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Let f (z1, . . . ,zk)∈ C(Ik,I) be a given function, where I is (bounded or unbounded) subin-
terval of R, and k ∈ N. Assume that f (y1, y2, . . . , yk) ≥ f (y2, . . . , yk, y1) if y1 ≥ max{y2,
. . . , yk}, f (y1, y2, . . . , yk) ≤ f (y2, . . . , yk, y1) if y1 ≤ min{y2, . . . , yk}, and f is non-
decreasing in the last variable zk. We then prove that every bounded solution of an au-
tonomous difference equation of order k, namely, xn = f (xn−1, . . . ,xn−k), n = 0,1,2, . . . ,
with initial values x−k, . . . ,x−1 ∈ I , is convergent, and every unbounded solution tends
either to +∞ or to −∞.
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1. Introduction and the main results

Let us consider an autonomous difference equation of order k ∈N:

xn = f
(
xn−1, . . . ,xn−k

)
, n∈N0 := {0,1,2, . . .}, (1.1)

where f : Ik → I , interval I is bounded or unbounded interval of the real line R, and f is
a function that satisfies the condition f (x, . . . ,x)≤ x for all x ∈ I . The difference equation
(1.1) was investigated by many authors (see, e.g., [1–11] and the references cited therein).
In most of these results the monotonicity of the function f (z1, . . . ,zk) in its variables
z1, . . . ,zk plays the main role.

For example, in [7], Stević proved the following theorem.

Theorem 1.1. Assume that f is a continuous real-valued function defined on Rk satisfying
the following conditions:

(a) f is nondecreasing in each of its arguments;
(b) f (z1, . . . ,zk) is strictly increasing in z1;
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(c) for every x ∈R it holds

f (x,x, . . . ,x)≤ x. (1.2)

Then every bounded solution of the difference inequality

xn ≤ f
(
xn−1, . . . ,xn−k

)
, n∈N0, (1.3)

converges.

This result generalizes the main results in [1, 3]. For closely related results see also [2,
6, 9, 10, 12–18] and the references cited therein. The asymptotic behavior of the solutions
of (1.1) was investigated in [11].

The following result was proved (also by Stević) in [8] (for a particular case of the
result in which condition (c) below is replaced with the fact that every real number x is
an equilibrium point of xn = f (xn−1, . . . ,xn−k), see [4, Theorem 2.2]).

Theorem 1.2. Assume that f is a continuous real-valued function on Rk, where f satisfies
conditions (a) and (c) from Theorem 1.1, and where f (z1, . . . ,zk) is strictly increasing in at
least two of its arguments zi and zj , where i and j are relatively prime integers. Then any
bounded solution of difference inequality (1.3) converges.

Remark 1.3. The fact that the last condition in Theorem 1.2 is sharp, in the sense that
primeness cannot be omitted, was shown in [9].

Here we will improve these results in some sense. We present a global convergence
result regarding the solutions of (1.1) in which the function f need not be monotonous
in each variable, and the condition f (x, . . . ,x)≤ x can be omitted as an irrelevant one.

Theorem 1.4. Let f (z1, . . . ,zk) ∈ C(Ik,I) be a given function, where I is bounded or un-
bounded interval of R, which satisfies the following conditions:

(a)

f
(
y1, y2, . . . , yk

)≥ f
(
y2, . . . , yk, y1

)
(1.4)

if y1 ≥max{y2, . . . , yk};
(b)

f
(
y1, y2, . . . , yk

)≤ f
(
y2, . . . , yk, y1

)
(1.5)

if y1 ≤min{y2, . . . , yk};
(c) f is nondecreasing in the last variable zk.

Then every bounded solution of (1.1) with initial values x−k, . . . ,x−1 ∈ I converges, and every
unbounded solution of (1.1) tends either to +∞ or to −∞.

2. Proof of the main result

In this section, we prove the main result of this paper. Before this, we formulate and prove
an auxiliary result.
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Lemma 2.1. Assume that (xn) is a solution of (1.1) for which there is an n0 ∈N such that

xn0−1 ≤min
{
xn0−2, . . . ,xn0−k−1

}
(2.1)

or

xn0−1 ≥max
{
xn0−2, . . . ,xn0−k−1

}
. (2.2)

Then under the conditions of Theorem 1.4, the solution (xn) is eventually monotonous.

