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Let X1,X2, . . . be a strictly stationary sequence of negatively associated (NA) random vari-
ables with EX1=0, set Sn=X1 +···+Xn, suppose that σ2=EX2

1 +2
∑∞

n=2EX1Xn > 0 and
EX2

1 <∞, if−1<α≤ 1; EX2
1 (log|X1|)α <∞, if α > 1. We prove limε↓0ε2α+2

∑∞
n=1((logn)α/

n)P(|Sn|≥σ(ε+κn)
√

2n logn)=2−(α+1)(α+ 1)−1E|N|2α+2, where κn =O(1/ logn) and N is
the standard normal random variable.

Copyright © 2007 Yuexu Zhao. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

A finite family of random variables, X1,X2, . . . ,Xn, is said to be NA if, for every pair of
disjoint subsets T1 and T2 of {1,2, . . . ,n},

Cov
(
f1
(
Xi, i∈ T1

)
, f2

(
Xj , j ∈ T2

))≤ 0, (1.1)

whenever f1 and f2 are coordinatewise increasing and the covariance exists. An infinite
family is NA if every finite subfamily is NA. This definition was introduced by Alam
and Saxena [1] and Joag-Dev and Proschan [2], and has found many applications in
percolation theory, multivariate statistical analysis, and reliability theory (see, e.g., Barlow
and Proschan [3]).

Let {Xn : n ≥ 1} be a sequence of NA random variables on some probability space
(Ω,�,P) with mean zero and finite variance. As usual, set S0 = 0, Sn = X1 + ···+Xn, n≥
1, and write σ2

n = ES2
n. Under appropriate covariance conditions, many limit theorems

have been obtained. For example, the central limit theorem was proved by Newman [4].
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Theorem 1.1. Let {Xn : n≥ 1} be strictly stationary NA sequences with mean zero and

0 < σ2 = EX2
1 + 2

∞∑

n=2

EX1Xn <∞, (1.2)

then

Sn
(σ
√
n)

�−−→N(0,1), as n−→∞. (1.3)

Further results are three series theorems (see, e.g., Matula [5]), probability inequalities
(cf. Roussas [6], Shao [7]), weak convergence (see, e.g., Zhang [8]), the complete conver-
gence (cf. Liang and Su [9], Liang [10]), and the law of the iterated logarithm (see, e.g.,
Shao and Su [11], Zhang [12]), and so forth.

Note that in the above-mentioned limit theorems, the convergence rates of logarithm
are little known, the purpose of the present paper is to investigate the precise asymptotics
in the law of the logarithm for NA sequences. It is well known that NA sequences can con-
tain independent random variables as special case, many authors have given lots of beau-
tiful results for independent variables. Let us first recall parts of those results, it is very
convenient to adopt the following notations: let X1,X2, . . . be independent and identically
distributed (i.i.d.) nondegenerate random variables with EX1 = 0 and EX2

1 = σ2 <∞, set
Sn = X1 + ···+Xn, logx = loge(x∨ e). Chow and Lai [13] studied the following results.

Theorem 1.2. Suppose that VarX1 = σ2 and α≥ 1. Then the following are equivalent:

∞∑

n=1

nα−2P
(∣
∣Sn

∣
∣≥ ε

√
2n logn

)
<∞, ∀ε > σ

√
α− 1;

∞∑

n=1

nα−2P
(

max
1≤k≤n

∣
∣Sk

∣
∣≥ ε

√
2n logn

)

<∞, ∀ε > σ
√
α− 1;

∞∑

n=1

nα−2P
(∣
∣Sn

∣
∣≥ ε

√
2n logn

)
<∞, for some ε > 0;

EX1 = 0,
E
∣
∣X1

∣
∣2α

(
log

∣
∣X1

∣
∣
)α <∞.

(1.4)

Heyde [14] presented an interesting and beautiful result.

