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We investigate a delayed stage-structured Ivlev’s functional response predator-prey model
with impulsive stocking on prey and continuous harvesting on predator. Sufficient con-
ditions of the global attractivity of predator-extinction periodic solution and the perma-
nence of the system are obtained. These results show that the behavior of impulsive stock-
ing on prey plays an important role for the permanence of the system. We also prove that
all solutions of the system are uniformly ultimately bounded. Our results provide reliable
tactical basis for the biological resource management and enrich the theory of impulsive
delay differential equations.
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1. Introduction

Biological resources are renewable resources. Economic and biological aspects of renew-
able resources management have been considered by Clark [1]. In recent years, the opti-
mal management of renewable resources, which has a direct relationship to sustainable
development, has been studied extensively by many authors [1, 2]. Generally speaking,
the exploitation of a species should be determined by the economic and biological val-
ues of the population. It is the purpose of this paper to analyze the exploitation of the
stage-structured predator-prey model with harvesting on mature predator population.

In the natural world, there are many species whose individual members have a life his-
tory that takes them through two stages—immature and mature. In [3], a stage-
structured model of population growth consisting of immature and mature individu-
als was analyzed, where the stage-structured was modeled by introduction of a constant
time delay. Other population growth and infectious disease models with time delays were
considered in [3–7]. For the above discussion, we investigate a delayed stage-structured
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Ivlev’s functional response predator-prey model with impulsive stocking on the prey and
continuous harvesting on the predator. It may be more appropriate to the biological re-
source management. We will obtain the sufficient conditions for the global attractivity
of the predator-extinction periodic solution and the permanence of the system. Our re-
sults provide reliable tactical basis for the biological resource management, and enrich
the theory of impulsive differential equations.

2. Model formulation

There were many works concerning predator-prey system, and many good results are
obtained [3, 8–11]. Especially, Kooij and Zegeling [12] investigated the predator-prey
model with Ivlev’s functional response. The basic predator-prey model is

x′1(t)= x1(t)
(
r− ax1− bx2(t)

)
,

x′2(t)= x2(t)
(−d+ cx1(t)

)
,

(2.1)

where x1(t) and x2(t) are densities of the prey and the predator, respectively, r > 0 is the
intrinsic growth rate of the prey, a > 0 is the coefficient of intraspecific competition, b > 0
is the per capita rate of predation of the predator, d > 0 is the death rate of the predator,
c > 0 denotes the product of the per capita rate of predation and the rate of conversing
prey into the predator. If rc− da < 0, system (2.1) do not have any positive equilibrium
point, and the only unique equilibrium point (r/a,0) is globally asymptotically stable,
which implies that the predator population will go extinction. If the prey is stocked at
constant rate, then system (2.1) becomes the following differential equation:

x′1(t)= x1(t)
(
r− ax1− bx2(t)

)
+μ,

x′2(t)= x2(t)
(−d+ cx1(t)

)
.

(2.2)

It can be easily derived that if μ > d(ad− rc)/c2, system (2.2) has a unique globally asymp-
totically stable positive equilibrium (d/c, (rdc− ad2 + μc)/bcd). This implies that the be-
havior of stocking prey assures the permanence of system (2.2).

While stage-structured models were analyzed in many literatures [3, 8, 9, 13–19], the
following single-species stage-structured model was introduced by Aiello and Freedman
[9]:

x′(t)= βy(t)− rx(t)−βe−rτ y(t− τ),

y′(t)= βe−rτ y(t− τ)−η2y
2(t),

(2.3)

where x(t), y(t) represent the immature and mature populations densities, respectively.
τ represents a constant time to maturity, and β, r, and η2 are positive constants. This
model is derived as follows. We assume that at any time t > 0, birth into the immature
population is proportional to the existing mature population with proportionality con-
stant β. We assume that the death rate of immature population is proportional to the
existing immature population with proportionality constant r. We also assume that the
death rate of mature population is of a logistic nature, that is, proportional to the square
of the population with proportionality constant η2.



