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1. Introduction

Recently, there has been a great interest in studying the behavior of rational and nonlinear
difference equations; see, for example, [1–20]. One of the most intriguing properties of
solutions of difference equations is their boundedness character. There are numerous
papers devoted, among others, to this research area, see; for example, [1–6, 9–19], and
related references therein.

It is said that a function f is decreasing on an interval J if for all x, y ∈ J such that
x < y, f (x) > f (y).

Consider the nonlinear higher-order difference equation of the form

xn+1 =
k∑

j=0

aj f j
(
xn− j

)
, n∈N0, (1.1)

where for each j = 0,1, . . . ,k, the functions f j : (0,∞)→ (0,∞), j = 0,1, . . . ,k, are contin-
uous and aj are positive numbers.

In all the sequel, we assume the following.
(H1) All f j are continuous decreasing bijections of the interval (0,+∞).
(H2) For each j = 0,1, . . . ,k, the function x→ x f j(x) is nondecreasing on (0,+∞).
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From condition (H1) and since aj , j = 0,1, . . . ,k are positive numbers, it follows that
∑k

j=0 aj f j(x) is a continuous decreasing self-map of (0,∞), hence there exists γ > 0 such
that

0 < γ <
k∑

j=0

aj f j(γ). (1.2)

Further, (H1) implies that the algebraic equation

x =
k∑

j=0

aj f j(x) (1.3)

has a unique positive equilibrium x = x such that

[

x−
k∑

j=0

aj f j(x)
]

(x− x) > 0, ∀x �= x. (1.4)

It is obvious that

γ < x <
k∑

j=0

aj f j(γ)=: Γ, (1.5)

where γ satisfies (1.2).
Also, note that condition (H1) implies that

lim
x→+0

f j(x)= +∞, lim
x→+∞ f j(x)= 0 (1.6)

for j = 0,1, . . . ,k.
Our aim here is to investigate the boundedness character and global attractivity of pos-

itive solutions of (1.1), where aj > 0, j = 0,1, . . . ,k, and f j : (0,∞)→ (0,∞), j = 0,1, . . . ,k,
satisfy conditions (H1) and (H2). Some special cases of (1.1) has been investigated, for
example, in [4, 5, 9, 10, 12] from which our motivation stems.

Our main result of this paper is the following.

Theorem 1.1. Consider (1.1), where for each j = 0,1, . . . ,k, the functions f j satisfy con-
ditions (H1) and (H2). Then every positive solution of (1.1) converges to the equilibrium
x.

The paper is organized as follows. In Section 2.1, we prove several auxiliary results
which will be used in the proof of Theorem 1.1. The theorem will be proved in Section 2.2.

2. Boundedness and global attractivity of (1.1)

In view of assumption (H1), any solution (xn) of (1.1), starting from positive values x−k,
x−k+1, . . . ,x0, is positive.
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For each j = 0,1, . . . ,k, we define the following auxiliary functions:

Fj(x) := aj f j(x),

Gj(x) := aj f j(x) +
∑

i �= j

ai fi(x). (2.1)

Notice that the functions Fj and Gj , j = 0,1, . . . ,k are positive and decreasing on the in-
terval (0,+∞).

Before we formulate our results, we recall definitions of semicycles.
Let (xn)∞n=−k be a solution of (1.1). A positive semicycle of the solution (xn)∞n=−k of (1.1)

consists of a “string” of terms {xl,xl+1, . . . ,xm}, all greater than or equal to the equilibrium
point x, with l ≥−k and m≤∞ such that

either l =−k or l >−k, xl−1 < x,

either m=∞ or m<∞, xm+1 < x.
(2.2)

Let (xn)∞n=−k be a solution of (1.1). A negative semicycle of the solution (xn)∞n=−k of
(1.1) consists of a “string” of terms {xl,xl+1, . . . ,xm}, all less than the equilibrium point x,
with l ≥−k and m≤∞ such that

either l =−k or l >−k, xl−1 ≥ x,

either m=∞ or m<∞, xm+1 ≥ x.
(2.3)

2.1. Some auxiliary facts. Here are some important properties of the semicycles of (1.1).

Lemma 2.1. Assume that, for all j = 0,1, . . . ,k, the functions f j satisfy condition (H1). Then
every semicycle of an eventually nonequilibrium solution contains at most k+ 1 terms.

Proof. Let (xn) be an eventually nonequilibrium solution of (1.1) with terms xn− j ≥ x for
j = 0,1, . . . ,k, and at least one of them is greater than x. Then from (1.1) and (H1), we
obtain

xn+1 =
k∑

j=0

aj f j
(
xn− j

)
<

k∑

j=0

aj f j(x)= x. (2.4)

The case xn,xn−1, . . . ,xn−k < x is similar. �

Lemma 2.2. Assume that all functions f j , j = 0,1, . . . ,k satisfy condition (H1). Then the
following statements are true.

