
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2007, Article ID 75672, 11 pages
doi:10.1155/2007/75672

Research Article
Trench’s Perturbation Theorem for Dynamic Equations

Martin Bohner and Stevo Stević
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1. Introduction

We consider the second-order linear dynamic equation

(
r(t)xΔ

)Δ
+ p(t)xσ = 0, t ∈ T, (1.1)

together with its linear perturbation

(
r(t)yΔ

)Δ
+ p(t)yσ = f (t)yσ , t ∈ T, (1.2)

where we assume that T is a time scale, that is, a nonempty closed subset of the real num-
bers T that is unbounded above, p : T→R, r : T→R+, f : T→C, are rd-continuous, and
(1.1) is nonoscillatory, that is, rxxσ > 0 eventually for all solutions of (1.1). For the theory
of time scales, we refer the reader to [1, 2] and we mention here only that the forward
shift and the derivative of a function z : T→R are given by zσ(t)= z(t) and zΔ(t)= z′(t) if
T=R and zσ(t)= z(t + 1) and zΔ(t)= z(t + 1)− z(t) if T= Z, and that the product rule
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and the quotient rule for differentiable z1,z2 : T→R read [1, Theorem 1.20]

(
z1z2

)Δ = zΔ1 z2 + zσ1 z
Δ
2 ,

(
z1

z2

)Δ
= zΔ1 z2− z1z

Δ
2

z2z
σ
2

, (1.3)

where zσ = z ◦ σ for a function z : T→R. By [1, Theorem 4.61], since (1.1) is nonoscil-
latory, there exists a solution x1 of (1.1) such that lim t→∞(u(t)/x1(t)) =∞ for all of x1

linearly independent solutions u of (1.1).
Let u be any solution of (1.1) that is linearly independent of x1, that is,

r
(
uΔx1−uxΔ1

)≡ c �=0, (1.4)

and define x2 = u/c so that

r
(
xΔ2 x1− x2x

Δ
1

)= 1, lim
t→∞

x2(t)
x1(t)

=∞, (1.5)

which implies that

ϕ := x2

x1
satisfies ϕΔ = 1

rx1x
σ
1
> 0, lim

t→∞ϕ(t)=∞. (1.6)

Note that x1 and x2 are called recessive and dominant solutions of the nonoscillatory dy-
namic equation (1.1).

The main result of this paper gives conditions on f , x1, and x2 that guarantee that
the perturbed equation (1.2) is also nonoscillatory and has solutions y1 and y2 that be-
have asymptotically like x1 and x2. Our results unify corresponding results by William F.
Trench for differential equations [3, 4] and for difference equations [5] and extend them
to other dynamic equations, for example, to q-difference equations [6]. Note that the
unification process forces us to give many of the calculations from [5] in a “shifted form”
for the discrete case.

In the next section, we will derive some preparatory results while the main theorem
is stated and proved in Section 3. The paper concludes with some corollaries given in
Section 4.

2. Some auxiliary results

Suppose now and in the remainder of this paper that

ψ(t) :=
∫∞

t
f (τ)x1

(
σ(τ)

)
x2
(
σ(τ)

)
Δτ converges for all t ∈ T. (2.1)

Then

φ(t) := sup
τ≥t

∣
∣ψ(τ)

∣
∣−→ 0 monotonically as t −→∞. (2.2)
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Lemma 2.1. Using notation (2.2) and condition (2.1),

G(t) :=
∫∞

t
f (τ)x2

1

(
σ(τ)

)
Δτ is well defined for all t ∈ T (2.3)

and satisfies

|G| ≤ 2φ
ϕσ

on T. (2.4)

Proof. We use (1.6), the product rule, the definition of the integral, and [1, Theorems
1.75 and 1.16(iv)] to find

G(t)=
∫∞

t
f (τ)x1

(
σ(τ)

)
x2
(
σ(τ)

) 1
ϕ
(
σ(τ)

)Δτ =−
∫∞

t
ψΔ(τ)

1
ϕ
(
σ(τ)

)Δτ

=−
∫∞

t

[(
ψ· 1
ϕ

)Δ
(τ)−ψ(τ)

(
1
ϕ

)Δ
(τ)

]

Δτ = ψ(t)
ϕ(t)