Theorem 1.3. If EX1 = 0 and EX2
1 <∞, then

lim
ε↓0
ε2

∞∑

n=1

P
(∣
∣Sn

∣
∣≥ εn)= EX2

1 . (1.5)

This is a precise estimate for the convergence rate of probability series as ε ↓ 0, which
has been generalized and extended in several directions. For α = 1 in Theorem 1.2, Gut
and Spǎtaru [15] obtained the results as follows.
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Theorem 1.4. Suppose that EX1 = 0 and EX2
1 = σ2 <∞. Then, for 0≤ δ ≤ 1,

lim
ε↓0
ε2δ+2

∞∑

n=1

(logn)δ

n
P
(∣
∣Sn

∣
∣≥ ε

√
n logn

)
= σ2δ+2E|N|2δ+2

δ + 1
, (1.6)

where N is a standard normal random variable.

Our starting point is Theorem 1.4, the present work will give the analogue of (1.6) for
NA sequences. From now on, we adopt the following notations: let X1,X2, . . . be strictly
stationary NA sequences with EX1 = 0 and EX2

1 <∞, σ2 = EX2
1 + 2

∑∞
n=2EX1Xn > 0, and

set Sn = X1 + ···+Xn, Mn =max1≤k≤n |Sk|, write log for the natural logarithm, logx =
loge(x∨ e), [z] denotes the largest integer which is not larger than z, C denotes positive
constant, independent of ε, it may take different values in each appearance. The paper
is organized as follows: we first introduce our main results, after which the proofs of
Theorems 2.1 and 2.4 are exposed in Sections 3 and 4, respectively. We now state the
main results.

2. Main results

Theorem 2.1. Let κn =O(1/ logn), EX2
1 <∞, if −1 < α≤ 1; EX2

1 (log|X1|)α <∞, if α > 1.
Then

lim
ε↓0
ε2α+2

∞∑

n=1

(logn)α

n
P
(∣
∣Sn

∣
∣≥ σ

(
ε+ κn

)√
2n logn

)

= 2−(α+1)(α+ 1)−1E|N|2α+2,

(2.1)

where N is a standard normal random variable.

Corollary 2.2. Under the conditions in Theorem 2.1,

lim
ε↓0
ε2α+2

∞∑

n=1

(logn)α

n
P
(∣
∣Sn

∣
∣≥ σε

√
2n logn

)
= E|N|2α+2

2(α+1)(α+ 1)
. (2.2)

Corollary 2.3. Suppose that EX2
1 <∞. Then

lim
ε↓0
ε2

∞∑

n=1

n−1P
(∣
∣Sn

∣
∣≥ σ

(
ε+ κn

)√
2n logn

)
= EN2

2
. (2.3)

Theorem 2.4. Let κn =O(1/ logn), EX2
1 <∞, if −1 < α≤ 1/2; EX2

1 (log|X1|)α <∞, if α >
1/2. Then

lim
ε↓0
ε2α+2

∞∑

n=1

(logn)α

n
P
(
Mn ≥ σ

(
ε+ κn

)√
2n logn

)

= 2−α(α+ 1)−1E|N|2α+2
∞∑

n=0

(−1)n

(2n+ 1)2α+2
.

(2.4)
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Without loss of generality, throughout the paper, we will suppose that σ2 = 1. Let Φ(x)
denote the standard normal distribution function, and put Ψ(x) = 1−Φ(x) + Φ(−x),
x ≥ 0.

3. Proof of Theorem 2.1

In order to prove this result easily, we separate the proof into two propositions, the first
one can be formulated as follows.

Proposition 3.1. Suppose that N be a nondegenerate Gaussian random variable. Then

lim
ε↓0
ε2α+2

∞∑

n=1

(logn)α

n
P
(
|N| ≥ (ε+ κn

)√
2logn

)

= 2−(α+1)(α+ 1)−1E|N|2(α+1).