(a) If for some n it holds that

xn ≤min
i

f −1
i

(
Γ

min j a j

)

, (2.5)

then xn+l > x for all l = 1,2, . . . ,k+ 1.
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(b) If for some n≥ k+ 2 it holds that

xn ≤min
j
F j(Γ), (2.6)

then xn−l > x for l = 1,2, . . . ,k+ 1.
(c) If for some n≥ k+ 2 it holds that

xn ≤m, (2.7)

where

m :=min

{

min
i

f −1
i

(
Γ

min j a j

)

, min
i

Fi(Γ)

}

, (2.8)

then

xn±l > x (2.9)

for l = 1,2, . . . ,k+ 1.

Proof. (a) Assume that for some n condition (2.5) holds and consider any l ∈ {1,2, . . . ,k+
1}. Since fl−1 is a decreasing map, from (2.5), we have

fl−1
(
xn
)≥ Γ

min j a j
, (2.10)

and therefore

xn+l =
k+1∑

j=1

aj−1 f j−1
(
xn+l− j

)
> al−1 fl−1

(
xn
)≥min

j
a j

Γ

min j a j
> x, (2.11)

where we have used (1.5).
(b) Suppose, on the contrary, that for some n satisfying (2.6) and l ∈ {1,2, . . . ,k+ 1} it

holds xn−l ≤ x. Then we observe that

xn =
k+1∑

j=1

aj−1 f j−1
(
xn− j

)
> al−1 fl−1

(
xn−l

)= Fl−1
(
xn−l

)≥ Fl−1(x) > Fl−1(Γ), (2.12)

and so

xn > min
j
F j(Γ), (2.13)

which is a contradiction.
(c) The proof is a direct consequence of statements (a) and (b). �
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Now consider the function

φ(x) := 1
x

k∑

j=0

aj f j
(
Gk− j(x)

)
, x > 0. (2.14)

Notice that φ(x)= 1. Moreover, the following statement holds true.

Lemma 2.3. If conditions (H1), (H2) are satisfied, then φ is decreasing, and so x is the unique
solution of the equation

φ(u)= 1. (2.15)

Proof. The function φ can be written in the following form;

φ(x) :=
k∑

j=0

aj
Gk− j(x) f j

(
Gk− j(x)

)

xGk− j(x)
. (2.16)

Here we observe that for each j, the numerator is nonincreasing, while in view of con-
dition (H2) and the definition of Gj , the denominator increases. This proves the mono-
tonicity. The rest of the proof is obvious. �

Lemma 2.4. Assume that f satisfies condition (H1) and set

M :=min{x,m}, (2.17)

where m is defined in Lemma 2.2. Suppose that (xn) is a solution of (1.1) such that xn ≤M
for some n≥ k+ 2. Then

xn±l > x, l = 1,2, . . . ,k+ 1,

xn < xn+k+2 < x.
(2.18)

Proof. By Lemma 2.2(c), we have xn±l > x for l = 1,2, . . . ,k + 1. Hence for all l ∈ {1,2, . . . ,
k+ 1}, we have

xn+l =
k+1∑

j=1

aj−1 f j−1
(
xn+l− j

)= al−1 fl−1
(
xn
)

+
∑

j �=l
a j−1 f j−1

(
xn− j

)

< al−1 fl−1
(
xn
)

+
∑

j �=l
a j−1 f j−1(x),

(2.19)

namely,

xn+l < Gl−1
(
xn
)
. (2.20)

Consequently, we obtain

xn+k+2 =
k+1∑

j=1

aj−1 f j−1
(
xn+k+2− j

)
>

k∑

j=0

aj f j
(
Gk− j

(
xn
))= xnφ

(
xn
)≥ xn, (2.21)
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where the last inequality holds because of the fact that xn ≤ x, φ is decreasing, and φ(x)=
1. By Lemma 2.1, it follows that xn+k+2 < x, as desired. �

2.2. Proof of the main result. In this subsection, we prove the main result of this paper.
In the proof, we need the following result by Karakostas (see [7, 8]).

Theorem 2.5. Let J be some interval of real numbers, f ∈ C[Jk+1, J], and let (xn)∞n=−k be a
bounded solution of the difference equation

xn+1 = f
(
xn, . . . ,xn−k

)
, n∈N0, (2.22)

with I = liminfn→∞ In, S= limsupn→∞ xn, and with I ,S∈ J . Then there exist two solutions
(In)∞n=−∞ and (Sn)∞n=−∞ of the difference equation

xn+1 = f
(
xn, . . . ,xn−k

)
(2.23)

which satisfy the equation for all n∈ Z, with I0 = I , S0 = S, In,Sn ∈ [I ,S] for all n∈ Z and
such that for every N ∈ Z, IN and SN are limit points of (xn)∞n=−k. Furthermore, for every
m ≤ −k, there exist two subsequences (xrn) and (xln) of the solution (xn)∞n=−k such that the
following are true:

lim
n→∞xrn+N = IN , lim

n→∞xln+N = SN for every N ≥m. (2.24)

The solutions (In)∞n=−∞ and (Sn)∞n=−∞ of (2.23) are called full limiting solutions of
(2.23) associated with the solution (xn)∞n=−k of (2.22).