Proof. Assume that condition (2.1) holds. From (2.1) and (1.5), and by employing con-
ditions (b) and (c) from Theorem 1.4, it follows that

xn0 = f
(
xn0−1,xn0−2, . . . ,xn0−k

)

≤ f
(
xn0−2, . . . ,xn0−k,xn0−1

)

≤ f
(
xn0−2, . . . ,xn0−k,xn0−k−1

)= xn0−1

(2.3)

and, consequently,

xn0 ≤min
{
xn0−1, . . . ,xn0−k

}
. (2.4)

From this and by induction, it follows that xn+1 ≤ xn for n ≥ n0 − 1, which means that
the solution (xn) of (1.1) is eventually nonincreasing, as desired. The proof of the lemma
under condition (2.2) is very similar and, therefore, will be omitted. This finishes the
proof. �

Proof of Theorem 1.4. By Lemma 2.1, we may suppose that for every n∈N,

min
{
xn−1, . . . ,xn−k

}
< xn < max

{
xn−1, . . . ,xn−k

}
. (2.5)

Otherwise, the sequence is eventually monotonous and, as such, it converges to a finite
limit or to +∞ or −∞.

Since min{xn−1, . . . ,xn−k} ≤min{xn−1, . . . ,xn−k+1} and from (2.5), we have min{xn−1,
. . . ,xn−k} < xn. It is easily seen that the sequence

mn =min
{
xn, . . . ,xn−k+1

}
, n∈N, (2.6)

is nondecreasing; similarly, the sequence

Mn =max
{
xn, . . . ,xn−k+1

}
, n∈N, (2.7)

is nonincreasing.
Our aim is to prove that

lim
n→∞mn = lim

n→∞Mn. (2.8)

Since sequences (mn) and (Mn) are bounded, this is equivalent with

lim
n→∞

(
max

{
xn, . . . ,xn−k+1

}−min
{
xn, . . . ,xn−k+1

})= 0, (2.9)
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that motivates us to consider the function h : Ik →R+∪{0} given by

h
(
z1, . . . ,zk

)=max
{
z1, . . . ,zk

}−min
{
z1, . . . ,zk

}
. (2.10)

Let us introduce the sequence

Xn =
(
xn,xn−1, . . . ,xn−k+1

)
, n∈N, (2.11)

and �= {Xn : n∈N}, that is, the closure of the set {Xn : n∈N}. Note that set � is com-
pact, as a bounded and a closed subset of Rk. Since Xn can be written in the form

Xn =
(
f
(
xn−1, . . . ,xn−k

)
,xn−1, . . . ,xn−k+1

)
, n∈N, (2.12)

we also have that set � is invariant under the vector function

F
(
z1, . . . ,zk

)= ( f (z1, . . . ,zk
)
,z1, . . . ,zk−1

)
. (2.13)

Function h, as a continuous one, attains its minimum on � at some c0 ∈�. Let us
remember that h(c0) ≥ 0. Let (yn) be the solution of (1.1) with initial values equal to
c0 = (y−1, . . . , y−k). We claim that, for this solution, there is a number n0 ∈N such that

yn0−1 ≤min
{
yn0−2, . . . , yn0−k−1

}
or yn0−1 ≥max

{
yn0−2, . . . , yn0−k−1

}
. (2.14)

Since the set � is invariant under F,

h
(
yk−1, . . . , y0

)≥ h
(
y−1, . . . , y−k

)
, (2.15)

where the right-hand side of the inequality is the minimum of function h, we have that
there is an index i0 ∈ {0,1, . . . ,k− 1} such that

yi0 =max
{
yk−1, . . . , y0

}≥max
{
y−1, . . . , y−k

}
(2.16)

or

yi0 =min
{
yk−1, . . . , y0

}≤min
{
y−1, . . . , y−k

}
. (2.17)