(3.1)

Proof. Noting the definition of κn, we first show that

lim
ε↓0
ε2α+2

∞∑

n=1

(logn)α

n
P
(
|N| ≥ ε

√
2logn

)
= 2−(α+1)(α+ 1)−1E|N|2α+2. (3.2)

By integral formula and transformation, it is enough to show that for any α >−1,

lim
ε↓0
ε2α+2

∞∑

n=1

(logn)α

n
P
(
|N| ≥ ε

√
2logn

)

= lim
ε↓0
ε2α+2

∞∑

n=1

∫ n+1

n

(logx)α

x
P
(
|N| ≥ ε

√
2logx

)
dx

= 2−α
∫∞

0
y2α+1P

(|N| ≥ y
)
dy

= 2−(α+1)(α+ 1)−1E|N|2α+2.

(3.3)

Write

An(ε)=
∣
∣
∣P
(
|N| ≥ ε

√
2logn

)
−P

(
|N| ≥ (ε+ κn

)√
2logn

)∣
∣
∣. (3.4)

The proof of (3.1) should be completed, if one could show that

lim
ε↓0
ε2α+2

∞∑

n=1

(logn)α

n
An(ε)= 0, (3.5)

the proof of (3.5) is similar to that of Proposition 2.2 in Huang and Zhang [16].
Before giving the second proposition, the following lemma is necessary. �
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Lemma 3.2 [17]. Suppose that {Xk : k ≥ 1} be NA sequences with EXk = 0, E|Xk|p <∞, for
p ≥ 2. Then, for any t > p/2, x > 0,

P
(∣
∣Sn

∣
∣≥ x

)≤
n∑

k=1

P

(
∣
∣Xk

∣
∣≥ x

t

)

+ 2et
(

1 +
x2

t
∑n

k=1EX
2
k

)−t
. (3.6)

Proposition 3.3. Suppose that EX2
1 <∞, if−1 < α≤ 1; EX2

1 (log|X1|)α <∞, if α > 1. Then

lim
ε↓0
ε2α+2

∞∑

n=1

(logn)α

n

∣
∣
∣P
(∣
∣Sn

∣
∣≥ (ε+ κn

)√
2n logn

)
−P

(
|N| ≥ (ε+ κn

)√
2logn

)∣
∣
∣= 0.

(3.7)

Proof. Set H(ε)= [exp(M/ε2)], where M > 4, 0 < ε < 1/4. It is easy to get

∞∑

n=1

(logn)α

n

∣
∣
∣P
(∣
∣Sn

∣
∣≥ (ε+ κn

)√
2n logn

)
−P

(
|N| ≥ (ε+ κn

)√
2logn

)∣
∣
∣

=
∑

n≤H(ε)

(logn)α

n

∣
∣
∣P
(∣
∣Sn

∣
∣≥ (ε+ κn

)√
2n logn

)
−P

(
|N|≥(ε+ κn

)√
2logn

)∣
∣
∣

+
∑

n>H(ε)

(logn)α

n

∣
∣
∣P
(∣
∣Sn

∣
∣≥(ε+ κn

)√
2n logn

)
−P

(
|N| ≥ (ε+ κn

)√
2logn

)∣
∣
∣
�=I1 + I2.

(3.8)

We first consider I1. Let Δn = supx |P(|Sn| ≥ x
√
n)−P(|N| ≥ x)|, noting Theorem 1.1,

since Ψ(x) is a continuous function, then, for any x ≥ 0, we have limn→∞Δn = 0. It follows
that

ε2α+2I1 ≤ ε2α+2
∑

n≤H(ε)

(logn)α

n
Δn = ε2α+2

∑

n≤H(ε)

(logn)α

n
Δn

≤ Cε2α+2(logn)α+1 1
(logn)α+1

∑

n≤H(ε)

(logn)α

n
Δn

≤ CMα+1 1
(logn)α+1

∑

n≤H(ε)

(logn)α

n
Δn −→ 0, as ε ↓ 0.