K. Liu and L. Chen 3

According to the nature of biological resource management, developing (2.2) with
(2.3) by introducing the stocking on prey at fixed moments and harvesting mature preda-
tor population throughout the whole year or continuously, and considering Ivlev’s func-
tional response, we consider the following impulsive delay differential equations:

x′1(t)= x1(t)
(
a− bx1(t)

)−β
(
1− e−θx1(t))x3(t), t �= nτ,

x′2(t)= rx3(t)− re−wτ1x3
(
t− τ1

)−wx2(t), t �= nτ,

x′3(t)= re−wτ1x3
(
t− τ1

)
+ kβ

(
1− e−θx1(t))x3(t)−d3x3(t)−Ex3(t)−d4x

2
3(t), t �= nτ,

Δx1(t)= μ, t = nτ, n= 1,2, . . . ,

Δx2(t)= 0, t = nτ, n= 1,2, . . . ,

Δx3(t)= 0, t = nτ, n= 1,2, . . . ,
(
ϕ1(ζ),ϕ2(ζ),ϕ3(ζ)

)∈ C+ = C
([− τ1,0

]
,R3

+

)
, ϕi(0) > 0, i= 1,2,3,

(2.4)

where x1(t) denotes the density of the prey, x2(t), x3(t) represent the immature and ma-
ture predator densities, respectively. τ1 represents a constant time to maturity, a > 0 is
the intrinsic growth rate of the prey, b > 0 is the coefficient of intraspecific competition,
r, w, θ, d3, d4, k, c, and β are positive constants, and 0 < E < 1 is the effect of continu-
ous harvesting on the predator. This model is derived as follows. We assume that at any
time t > 0, birth into the immature predator population is proportional to the existing
mature predator population with proportionality constant r. We then assume that the
death rate of immature predator population is proportional to the existing immature
predator population with proportionality constant w. w(w > d), d3 are called the death
coefficient of x2(t), x3(t), respectively. We assume that the death rate of mature predator
populations are of a logistic nature, that is, proportional to the square of the population
with proportionality constant d4. k > 0 is the rate of conversing the prey into the preda-
tor. Δx1(t)= x1(t+)− x1(t), μ≥ 0 is the stocking amount of the prey at t = nτ, n∈ Z+ and
Z+ = {1,2, . . .}, τ is the period of the impulsive stocking on the prey. We will prove that the
system (2.4) has a predator-extinction periodic solution. Further, it is globally attractive.
Due to the stocking on the prey, the mature predator population will not go extinction
for the continuous harvesting of mature predator population, that is, system (2.4) is per-
manent. In this paper, we always assume that the immature predator population cannot
predate the prey population.

Because the first and third equations of (2.4) do not contain x2(t), we can simplify
model (2.4) and restrict our attention to the following model:

x′1(t)= x1(t)
(
a− bx1(t)

)−β
(
1− e−θx1(t))x3(t), t �= nτ,

x′3(t)= re−wτ1x3
(
t− τ1

)
+ kβ

(
1− e−θx1(t))x3(t)−d3x3(t)−Ex3(t)−d4x

2
3(t), t �= nτ,

Δx1(t)= μ, t = nτ, n= 1,2, . . . ,

Δx3(t)= 0, t = nτ, n= 1,2, . . . .
(2.5)
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The initial conditions for (2.5) are
(
ϕ1(ζ),ϕ3(ζ)

)∈ C′+ = C
([− τ1,0

]
,R2

+

)
, ϕi(0) > 0, i= 1,3. (2.6)

3. Some important lemmas

The solution of (2.4), denoted by x(t) = (x1(t),x2(t),x3(t))T , is a piecewise continuous
function x : R+ → R3

+, x(t) is continuous on (nτ, (n + 1)τ], n ∈ Z+ and x(nτ+) =
limt→nτ+x(t) exists. Obviously the global existence and uniqueness of the solutions of
(2.4) are guaranteed by the smoothness properties of f , which denote the mapping de-
fined by right-hand side of system (2.4) (see Lakshmikantham et al. [20] and Baı̆nov and
Simeonov [21]). For the continuity of the initial conditions, we require

ϕ2(0)=
∫ 0

−τ1

rewsϕ3(s)ds. (3.1)

Before we have the the main results, we need to give some lemmas which will be used
in the next.

Lemma 3.1. Let (ϕ1(t),ϕ2(t),ϕ3(t)) > 0 for −τ1 < t < 0. Then any solution of system (2.4)
is strictly positive.