Indeed, if max{yk−1, . . . , y0} ≥max{y−1, . . . , y−k}, we finish. Otherwise, from max{yk−1,
. . . , y0}−min{yk−1, . . . , y0} ≥max{y−1, . . . , y−k}−min{y−1, . . . , y−k} = h(c0) ≥ 0, we de-
duce min{y−1, . . . , y−k} − min{yk−1, . . . , y0}≥max{y−1, . . . , y−k} − max{yk−1, . . . , y0} >
0, which leads to min{y−1, . . . , y−k} ≥min{yk−1, . . . , y0}. Note that the indices −k,−k +
1, . . . ,−1,0, 1, . . . , i0 are consecutive, with i0 ≤ k− 1. Hence,

yi0 ≥max
{
yi0−1, . . . , yi0−k

}
(2.18)

or

yi0 ≤min
{
yi0−1, . . . , yi0−k

}
, (2.19)

as claimed.
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By Lemma 2.1, we have that (yn) is eventually nondecreasing or nonincreasing. Now,
note that (yn) cannot be unbounded, since c0 ∈� and � is invariant under F. Hence,
the sequence

Yn =
(
yn, yn−1, . . . , yn−k+1

)
, n∈N, (2.20)

converges to a point, which must be of the form c0 = (x∗,x∗, . . . ,x∗)∈ Ik, and for which
h(c0)= 0. In particular, we have that

lim
n→∞

k−1∑

j=0

∣
∣yn− j − x∗

∣
∣= 0. (2.21)

On the other hand, since Yn ∈�, and set � is closed, we have that for every ε > 0 and
n∈N, there is a vector Xm such that

k−1∑

j=0

∣
∣yn− j − xm− j

∣
∣ < ε. (2.22)

From this and (2.21), it follows that for every ε > 0, there is an index m∈N such one that

k−1∑

j=0

∣
∣xm− j − x∗

∣
∣ < 2ε. (2.23)

Using (2.5) and (2.23), we obtain

x∗ − 2ε < min
{
xm, . . . ,xm−k+1

}
< xm+1 < max

{
xm, . . . ,xm−k+1

}
< x∗ + 2ε. (2.24)

From this, (2.5), and the fact that (mn) and (Mn) are nondecreasing and nonincreasing,
respectively, we obtain that |xn− x∗| < 2ε, for n ≥m+ 1. Since ε is an arbitrary positive
real number, we have limn→∞xn = x∗, finishing the proof of the main result. �

Example 2.2. There are many natural examples for a difference equation (1.1) in which
the function f satisfies conditions (1.4) and (1.5) from Theorem 1.4, such as particular
maps; for instance, f (z1,z2)= αz1 +βz2 with constants α≥ β ≥ 0.

Now, let us consider the function f and suppose that it is a linear combination of any
monotonous nondecreasing function g with respect to variables zi, i= 1,2, . . . ,k, that is,

f
(
z1, . . . ,zk

)= a1g
(
z1
)

+ ···+ akg
(
zk
)
, a1 ≥ a2 ≥ ··· ≥ ak ≥ 0. (2.25)

The case when all constants ai, i = 1,2, . . . ,k, are the same, obviously satisfies all condi-
tions. So, suppose that a1 > ak. Now, assume that z1 ≥ zi for all i = 1,2, . . . ,k. It is well
known that for any monotonous nondecreasing function g (which need not necessarily
be a differentiable one), inequality g(z1)≥ g(zi) holds for all i= 1,2, . . . ,k. After the multi-
plication of all these inequalities by (ai−1− ai)/(a1− ak), respectively, and the summation
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from i= 2 to i= k, for some η ≤ z1, we get (notice that
∑k

i=2((ai−1− ai)/(a1− ak))= 1)

g
(
z1
)≥ g(η)= 1

a1− ak

( k∑

i=2

ai−1g
(
zi
)−

k∑

i=2

aig
(
zi
)
)

(2.26)

that is

k∑

i=1

aig
(
zi
)≥

k∑

i=2

ai−1g
(
zi
)

+ akg
(
z1
)
, (2.27)

which constitutes the condition (1.4) from Theorem 1.4. A similar algebraic manipula-
tion can connect y1 ≤min{y2, . . . , yk} (i.e., the condition (b)) from Theorem 1.4 and in-
equality (1.5) for such functions g. This implies that any function f from the previously
described class of functions (2.25) satisfies the conditions from Theorem 1.4. Hence, this
theorem is applicable to the respective difference equation (1.1).
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[6] S. Stević, “A note on bounded sequences satisfying linear inequalities,” Indian Journal of Mathe-
matics, vol. 43, no. 2, pp. 223–230, 2001.
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