+
∫∞

t
ψ(τ)

(
1
ϕ

)Δ
(τ)Δτ

= ψ(t)
ϕ(t)

+
∫∞

σ(t)
ψ(τ)

(
1
ϕ

)Δ
(τ)Δτ +ψ(t)

[(
1
ϕ

)
(
σ(t)

)−
(

1
ϕ

)
(t)

]

= ψ(t)
ϕσ(t)

+
∫∞

σ(t)
ψ(τ)

(
1
ϕ

)Δ
(τ)Δτ,

(2.5)

and therefore

∣
∣G(t)

∣
∣≤ φ(t)

ϕσ(t)
+φ(t)

∫∞

σ(t)

∣
∣
∣
∣

(
1
ϕ

)Δ
(τ)
∣
∣
∣
∣Δτ

= φ(t)
ϕσ(t)

−φ(t)
∫∞

σ(t)

(
1
ϕ

)Δ
(τ)Δτ = φ(t)

ϕσ(t)
+
φ(t)
ϕσ(t)

,

(2.6)

where we have used (1.6), (2.2), and its consequence φσ ≤ φ. �

In the sequel, we use the Landau “O” symbol defined in the standard way for asymp-
totic behavior as t→∞ and consider the collection of differentiable functions

� :=
{
z : T−→R : z =O(φ), zΔ =O

(
φϕΔ

ϕσ

)}
, (2.7)

which can easily be seen to be a Banach space when equipped with the norm

‖z‖ = ‖z‖� :=
∥
∥
∥
∥
∥max

{
|z|
φ

,

∣
∣zΔ

∣
∣ϕσ

φϕΔ

}∥∥
∥
∥
∥
∞

for z ∈�. (2.8)

Lemma 2.2. Using notations (2.2), (2.3), (2.7), (2.8) and under condition (2.1),

u := ψ −ϕG satisfies u∈�, ‖u‖� ≤ 2. (2.9)
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Proof. Note that the fourth equal sign of the first calculation in the proof of Lemma 2.1
implies

u(t)=−ϕ(t)
∫∞

t
ψ(τ)

(
1
ϕ

)Δ
(τ)Δτ, (2.10)

and therefore

∣
∣u(t)

∣
∣≤ ϕ(t)φ(t)

∫∞

t

∣
∣
∣
∣

(
1
ϕ

)Δ
(τ)
∣
∣
∣
∣Δτ =−ϕ(t)φ(t)

∫∞

t

(
1
ϕ

)Δ
(τ)Δτ = φ(t) (2.11)

due to (2.2) and (1.6). By the product rule and (1.6),

uΔ(t)= ψΔ(t)−ϕΔ(t)G(t)−ϕ(σ(t)
)
GΔ(t)

=− f (t)x1
(
σ(t)

)
x2
(
σ(t)

)−ϕΔ(t)G(t) +ϕ
(
σ(t)

)
f (t)x2

1

(
σ(t)

)=−ϕΔ(t)G(t),
(2.12)

and therefore

∣
∣uΔ(t)

∣
∣= ϕΔ(t)

∣
∣G(t)

∣
∣≤ 2ϕΔ(t)φ(t)

ϕσ(t)
(2.13)

due to (2.4) from Lemma 2.1. �

For z ∈�, let us define the operator

(�z)(t) :=
∫∞

t

[
x2
(
σ(τ)

)− x1
(
σ(τ)

)
ϕ(t)

]
f (τ)x1

(
σ(τ)

)
z
(
σ(τ)

)
Δτ. (2.14)

Lemma 2.3. Using notations (2.2), (2.3), (2.7), (2.8), (2.14), and under the conditions (2.1)
and

φ̃(t) :=
∫∞

t

∣
∣G(τ)

∣
∣φ(τ)ϕΔ(τ)Δτ <∞, ν := limsup

t→∞

φ̃(t)
φ(t)

<
1
2

, (2.15)

we have that, on [T ,∞) for sufficiently large T ∈ T,

� : �−→� is a contraction. (2.16)

Proof. Let z ∈�. For T ≥ t, consider

w(z,T)(t) :=
∫ T

t

[
x2
(
σ(τ)

)− x1
(
σ(τ)

)
ϕ(t)