Proof. First, we show that x3(t)≥ 0 for all t > 0. Notice x3(t)≥ 0, hence if there exists t0
such that x3(t0)= 0, then t0 > 0. Assume that t0 is the first time such that x3(t)= 0, that
is,

t0 = inf
{
t > 0 : x3(t)= 0

}
, (3.2)

then x′3(t0) = re−wτ1x3(t0 − τ1) > 0. Hence for sufficiently small ε > 0, x′3(t0 − ε) > 0. But
by the definition of t0, x′3(t0− ε)≤ 0. This contradiction shows that x3(t) > 0 for all t > 0.

By the uniqueness of the solutions of system (2.4) and x′1(t) = 0 whenever x1(t) = 0,
t �= nτ, and x1(nτ+)= x1(nτ) +μ, μ≥ 0, it is easy to see that x1(t) > 0 for all t > 0.

Finally, we consider the following equation:

s′(t)=−re−wτ1x3
(
t− τ1

)−ws(t). (3.3)

Comparing with (2.4), we note that if s(t) is the solution of (3.3) and if x2(t) can solve
(2.4), then x2(t) > s(t) on 0 < t < τ1. Integrating (3.3) gives

s(t)= e−wt
[
x2(0)−

∫ t

0
rew(u−τ1)x3

(
u− τ1

)
du
]
. (3.4)

From (3.1) one can obtain

s
(
τ1
)= e−wτ1

[∫ 0

−τ1

rewsϕ3(s)ds−
∫ τ1

0
rew(u−τ1)x3

(
u− τ1

)
du
]
. (3.5)

By making transformation and x3(t) = ϕ3(t), t ∈ [−τ1,0], we know that
∫ 0
−τ1

rewsϕ3(s)ds
is equivalent to

∫ τ1

0 rew(s−τ1)x3(s− τ1)ds. Thus we obtain s(τ1)= 0. Hence x2(t) > 0. Since
s(t) is strictly decreasing, then x2(t) > s(t) > 0 for t ∈ (0,τ1). So x2(t) > 0 on 0≤ t ≤ τ1.
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By induction and similar method to the proof of [22, Theorem 1], we can show that
x2(t) > 0 for all t ≥ 0. This completes the proof. �

Lemma 3.2 (see [20, Lemma 2.2, page 23]). Let the function m∈ PC′[R+,R] satisfies the
inequalities

m′(t)≤ p(t)m(t) + q(t), t �= tk, k = 1,2, . . . ,

m
(
t+
k

)≤ dkm
(
tk
)

+ bk, t = tk, t ≥ t0,
(3.6)

where p,q ∈ PC[R+,R] and dk ≥ 0, bk are constants, then

m(t)≤m
(
t0
) ∏

t0<tk<t

dk exp
(∫ t

t0
p(s)ds

)
+
∑

t0<tk<t

(
∏

tk<tj<t

dj exp
(∫ t

tk
p(s)ds

))

bk

+
∫ t

t0

∏

s<tk<t

dk exp
(∫ t

s
p(σ)dσ

)
q(s)ds, t ≥ t0.

(3.7)

Now, we show that all solutions of (2.4) are uniformly ultimately bounded.

Lemma 3.3. There exists a constant M > 0 such that x1(t)≤M/k, x2(t)≤M, x3(t)≤M for
each solution (x1(t),x2(t),x3(t)) of (2.4) with all t large enough.

Proof. Define V(t)= kx1(t) + x2(t) + x3(t), and because of w > d, when t �= nτ we have

D+V(t) +wV(t)= k(w+ a)x1− kbx2
1(t) +

(
r +w−d3−E

)
x3(t)−d4x

2
3(t)≤M0, (3.8)

where M0 = k(a+w)2/4b+ (r +w−d3−E)2/4d4. When t = nτ, V(nτ+)= V(nτ) + μ. By
Lemma 3.2, for t ∈ (nτ, (n+ 1)τ], we have

V(t)≤V(0)exp(−dt) +
∫ t

0
M0 exp

(−d(t− s)
)
ds+

∑

0<nτ<t

μexp
(−d(t−nτ)

)

=V(0)exp(−dt)+
M0

d

(
1−exp(−dt))+μ

exp
(−d(t− τ)

)− exp
(−d

(
t− (n+1)τ

))

1− exp(dτ)

< V(0)exp(−dt) +
M0

d

(
1− exp(−dt))+

μexp
(−d(t− τ)

)

1− exp(dτ)
+

μexp(dτ)
exp(dτ)− 1

−→ M0

d
+

μexp(dτ)
exp(dτ)− 1

, as t −→∞.