(3.9)

Note that (1/(logn)α+1)
∑

n≤H(ε)((logn)α/n)Δn→ 0, ε ↓ 0, then (3.9) holds. Turn to I2, one
can get

I2 ≤
∑

n>H(ε)

(logn)α

n
P
(
|N| ≥ (ε+ κn

)√
2logn

)

+
∑

n>H(ε)

(logn)α

n
P
(∣
∣Sn

∣
∣≥ (ε+ κn

)√
2n logn

) �= I3 + I4.

(3.10)
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Without loss of generality, we can assume that 0 < ε < 1/4, M > 4, then one can get
H(ε)− 1 ≥ √H(ε). Note, in particular, that the definition of κn, for n large enough, we
have |κn| < ε/4. Then, for I3, it follows that

ε2α+2I3 ≤ ε2α+2
∑

n>H(ε)

(logn)α

n
P
(
|N| ≥ ε

2

√
2logn

)

≤ ε2α+2
∫∞

H(ε)−1

(logx)α

x
P
(
|N| ≥ ε

2

√
2logx

)
dx

≤ ε2α+2
∫∞
√

H(ε)

(logx)α

x
P
(
|N| ≥ ε

2

√
2logx

)
dx

≤ C
∫∞
√
M/4

y2α+1P
(|N| > y

)
dy −→ 0, as M −→∞,

(3.11)

uniformly with respect to 0 < ε < 1/4. We finally estimate I4, by Lemma 3.2, which yields,
for n large enough,

P
(∣
∣Sn

∣
∣≥ (ε+ κn

)√
2n logn

)
≤ P

(∣
∣Sn

∣
∣≥ ε

2

√
2n logn

)

≤ nP

(
∣
∣X1

∣
∣≥ ε

2m

√
2n logn

)

+ 2em
(

1 +
ε2 logn
2mEX2

1

)−m

�= I5 + I6,
(3.12)

where m is a positive integer to be specified later. Then, observe that n > H(ε) implies
logn >M/ε2, for I5, if −1 < α≤ 1, the proof is similar to that of Lemma 3.2 [15]; if α > 1,
applying Fubini’s theorem, it turns out that

∑

n>H(ε)

(logn)α

n
I5 =

∑

n>H(ε)

(logn)αP

⎛

⎝
∣
∣X1

∣
∣≥

ε
√

2n logn

2m

⎞

⎠

≤ C
∑

n>H(ε)

(logn)α
∞∑

j=n
P

⎛

⎝

√
2Mj

2m
≤ ∣∣X1

∣
∣ <

√
2M( j + 1)

2m

⎞

⎠

≤ C
∑

j>H(ε)

P

⎛

⎝

√
2Mj

2m
≤ ∣∣X1

∣
∣ <

√
2M( j + 1)

2m

⎞

⎠
j∑

n=H(ε)

(logn)α

≤ C
∑

j>H(ε)

j(log j)αP

(

j ≤ 2m2X2
1

M
< j + 1

)

≤ CEX2
1

(
log

∣
∣X1

∣
∣
)α

M
.

(3.13)

Furthermore, one can easily get limsupε↓0 ε2α+2
∑

n>H(ε)(logn)αI5/n= 0. We finally es-
timate I6, by the arbitrarity of m(> 1), one can obviously choose an appropriate positive



Yuexu Zhao 7

integer m, such that m> α+ 1. Then we have

∑

n>H(ε)

(logn)α

n
I6 ≤ C

∑

n>H(ε)

(logn)α

n

(
ε2 logn
2mEX2

1

)−m

≤ C
∑

n>H(ε)

(logn)α

n

(
ε2 logn

)−m

≤ Cε−2m
∫∞

H(ε)−1

(
(logx)α−m

x

)

dx

≤ Cε−2m( log
(
H(ε)

))α+1−m

≤ Cε−2α−2Mα+1−m,

(3.14)

it is easy to get limM→∞ ε2α+2
∑

n>H(ε)(logn)αI6/n = 0, uniformly with respect to 0 < ε <
1/4. Thus the proof of Proposition 3.3 is completed. �

Proof of Theorem 2.1. Combining Propositions 3.1 and 3.3, one can complete the proof
of this theorem immediately. �

4. Proof of Theorem 2.4

The following propositions will simplify the proof of Theorem 2.4, which are stated as
follows.

