper proposed an asymmetric version of a nonlinear (Mackey-Glass) causality test
introduced in [6]. The test attempts to detect causality relationships in pairs of economic
series, conditioning on the sign (negative or positive) of returns of the causing series. We
have demonstrated the use of our test in data concerning US inflation, metal, and stock
prices. For the relationship between inflation and metal returns series, we have found that
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the bidirectional causality identified is mainly due to positive movements of metal prices and
negative movements of inflation. For inflation and stock returns, we found strong evidence of
unidirectional causality, from positive stock returns and negative inflation. Our test confirms
existing economics-based explanations of the relationships between the series studied. The
application of conditioning to reveal “asymmetric” causality is useful for (i) refining the origins
of detected causality and (ii) detecting nonlinear feedback structures when no such structure is
apparent in the original series. In this work, we used the M-G process to expose an interesting
relationship between the three variables studied, however, one could consider other (non-M-
G) dynamics, as well as asymmetric versions of other causality tests, such as [2, 3, 18]. Ongoing
work includes an investigation of our test via Monte Carlo experiments, in order to explore its
properties with samples which are significantly smaller than the ones used in this work.
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