(3.9)

So V(t) is uniformly ultimately bounded. Hence, by the definition of V(t), there ex-
ists a constant M =M0/d+μexp(dτ)/(exp(dτ)− 1) > 0 such that x(t)≤M/k, x2(t)≤M,
x3(t)≤M for t large enough. The proof is complete. �

Consider the following delay equation:

x′(t)= a1x(t− τ)− a2x(t), (3.10)

we assume that a1,a2,τ > 0; x(t) > 0 for−τ ≤ t ≤ 0. The following result for system (3.12)
can be easily obtained from Lemma 3.4.
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Lemma 3.4 [23]. For system (3.10), assume that a1 < a2. Then

lim
t→∞x(t)= 0. (3.11)

Lemma 3.5 [24]. Consider the following impulsive system:

v′(t)= v(t)
(
a− bv(t)

)
, t �= nτ,

v
(
nτ+)= v(nτ) +μ, t = nτ, n= 1,2, . . . ,

(3.12)

where a > 0, b > 0, μ > 0. Then there exists a unique positive periodic solution of system
(3.12)

ṽ(t)= av∗ exp
(
a(t−nτ)

)

a− bv∗ + bv∗ exp
(
a(t−nτ)

) , t ∈ (nτ, (n+ 1)τ
]
, n∈ Z+, (3.13)

which is globally asymptotically stable, where v∗=(((a+ bμ)+
√

(a+ bμ)2 + 4abμ/(eaτ−1))/
2b)(> a/b).

According to the system (2.4), we can easily know that there exists t1 ∈ Z+, t > t1, such
that x3(t− τ1)= 0 and x3(t)= 0. Then

x′1(t)= x1(t)
(
a− bx1(t)

)
, t �= nτ,

Δx1(t)= μ, t = nτ, n= 1,2, . . . .
(3.14)

From (3.14) and Lemma 3.5, we know that (2.4) has a predator-extinction periodic solu-
tion

(
�x1(t),0,0

)=
(

ax∗1 exp
(
a(t−nτ)

)

a− bx∗1 + bx∗1 exp
(
a(t−nτ)

) ,0,0
)

, t ∈ (nτ, (n+ 1)τ
]
, n∈ Z+,

(3.15)

or (2.5) has a predator-extinction periodic solution

(
�x1(t),0

)=
(

ax∗1 exp
(
a(t−nτ)

)

a− bx∗1 + bx∗1 exp
(
a(t−nτ)

) ,0
)

, t ∈ (nτ, (n+ 1)τ
]
, n∈ Z+, (3.16)

which is globally asymptotically stable, where x∗1 =(((a+bμ)+
√

(a+bμ)2 +4abμ/(eaτ−1))/
2b)(> a/b).

Similarly, we can obtain the following important lemma for our next work.

Lemma 3.6. Consider the following impulsive system:

u′(t)= u(t)
(
a− bu(t)

)−βε, t �= nτ,

u
(
nτ+)= u(nτ) +μ, t = nτ, n= 1,2, . . . ,

(3.17)
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where a > 0, b > 0, μ > 0, and ε > 0 are sufficiently small. Then there exists a unique globally
asymptotically stable positive periodic solution of system (3.17):

ũ(t)= k1
[(
k1 + b1

(
u∗ − a/2b

))
e2k1b1(t−nτ)− (k1− b1

(
u∗ − a/2b

))]

b1
[
k1− b1

(
u∗ − a/2b

)
+
(
k1 + b1

(
u∗ − a/2b

))
e2k1b1(t−nτ)

]

×
⎛

⎝>

√
a2/4b−βε

b
+

a

2b

⎞

⎠ , t ∈ (nτ, (n+ 1)τ
]
, n∈ Z+,

(3.18)

where u∗ = a/2b + (b1μ +
√

(2k1 + b1μ)2 + 4k1b1μ/(e2k1b1τ − 1))/2b1, k1 =
√
a2/4b−βε,

b1 =
√
b.

Remark 3.7. From Lemmas 3.5 and 3.6, let ε→ 0, we can easily obtain that ũ(t)→ ṽ(t)
and u∗ → v∗.

4. Global attractivity

In this section, we will obtain the sufficient condition of the global attractivity of the
predator-extinction periodic solution of system (2.4).