Proposition 4.1. Suppose that {W(t) : t ≥ 0} be a standard Wiener process (Brownian
motion). Then

lim
ε↓0
ε2α+2

∞∑

n=1

(logn)α

n
P
(

sup
0≤s≤1

∣
∣W(s)

∣
∣≥ (ε+ κn

)√
2logn

)

= 2−α(α+ 1)−1E|N|2α+2
∞∑

n=0

(−1)n

(2n+ 1)2α+2
.

(4.1)

Proof. Noting the result of Billingsley [18],

P
(

sup
0≤s≤1

∣
∣W(s)

∣
∣≥ x

)

= 1−
∞∑

k=−∞
(−1)kP

(
(2k− 1)x ≤N ≤ (2k+ 1)x

)

= 4
∞∑

k=0

(−1)kP
(
N ≥ (2k+ 1)x

)= 2
∞∑

k=0

(−1)kP
(|N| ≥ (2k+ 1)x

)
,

(4.2)
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where N is the standard normal random variable. Then, according to Proposition 3.1,
one can complete the proof easily. �

Lemma 4.2 [7]. Suppose that {Xn : n ≥ 1} be strictly stationary NA sequences, EX1 = μ,
0 < VarX1 = σ2 <∞, and B2 = EX2

1 + 2
∑∞

n=2EX1Xn > 0, set Sm =
∑m

k=1Xk, write

Wn(t)= 1
B
√
n

(
Sm + (nt−m)Xm+1−ntμ

)
, m≤ n <m+ 1, 0≤ t ≤ T. (4.3)

Then

Wn(t)
�−−→W(t) in C[0,T], (4.4)

where W(t) is the standard Wiener process and C[0,T] is the usual C space on [0,T].

Lemma 4.3 [11]. Let {Xn : n≥ 1} be a sequence of NA random variable with mean zero and
finite second moments. Set Sn = X1 + ···+Xn and B2

n =
∑n

k=1EX
2
k . Then for all x > 0, a > 0,

and 0 < β < 1,

P
(

max
1≤k≤n

∣
∣Sk

∣
∣≥ x

)

≤ 2P
(

max
1≤k≤n

∣
∣Xk

∣
∣≥ a

)

+
2

1−β
exp

(

− βx2

2
(
ax+B2

n

)

)

. (4.5)

Proposition 4.4. Suppose that EX2
1 <∞, if −1 < α≤ 1/2; EX2

1 (log|X1|)α <∞, if α > 1/2.
Then

lim
ε↓0
ε2α+2

∑

n≥1

(logn)α

n

∣
∣
∣P
(
Mn ≥

(
ε+ κn

)√
2n logn

)

−P
(

sup
0≤s≤1

∣
∣W(s)

∣
∣≥ (ε+ κn

)√
2logn

)∣
∣
∣= 0.

(4.6)

Proof. Let H(ε) be as above, it follows that

∞∑

n=1

(logn)α

n

∣
∣
∣
∣P
(
Mn ≥

(
ε+ κn

)√
2n logn

)
−P

(

sup
0≤s≤1

∣
∣W(s)

∣
∣≥ (ε+ κn

)√
2logn

)∣
∣
∣
∣

=
∑

n≤H(ε)

(logn)α

n

∣
∣
∣
∣P
(
Mn ≥

(
ε+ κn

)√
2n logn

)
−P

(

sup
0≤s≤1

∣
∣W(s)

∣
∣≥ (ε+ κn

)√
2logn

)∣
∣
∣
∣

+
∑

n>H(ε)