]
f (τ)x1

(
σ(τ)

)
z
(
σ(τ)

)
Δτ. (2.17)
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Then by (1.6), (2.3), and the product rule,

w(z,T)(t)=
∫ T

t

[
ϕ
(
σ(τ)

)−ϕ(t)
]
x1
(
σ(τ)

)
f (τ)x1

(
σ(τ)

)
z
(
σ(τ)

)
Δτ

=−
∫ T

t

[
ϕ
(
σ(τ)

)−ϕ(t)
]
z
(
σ(τ)

)
GΔ(τ)Δτ

=−
∫ T

t

{[(
ϕ−ϕ(t)

)
zG
]Δ

(τ)− [(ϕ−ϕ(t)
)
z
]Δ

(τ)G(τ)
}
Δτ

=−[ϕ(T)−ϕ(t)
]
z(T)G(T) +

∫ T

t

[
ϕ
(
σ(τ)

)−ϕ(t)
]
zΔ(τ)G(τ)Δτ

+
∫ T

t
ϕΔ(τ)z(τ)G(τ)Δτ.

(2.18)

We estimate each of these three terms separately

∣
∣[ϕ(T)−ϕ(t)

]
z(T)G(T)

∣
∣≤ ∣∣ϕ(T)−ϕ(t)

∣
∣
∣
∣z(T)

∣
∣ 2φ(T)
ϕ
(
σ(T)

)

≤ 2ϕ(T)‖z‖φ(T)
φ(T)

ϕ
(
σ(T)

) ≤ 2‖z‖φ2(T)

(2.19)

due to (1.6), (2.4), and (2.8);
∣
∣ϕΔ(τ)z(τ)G(τ)

∣
∣≤ ϕΔ(τ)‖z‖φ(τ)

∣
∣G(τ)

∣
∣ (2.20)

due to (1.6) and (2.8); and

∣
∣[ϕ

(
σ(τ)

)−ϕ(t)
]
zΔ(τ)G(τ)

∣
∣≤ ∣∣ϕ(σ(τ)

)−ϕ(t)
∣
∣‖z‖φ(τ)ϕΔ(τ)

ϕσ(τ)

∣
∣G(τ)

∣
∣

≤ ‖z‖φ(τ)ϕΔ(τ)
∣
∣G(τ)

∣
∣ for t ≤ σ(τ),

(2.21)

due to (1.6) and (2.8). Altogether,

∣
∣w(z,T)(t)

∣
∣≤ 2‖z‖

{

φ2(T) +
∫ T

t

∣
∣G(τ)

∣
∣φ(τ)ϕΔ(τ)Δτ

}

. (2.22)

Thus, using (2.2) and (2.15),
∣
∣(�z)(t)

∣
∣≤ 2‖z‖φ̃(t) (2.23)

so that with θ := 2ν < 1,

∣
∣
∣
∣

(�z)(t)
φ(t)

∣
∣
∣
∣≤ 2‖z‖ φ̃(t)

φ(t)
≤ 2‖z‖ν= θ‖z‖. (2.24)

Next, from the first equal sign in the first calculation of this proof,

(�z)(t)=
∫∞

t

[
ϕ
(
σ(τ)

)−ϕ(t)
]
f (τ)x2

1

(
σ(τ)

)
z
(
σ(τ)

)
Δτ, (2.25)
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so that by [1, Theorem 1.117(ii)] and the product rule,

(�z)Δ(t)=−
∫∞

t
ϕΔ(t) f (τ)x2

1

(
σ(τ)

)
z
(
σ(τ)

)
Δτ = ϕΔ(t)

∫∞

t
GΔ(τ)z

(
σ(τ)

)
Δτ

= ϕΔ(t)
∫∞

t

{
(zG)Δ(τ)−zΔ(τ)G(τ)

}
Δτ=−ϕΔ(t)

{

z(t)G(t) +
∫∞

t
G(τ)zΔ(τ)Δτ

}

.