Theorem 4.1. Let (x1(t),x2(t),x3(t)) be any solution of (2.4). If

E > re−wτ1 + kβ
(

1− exp
{
− θax∗1 eaτ

a− bx∗1 + bx∗1 eaτ

})
−d3 (4.1)

holds, where x∗1 = (((a+ bμ) +
√

(a+ bμ)2 + 4abμ/(eaτ − 1))/2b)(> a/b), then the predator-

extinction periodic solution (�x1(t),0,0) of (2.4) is globally attractive.

Proof. It is clear that the global attraction of the predator-extinction periodic solution

(�x3(t),0,0) of system (2.4) is equivalent to the global attraction of the predator-extinction

periodic solution (�x3(t),0) of system (2.5). So we only devote to system (2.5). Since E >
re−wτ1 + kβ(1− exp{−θax∗1 eaτ/(a− bx∗1 + bx∗1 eaτ)})− d3, we can choose ε0 sufficiently
small such that

re−wτ1 + kβ
[

1− exp
{
− θ

(
ax∗1 eaτ

a− bx∗1 + bx∗1 eaτ
+ ε0

)}]
< d3 +E, (4.2)

where x∗1 = (((a+ bμ) +
√

(a+ bμ)2 + 4abμ/(eaτ − 1))/2b)(> a/b). It follows from the first
equation of system (2.5) that dx1(t)/dt ≤ x1(t)(a− bx1(t)). So we consider the following
comparison impulsive differential system:

dx(t)
dt

= x(t)
(
a− bx(t)

)
, t �= nτ,

Δx(t)= μ, t = nτ,

x
(
0

+)= x1
(
0

+)
.

(4.3)
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In view of Lemma 3.5, we obtain the periodic solution of system (4.3):

x̃(t)= ax∗1 exp
(
a(t−nτ)

)

a− bx∗1 + bx∗1 exp
(
a(t−nτ)

) , t ∈ (nτ, (n+ 1)τ
]
, n∈ Z+, (4.4)

which is globally asymptotically stable, where x∗1 =(((a+bμ)+
√

(a+bμ)2 +4abμ/(eaτ−1))/
2b)(> a/b).

By Lemma 3.5 and comparison theorem of impulsive equation [21], we have x1(t) ≤
x(t) and x(t)→�x1(t) as t→∞. Then there exists an integer k2 > k1, n > k2 such that

x1(t)≤ x(t)≤�x1(t) + ε0, nτ < t ≤ (n+ 1)τ, n > k2. (4.5)

That is

x1(t)≤�x1(t) + ε0 ≤ ax∗1 eaτ

a− bx∗1 + bx∗1 eaτ
+ ε0

Δ= ρ, nτ < t ≤ (n+ 1)τ, n > k2. (4.6)

From (2.5) and (4.2), we get

dx3(t)
dt

≤ re−wτ1x3
(
t− τ1

)− [d3 +E− kβ
(
1− e−θρ

)]
x3(t), t > nτ + τ1, n > k2. (4.7)

Consider the following comparison differential system:

dy(t)
dt

= re−wτ1 y
(
t− τ1

)− [d3 +E− kβ
(
1− e−θρ

)]
y(t), t > nτ + τ1, n > k2. (4.8)

From (4.2), we have re−wτ1 < d3 + E− kβ(1− e−θρ). According to Lemma 3.4, we have
limt→∞y(t)= 0.

Let (x1(t),x3(t)) be the solution of system (2.5) with initial conditions (2.6) and
x3(ζ) = ϕ3(ζ) (ζ ∈ [−τ1,0]), y(t) is the solution of system (4.8) with initial conditions
y(ζ) = ϕ3(ζ) (ζ ∈ [−τ1,0]). By the comparison theorem, we have limt→∞x3(t) <
limt→∞y(t)= 0. Incorporating with the positivity of x3(t), we know that

lim
t→∞x3(t)= 0. (4.9)

Therefore, for any ε1 > 0 (sufficiently small), there exists an integer k3(k3τ > k2τ + τ1)
such that x3(t) < ε1 for all t > k3τ.