(logn)α

n

∣
∣
∣
∣P
(
Mn ≥

(
ε+ κn

)√
2n logn

)
−P

(

sup
0≤s≤1

∣
∣W(s)

∣
∣≥ (ε+ κn

)√
2logn

)∣
∣
∣
∣

�= I′1 + I′2.
(4.7)
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Noting Lemma 4.2, we have Mn/
√
n

�→ sup0≤t≤1 |W(t)|, as n→∞. Similar to Theorem
2.1, one can get limε↓0 ε2α+2I′1 = 0. We now estimate I′2, it turns out that

I′2 ≤
∑

n>H(ε)

(logn)α

n
P
(

sup
0≤s≤1

∣
∣W(s)

∣
∣≥ (ε+ κn

)√
2logn

)

+
∑

n>H(ε)

(logn)α

n
P
(

max
1≤k≤n

∣
∣Sk

∣
∣≥ (ε+ κn

)√
2n logn

) �= I′3 + I′4.

(4.8)

Observe that P(sup0≤s≤1 |W(s)| ≥ x)≤ 2P(|N| ≥ x), see [18]. Similar to Theorem 2.1,
we have limε↓0 ε2α+2I′3 = 0. We then consider I′4, as a matter of fact, by Lemma 4.3, take

x = ε
√

2n logn/2, a= (2nε
√

logn)1/2. For n large enough, one could get

P

(

max
1≤k≤n

∣
∣Sk

∣
∣≥ (ε+ κn

)√
2n logn

)

≤ P

(

max
1≤k≤n

∣
∣Sk

∣
∣≥ ε

2

√
2n logn

)

≤ 2nP
(∣
∣X1

∣
∣≥

(
2nε

√
logn

)1/2)
+

2
1−β

exp

⎛

⎜
⎝− βε2 logn

8
((
ε
√

logn
)3/2

+ 1
)

⎞

⎟
⎠
�= I′5 + I′6.

(4.9)

Without loss of generality, we can assume 0 < ε < 1/4, M > 16, Notice that n > H(ε) if
and only if logn >M/ε2, then for I′6, we have

ε2α+2
∑

n>H(ε)

(logn)αI′6
n

≤ Cε2α+2
∑

n>H(ε)

(logn)α exp

(
−β

(
ε
√

logn
)1/2/

9
)

n

≤ Cε2α+2
∫∞

H(ε)−1
(logx)α exp

(−β
(
ε
√

logx
)1/2

9

)
dx

x

≤ Cε2α+2
∫∞
√

H(ε)
(logx)α exp

(−β
(
ε
√

logx
)1/2

9

)
dx

x

≤ Cε2α+2
∫∞

β 4√M/9
ε−2α−2y4α+3 exp(−y)dy

≤ C
∫∞

β 4√M/9
y4α+3 exp(−y)dy −→ 0, as M −→∞.

(4.10)
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We then estimate I′5. If−1 < α≤ 1/2, the following result is obvious according to EX2
1 <

∞; if α > 1/2, by Fubini’s theorem, it follows that

∑

n>H(ε)

(logn)αI′5
n

=
∑

n>H(ε)

(logn)αP
(∣
∣X1

∣
∣≥

(
2nε

√
logn

)1/2)

≤ C
∑

n>H(ε)

(logn)α
∞∑

k=n
P

(
√
k ≤

∣
∣X1

∣
∣

4
√

4M
<
√
k+ 1

)

≤ C
∑

k>H(ε)

P

(
√
k ≤

∣
∣X1

∣
∣

4
√

4M
<
√
k+ 1

) k∑

n=H(ε)

(logn)α

≤ C
∑

k>H(ε)

k(logk)αP

(
√
k ≤

∣
∣X1

∣
∣

4
√

4M
<
√
k+ 1

)

≤ CEX2
1

(
log

∣
∣X1

∣
∣
)α

√
4M

<∞.

(4.11)

�

Proof of Theorem 2.4. The proof follows from Propositions 4.1 and 4.4. �
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