(2.26)

Thus, using (2.7), (2.8), (2.4), (1.6), (2.15),

∣
∣(�z)Δ(t)

∣
∣≤ ϕΔ(t)

{
‖z‖φ(t)

2φ(t)
ϕσ(t)

+
∫∞

t

∣
∣G(τ)

∣
∣‖z‖φ(τ)ϕΔ(τ)

ϕσ(τ)
Δτ
}

≤ ‖z‖ϕ
Δ(t)

ϕσ(t)

{
2φ2(t) + φ̃(t)

}
(2.27)

and therefore,

∣
∣
∣
∣

(�z)Δ(t)
φ(t)ϕΔ(t)/ϕσ(t)

∣
∣
∣
∣≤ ‖z‖

{
2φ(t) +

φ̃(t)
φ(t)

}
≤ ‖z‖{2φ(t) + ν

}
< θ‖z‖ (2.28)

eventually due to (2.2) and (2.15). Hence, �z ∈� and

‖�z‖ ≤ θ‖z‖ ∀z ∈� (2.29)

on [T ,∞) for sufficiently large T ∈ T. �

3. The perturbation result

In this section, we use the auxiliary results from Section 2 to prove the following main
theorem of this paper.

Theorem 3.1. Let x1 and x2 be the recessive and dominant solutions of the unperturbed
linear second-order dynamic equation (1.1) satisfying (1.6). Using notations (2.2) and (2.3)
and under the conditions (2.1) and (2.15), there exist solutions y1 and y2 of the perturbed
dynamic equation (1.2) such that

y1

x1
= 1 + O(φ),

(
y1

x1

)Δ
=O

(
φϕΔ

ϕσ

)
, (3.1)

y2

x2
= 1 + O(φ̂),

(
y2

x2

)Δ
=O

(
φ̂ϕΔ

ϕσ

)
, (3.2)

where φ̂ is defined by

φ̂(t) := 1
ϕ(t)

∫ t

t0
φ(τ)ϕΔ(τ)Δτ. (3.3)
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Proof. We use the notation (2.7), (2.8), (2.9), and (2.14) and define

�z := u+ �z for z ∈�. (3.4)

By Lemmas 2.2 and 2.3, � : �→� is a contraction. By Banach’s fixed point theorem, �
has a unique fixed point ζ ∈�. Hence, ζ =�ζ = u+ �ζ . Define

y1 := x1(1 + ζ). (3.5)

We show that y1 solves (1.2). First, from the proofs of Lemmas 2.2 and 2.3,

−rζΔ =−r[uΔ + (�ζ)Δ
]= rϕΔG+ rϕΔ

(
ζG+ ζ̃

)= G(1 + ζ) + ζ̃
x1x

σ
1

, (3.6)

where ζ̃
Δ

:=−GζΔ. So we have

yΔ1 = xΔ1 (1 + ζ) + xσ1 ζ
Δ (3.7)

and hence,

r yΔ1 = rxΔ1 (1 + ζ)− G(1 + ζ) + ζ̃
x1

(3.8)

so that, by using (3.6),

(
r yΔ1

)Δ = (rxΔ1
)Δ

(1 + ζ)σ + rxΔ1 ζ
Δ−

(
G(1 + ζ) + ζ̃

x1

)Δ

=−pyσ1 + rζΔxΔ1 −
(
GΔ(1 + ζ)σ +GζΔ + ζ̃

Δ)
x1−

[
G(1 + ζ) + ζ̃

]
xΔ1

x1x
σ
1

=−pyσ1 + rζΔxΔ1 + f yσ1 +
G(1 + ζ) + ζ̃

x1x
σ
1

xΔ1 =−pyσ1 + f yσ1 ,

(3.9)

and y1 indeed solves (1.2). From (2.7) and since ζ ∈�, (3.1) holds true. Also, by (2.2) and
since ζ ∈�, r y1y

σ
1 = rx1x

σ
1 (1 + ζ)(1 + ζσ) > 0 eventually, say without loss of generality on

[t0,∞). So we may define

y2 := y1(c+ ξ) with c = x2
(
t0
)

x1
(
t0
) , ξ(t)=

∫ t

t0

Δτ

r(τ)y1(τ)y1
(
σ(τ)

) . (3.10)