For system (2.5), we have

x1(t)
(
a− bx1(t)

)−βε1 ≤ dx1(t)
dt

≤ (a− bx1(t)
)
x1(t). (4.10)
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Then we have z1(t)≤ z1(t)≤ z2(t) and z1(t)→�x1(t), z2(t)→�x1(t) as t→∞. While z1(t)
and z2(t) are the solutions of

dz1(t)
dt

= z1(t)
(
a− bz1(t)

)−βε1, t �= nτ,

z1
(
t+)= z1(t) +μ, t = nτ,

z1
(
0

+)= x1
(
0

+)
,

dz2(t)
dt

= z2(t)
[
a− bz2(t)

]
, t �= nτ,

z2
(
t+)= z2(t) +μ, t = nτ,

z2
(
0

+)= x1
(
0

+)
,

(4.11)

respectively. From Lemma 3.6, for nτ < t ≤ (n+ 1)τ,

�z1(t)= k1
[(
k1 +b1

(
u∗−a/2b))e2k1b1(t−nτ)−(k1−b1

(
u∗ − a/2b

))]

b1
[
k1−b1

(
u∗−a/2b)+

(
k1 +b1

(
u∗−a/2b))e2k1b1(t−nτ)

]

⎛

⎝>

√
a2/4b−βε

b
+

a

2b

⎞

⎠ ,

(4.12)

where z∗1 = a/2b + (b1μ +
√

(2k1 + b1μ)2 + 4k1b1μ/(e2k1b1τ − 1))/2b1, k1 =
√
a2/4b−βε,

b1 =
√
b. Therefore, for any ε2 > 0, there exists an integer k4, n > k4, such that

�z1(t)− ε2 < x1(t) < �x1(t) + ε2. (4.13)

Let ε1 → 0, from Remark 3.7, we have

�x1(t)− ε2 < x1(t) < �x1(t) + ε2 (4.14)

for t large enough, which implies x1(t)→�x1(t) as t→∞. This completes the proof. �

5. Permanence

The next work is to investigate the permanence of the system (2.4). Before starting our
theorem, we give the definition of permanence.

Definition 5.1. System (2.4) is said to be permanent if there are constants m, M > 0 (inde-
pendent of initial value) and a finite time T0 such that for all solutions (x1(t),x2(t),x3(t))
with all initial values x1(0+) > 0, x2(0+) > 0, x3(0+) > 0, m ≤ x1(t) < M/k, m ≤ x2(t) ≤
M, m≤ x3(t)≤M hold for all t ≥ T0. Here T0 may depend on the initial values (x1(0+),
x2(0+),(x3(0+)).
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Theorem 5.2. Suppose

E < re−wτ1 −d3−d4M + kβ

×
⎡

⎢
⎣1−exp

⎧
⎪⎨

⎪⎩
−θ
((
a−βx∗3

)
+ bμ

)
+
√((

a−βx∗3
)

+bμ
)2

+4
(
a−βx∗3

)
bμ/

(
e(a−βx∗3 )τ−1

)

2b

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦ .

(5.1)

Then there is a positive constant q such that each positive solution (x1(t),x3(t)) of (2.5)
satisfies

x3(t)≥ q (5.2)

for t large enough. Where x∗3 is determined by the following equation:

1
kβ

(
re−wτ1 −d3−E−d4M

)

=1−exp

⎧
⎪⎪⎨

⎪⎪⎩
−θ

⎛

⎜
⎜
⎝

√
bμ+

√(
2
√
a2/4b−βx∗3 +

√
bμ
)2

+4μ
√
ba2−bβx∗3 /

(
e2
√

ba2−b2βx∗3 τ−1
)

2
√
b

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

(5.3)

Proof. The second equation of (2.5) can be rewritten as

dx3(t)
dt

= [re−wτ1 + kβ
(
1− e−θx1(t))−d3−E−d4x3(t)

]
x3(t)− re−wτ1

d

dt

∫ t

t−τ1

x3(u)du.

(5.4)

Let us consider any positive solution (x1(t),x3(t)) of system (2.5). According to (5.4),
V(t) can be defined as

V(t)= x3(t) + re−wτ1
d

dt

∫ t

t−τ1

x3(u)du. (5.5)

By calculating the derivative of V(t) along the solution of (2.5), we have

dV(t)
dt

= [re−wτ1 + kβ
(
1− e−θx1(t))−d3−E−d4x3(t)

]
x3(t). (5.6)

Due to Lemma 3.3, (5.6) can be written

dV(t)
dt

>
[
re−wτ1 + kβ

(
1− e−θx1(t))−d3−E−d4M

]
x3(t). (5.7)
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Since

E < re−wτ1 −d3−d4M + kβ

×
⎡

⎢
⎣1−exp

⎧
⎪⎨

⎪⎩
−θ
((
a−βx∗3

)
+bμ

)
+
√((

a−βx∗3
)

+bμ
)2

+4
(
a−βx∗3

)
bμ/

(
e(a−βx∗3 )τ−1

)

2b

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦ ,

(5.8)

we can easily know that there exists a sufficiently small ε > 0 such that

re−wτ1 > d3 +E+d4M + kβ

×
[

1−exp

{

−θ
(((

a−βx∗3
)

+ bμ
)

2b

+

√((
a−βx∗3

)
+bμ

)2
+4
(
a−βx∗3

)
bμ/

(
e(a−βx∗3 )τ−1

)

2b
+ε

⎞

⎠

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦ .

(5.9)

We claim that for any t0 > 0, it is impossible that x3(t) < x∗3 for all t > t0. Suppose that the
claim is not valid. Then there is a t0 > 0 such that x3(t) < x∗3 for all t > t0. It follows from
the first equation of (2.5) that for all t > t0,

dx1(t)
dt

> x1(t)
(
a− bx1(t)

)−βx∗3 . (5.10)

Consider the following comparison impulsive system for all t > t0:

dv(t)
dt

= x1(t)
(
a− bx1(t)

)−βx∗3 , t �= nτ,

Δv(t)= μ, t = nτ.
(5.11)

By Lemma 3.6, for t ∈ (nτ, (n+ 1)τ], we obtain

ṽ(t)= k1
[(
k1 + b1

(
v∗ − a/2b

))
e2k1b1(t−nτ)− (k1− b1

(
v∗ − a/2b

))]

b1
[
k1− b1

(
v∗ − a/2b

)
+
(
k1 + b1

(
v∗ − a/2b

))
e2k1b1(t−nτ)

] (5.12)

is the unique positive periodic solution of (5.11) which is globally asymptotically stable,

where v∗ = a/2b + (b1μ +
√

(2k1 + b1μ)2 + 4k1b1μ/(e2k1b1τ − 1))/2b1, k1 =
√
a2/4b−βx∗3 ,

b1 =
√
b.

By the comparison theorem for impulsive differential equation [21], we know that
there exists t1(> t0 + τ1) such that the following inequality holds for t ≥ t1:

x1(t)≥ ṽ(t)− ε. (5.13)

Thus

x1(t)≥ v∗ − b

2a
− ε (5.14)
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for all t ≥ t1. We make notation as σ
Δ= v∗ − b/2a− ε for convenience. From (5.9), we have

re−wτ1 > kβσ +d3 +E+d4M. (5.15)

By (5.6) and (5.14), we have

V ′(t) > x3(t)
(
re−wτ1 − kβσ −d3−E−d4M

)
(5.16)

for all t > t1. Set

xm3 = min
t∈[t1,t1+τ1]

x3(t). (5.17)

We will show that x3(t) ≥ xm3 for all t ≥ t1. Suppose the contrary. Then there is a T0 > 0
such that x3(t)≥ xm3 for t1 ≤ t ≤ t1 + τ1 +T0, x3(t1 + τ1 +T0)= xm3 and x′3(t1 + τ1 +T0) < 0.
Hence, the first equation of systems (2.5) and (5.14) imply that

x′3
(
t1 + τ1 +T0

)= re−wτ1x3
(
t1 +T0

)
+ kβ

(
1− exp

{− θx1
(
t1 + τ1 +T0

)})
x3
(
t1 + τ1 +T0

)

− (d3 +E
)
x3
(
t1 + τ1 +T0

)−d4x
2
3

(
t1 + τ1 +T0

)
,

≥ (re−wτ1 −βσ −d3−E−d4M
)
xm3 > 0.

(5.18)

This is a contradiction. Thus, x3(t)≥ xm3 for all t > t1. As a consequence, (5.9) and (5.16)
lead to

V ′(t) > xm3
(
re−wτ1 − kβσ −d3−E−d4M

)
> 0 (5.19)

for all t > t1. This implies that as t→∞, V(t)→∞. It is a contradiction to V(t)≤M(1 +
rτ1e−wτ1 + kβ(1− e−θM)). Hence, the claim is true.

By the claim, we are left to consider two cases. First, x3(t)≥ x∗3 for all t large enough.
Second, x3(t) oscillates about x∗3 for t large enough.