We have

yΔ2 = yΔ1 (c+ ξ) + yσ1 ξ
Δ = yΔ1 (c+ ξ) +

1
r y1

(3.11)

and hence,

(
r yΔ2

)Δ = (r yΔ1
)Δ

(c+ ξ)σ + r yΔ1 ξ
Δ− yΔ1

y1y
σ
1
= (− pyσ1 + f yσ1

)
(c+ ξ)σ =−pyσ2 + f yσ2 ,

(3.12)
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so that y2 is another (nonoscillatory) solution of (1.2). Next, by (1.6),

x2 = x1ϕ, ϕ(t)= c+
∫ t

t0

Δτ

r(τ)x1(τ)x1
(
σ(τ)

) (3.13)

and therefore,

y2

x2
= y1

x1

c+ ξ
ϕ

= y1

x1
(1 + γ), (3.14)

where

γ(t) := c+ ξ(t)−ϕ(t)
ϕ(t)

= ξ(t)− ∫ tt0 Δτ/r(τ)x1(τ)x1
(
σ(τ)

)

ϕ(t)

=− 1
ϕ(t)

∫ t

t0

[
1− x1(τ)x1

(
σ(τ)

)

y1(τ)y1
(
σ(τ)

)
]

Δτ

r(τ)x1(τ)x1
(
σ(τ)

)

=− 1
ϕ(t)

∫ t

t0

(
1− x1x

σ
1

y1y
σ
1

)
(τ)ϕΔ(τ)Δτ.

(3.15)

Now the first equation in (3.1) and (2.2) imply (see (3.3))

1− x1x
σ
1

y1y
σ
1
=O(φ) and thus γ =O(φ̂). (3.16)

Then (2.2) together with (3.3) imply φ=O(φ̂) so that

y2

x2
= y1

x1
(1 + γ)= (1 + O(φ)

)(
1 + O(φ̂)

)= 1 + O(φ̂), (3.17)

which proves the first equation in (3.2). Finally,

(
y2

x2

)Δ
=
(
y1

x1

)Δ
(1 + γ) +

(
y1

x1

)σ
γΔ =O

(
φϕΔ

ϕσ

)
(
1 + O(φ̂)

)
+
(
1 + O(φ)

)
O
(
φ̂ϕΔ

ϕσ

)
,

(3.18)

because of (2.2), (3.1), and

γΔ = (c+ ξ −ϕ)Δϕ− (c+ ξ −ϕ)ϕΔ

ϕϕσ
= ξΔ−ϕΔ

ϕσ
− γϕ

Δ

ϕσ

=−ϕ
Δ

ϕσ

(
γ+ 1− ξΔ

ϕΔ

)
= O

(
ϕΔ

ϕσ

)
[
O(φ̂) + O(φ)

] = O
(
φ̂ϕΔ

ϕσ

)
.

(3.19)

So (3.2) is established and this completes the proof. �

4. Applications

In this last section, we state and prove some simple consequences of Theorem 3.1.
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Corollary 4.1. The conclusions of Theorem 3.1 hold if
∫∞∣
∣ f (τ)

∣
∣x1
(
σ(τ)

)
x2
(
σ(τ)

)
Δτ <∞. (4.1)

Proof. Clearly, (4.1) implies (2.1). Define

ψ̂(t) :=
∫∞

t

∣
∣ f (τ)

∣
∣x1
(
σ(τ)

)
x2
(
σ(τ)

)
Δτ, Ĝ :=

∫∞

t

∣
∣ f (τ)

∣
∣x2

1

(
σ(τ)

)
Δτ. (4.2)

Then

∣
∣G(t)

∣
∣≤ Ĝ(t)=

∫∞

t

∣
∣ f (τ)

∣
∣x1
(
σ(τ)

)
x2
(
σ(τ)

)

ϕ
(
σ(τ)

) Δτ ≤ ψ̂(t)
ϕ
(
σ(t)

) . (4.3)

For T ≥ t, we have by the product rule that

∫ T

t

∣
∣ f (τ)

∣
∣x1
(
σ(τ)

)
x2
(
σ(τ)

)
Δτ

=
∫ T

t

∣
∣ f (τ)

∣
∣x2

1

(
σ(τ)

)
ϕ
(
σ(τ)

)
Δτ =−

∫ T

t
ĜΔ(τ)ϕ

(
σ(τ)

)
Δτ

=−
∫ T

t

[
(Ĝϕ)

Δ
(τ)− Ĝ(τ)ϕΔ(τ)

]
Δτ =−(Ĝϕ)(T) + (Ĝϕ)(t) +

∫ T

t
Ĝ(τ)ϕΔ(τ)Δτ.