Define

q =min
{
x∗3
2

,q1

}
, (5.20)

where q1 = x∗3 e−(d3+E+d4M)τ1 . We will show that x3(t)≥ q for all t large enough. The con-
clusion is evident in first case. For the second case, let t∗ > 0 and ξ > 0 satisfy x3(t∗) =
x3(t∗ + ξ) = x∗3 and x3(t) < x∗3 for all t∗ < t < t∗ + ξ, where t∗ is sufficiently large such
that

x3(t) > σ for t∗ < t < t∗ + ξ. (5.21)

x3(t) is uniformly continuous. The positive solutions of (2.5) are ultimately bounded and
x3(t) is not affected by impulses. Hence, there is a T(0 < t < τ1 and T is independent of the
choice of t∗) such that x3(t) > x∗3 /3 for t∗ < t < t∗ +T . If ξ < T , there is nothing to prove.
Let us consider the case T < ξ < τ1. Since x′3(t) > −(d3 +E + d4M)x3(t) and x3(t∗) = x∗3 ,
it is clear that x3(t) ≥ q1 for t ∈ [t∗, t∗ + τ1]. Then, proceed exactly as the proof for the
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above claim. We see that x3(t) ≥ q1 for t ∈ [t∗ + τ1, t∗ + ξ] because the kind of interval
t ∈ [t∗, t∗ + ξ] is chosen in an arbitrary way (we only need t∗ to be large). We conclude
that x3(t)≥ q for all large t. In view of our above discussion, the choice of q is independent
of the positive solution, and we prove that any positive solution of (2.5) satisfies x3(t)≥ q
for all sufficiently large t. This completes the proof of the theorem. �

Theorem 5.3. Suppose

E < re−wτ1 −d3−d4M + kβ

×
[

1− exp

{

−θ
((
a−βx∗3

)
+ bμ

)

2b

+

√((
a−βx∗3

)
+ bμ

)2
+ 4
(
a−βx∗3

)
bμ/

(
e(a−βx∗3 )τ − 1

)

2b

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦ ,

(5.22)

then the system (2.4) is permanent.

Proof. Denote (x1(t),x2(t),x3(t)) is any solution of system (2.4). From the first equation
of system (2.5) and Theorem 5.2, we have

dx1(t)
dt

≥ x1(t)
(
a− bx1(t)

)−β
(
1− e−θq

)
. (5.23)

By the same argument as those in the proof of Theorem 4.1, we have that

lim
t→∞x1(t)≥ p, (5.24)

where p= (b1μ+
√

(2k1 + b1μ)2 + 4k1b1μ/(e2k1b1τ − 1))/2b1− ε, k1=
√
a2/4b−β(1− e−θq),

b1 =
√
b.

In view of Theorem 4.1, the second equation of system (2.4) becomes

dx2(t)
dt

≥ r
(
p− e−wτ1M

)−wx2(t). (5.25)

It is easy to obtain

lim
t→∞x2(t)≥ δ, (5.26)

where δ = r(p− e−wτ1M)/w− ε. By Theorem 5.2 and the above discussion, system (2.4)
is permanent. The proof of Theorem 5.3 is complete. �

6. Discussion

According to the fact of biological resource management, in this paper, a delayed stage-
structured Ivlev’s functional response predator-prey system with impulsive stocking on
the prey and continuous harvesting on the predator is considered. We get the condition
under which the predator-extinction periodic solution of system (2.4) is globally attrac-
tive, and obtained the condition for the permanent of system (2.4). From Theorems 4.1
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and 5.3, we can easily guess there must exist a threshold μ∗. If μ < μ∗, the predator-

extinction periodic solution (�x1(t),0,0) of (2.4) is globally attractive. If μ > μ∗, system
(2.4) is permanent. Or from Theorems 4.1 and 5.2, we can easily guess that there must

exist a threshold E∗. If E > E∗, the predator-extinction periodic solution (�x1(t),0,0) of
(2.4) is globally attractive. If E < E∗, system (2.4) is permanent. The results show that
the behavior of impulsive stocking on the prey plays an important role for the perma-
nence of system (2.4), that is, it can prevent the predator from dying out. This can meet
in biological balance protection. But there are some interesting problems: how does the
impulsive stocking on prey affect the dynamical behavior of system (2.4)? What are the
optimal harvesting policy of the system (2.4)? We will continue to study these problems
in the future.
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