(4.4)

Note now that (Ĝϕ)(T)→0 as T→∞ since

0≤ Ĝ(T)ϕ(T)≤ ϕ(T)ψ̂(T)
ϕ
(
σ(T)

) ≤ ψ̂(T)−→ 0 as T −→∞ (4.5)

due to (4.3) and (4.1). Note also that the quantity on the right of the last equal sign in
the above calculation must have a finite limit as T→∞ since the quantity on the left of the
first equal sign converges as T→∞ due to (4.1). Therefore,

∫∞
Ĝ(τ)ϕΔ(τ)Δτ <∞, and thus by (4.3),

∫∞∣
∣G(τ)

∣
∣ϕΔ(τ)Δτ <∞. (4.6)

Hence, using (2.2),

φ̃(t)
φ(t)

=
∫∞

t

∣
∣G(τ)

∣
∣φ(τ)
φ(t)

ϕΔ(τ)Δτ ≤
∫∞

t

∣
∣G(τ)

∣
∣ϕΔ(τ)Δτ −→ 0 as t −→∞ (4.7)

so that (2.15) holds with ν= 0. �

Corollary 4.2. Assume (2.1). If φ satisfies (2.2) and

limsup
t→∞

{
1
φ(t)

∫∞

t

φ2(τ)ϕΔ(τ)
ϕ
(
σ(τ)

) Δτ

}

=: ν̃ <
1
4

, (4.8)

then the conclusions of Theorem 3.1 hold.
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Proof. From (2.4), we have

φ̃(t)
φ(t)

=
∫∞

t

∣
∣G(τ)

∣
∣φ(τ)
φ(t)

ϕΔ(τ)Δτ ≤
∫∞

t

2φ2(τ)
ϕ
(
σ(τ)

)
φ(t)

ϕΔ(τ)Δτ (4.9)

so that (4.8) implies

limsup
t→∞

φ̃(t)
φ(t)

≤ 2ν̃ <
1
2

, (4.10)

and therefore (2.15) is satisfied. �

Corollary 4.3. Assume that α is a positive function tending monotonically to∞ and define

S(t) :=
∫ t

t0
α
(
σ(τ)

)
f (τ)x1

(
σ(τ)

)
x2
(
σ(τ)

)
Δτ. (4.11)

If |S(t)| ≤ A <∞ and

limsup
t→∞

{

α
(
σ(t)

)
∫∞

t0

ϕΔ(τ)
(
α2ϕ

)(
σ(τ)

)Δτ

}

=: ν̂ <
1

4A
, (4.12)

then the conclusions of Theorem 3.1 hold with

φ(t)= 1
α
(
σ(t)

) , φ̂(t)= 1
ϕ(t)

∫ t

t0

ϕΔ(τ)
α
(
σ(τ)

)Δτ. (4.13)

Proof. Using the definition of S, we find that

ψ(t)=
∫∞

t

SΔ(τ)
α
(
σ(τ)

)Δτ, G(t)=
∫∞

t

SΔ(τ)
(αϕ)

(
σ(τ)

)Δτ. (4.14)

Similar to the proof of Lemma 2.1, using integration by parts, we get

∣
∣ψ(t)

∣
∣≤ 2A

α
(
σ(τ)

) ,
∣
∣G(t)

∣
∣≤ 2A

(αϕ)
(
σ(τ)

) . (4.15)

Hence, we can choose φ as in the statement of the corollary in place of (2.2) and all results
as presented in this paper still hold with this φ. Now

φ̃(t)
φ(t)

≤ 1
φ(t)

∫∞

t

2Aφ(τ)ϕΔ(τ)
(αϕ)

(
σ(τ)

) Δτ = α(σ(t)
)
∫∞

t

2AϕΔ(τ)
(
α2ϕ

)(
σ(τ)

)Δτ, (4.16)

so that (4.12) implies

limsup
t→∞

φ̃(t)
φ(t)

≤ 2Aν̂ <
1
2

, (4.17)

and therefore, (2.15) is satisfied. �
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