Proof of Theorem 1.1. If a solution (xn) of (1.1) is eventually equal to the equilibrium x,
the result is obvious. Hence, we may assume that (xn) is not eventually equal to x. First,
we show that any such solution is bounded and it stays away from zero. Notice that by
Lemma 2.3, the function φ defined in (2.14) is decreasing.

Let M be defined as in (2.17) and set

M1 :=
k∑

j=0

aj f j(M), (2.25)

m0 :=min
{

M,
k∑

j=0

aj f j
(
M1
)
}

. (2.26)

Let (xn) be a solution of (1.1). If b is a lower bound of (xn), then B :=∑k
j=0 aj f j(b)

is an upper bound and vice-versa. Hence, it suffices to show that (xn) is bounded from
below by a positive constant.

Now, the number m0 is a lower bound of the solution (xn), or not. If the first case
occurs, then we finished. In the second case, assume that there is an n0 ≥ k+ 2 such that
xn0 <m0. We will show that

xn0 ≤ xn (2.27)
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for all n≥ n0. On the contrary, assume that there is an N > n0 such that xN < xn0 . We can
assume that N is the smallest index with this property.

Since

xN < xn0 <m0 ≤M, (2.28)

by Lemma 2.4, we have

xN± j > x ≥m, j = 1,2, . . . ,k+ 1. (2.29)

If N = n0 + j for some j ∈ {1,2, . . . ,k+ 1}, then from (2.17), (2.26), and (2.29), we have

xn0 = xN− j > x ≥m0, (2.30)

a contradiction. Thus, it holds that N ≥ n0 + k+ 2, and therefore

xn0 ≤ xN−(k+2), (2.31)

in view of the choice of N .
We claim that

xN− j < M1 for j = 1,2, . . . ,k+ 1. (2.32)

Indeed, to this end, suppose that

xN−(k+2) ≤M. (2.33)

Since N − (k+ 2)≥ k+ 2, by Lemma 2.4, we obtain

xN−(k+2) < xN , (2.34)

and so xn0 < xN because of (2.31). But this contradicts the choice of N . Thus we have
xN−(k+2) >M.

Also, if xN− j−(k+2) ≤M, for some j ∈ {1,2, . . . ,k+ 1}, then by Lemma 2.4, it holds that
xN− j−(k+2) < xN− j ≤ x. On the other hand, from (2.29), we have xN− j > x, thus we arrive
to a contradiction. Therefore, we have

xN− j−(k+2) >M for j = 1,2, . . . ,k+ 1. (2.35)

Hence for j = 1,2, . . . ,k+ 1, it follows that

xN− j =
k+1∑

i=1

ai−1 fi−1
(
xN− j−i

)
<

k+1∑

i=1

ai−1 fi−1(M)=M1. (2.36)

This proves the claim.
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Now, from (1.1) and (2.36), it follows that

xn0 > xN =
k+1∑

i=1

ai−1 fi−1
(
xN−i

)≥
k+1∑

i=1

ai−1 fi−1
(
M1
)≥m0 > xn0 , (2.37)

which is a contradiction. From this, the boundedness of (xn) follows.
Next, we use Theorem 2.5 to show the convergence to the equilibrium point x. As we

proved above, every positive solution (xn) is bounded and it stays away from zero. This
means that (xn) is a compact solution in the sense of limiting sequences. Consider two
full limiting sequences zn, yn, n∈ Z such that

0 < liminf xn = z0 ≤ zn, yn ≤ y0 = limsupxn. (2.38)

By taking subsequences, we have that

y0 =
k∑

i=0

ai fi
(
y−1−i

)≤
k∑

i=0

ai fi
(
z0
)
,

z0 =
k∑

i=0

ai fi
(
z−1−i

)≥
k∑

i=0

ai fi
(
y0
)
.

(2.39)

Then, from condition (H2) and (2.39), it follows that

z0y0 ≤
k∑

i=0

aiz0 fi
(
z0
)≤

k∑

i=0

ai y0 fi
(
y0
)≤ z0y0. (2.40)

This means that (2.39) hold as equalities, and consequently,

k∑

i=0

ai fi
(
z0
)= y0,

k∑

i=0

ai fi
(
y0
)= z0. (2.41)

Thus it follows that y0 = z−i for i= 1,2, . . . ,k+ 1. From, (1.1) and (2.41), we obtain

y0 = z−k =
k∑

i=0

ai fi
(
z−k−1−i

)≤
k∑

i=0

ai fi
(
z0
)= y0, (2.42)

and so z−k−i = z0 for all i = 1,2, . . . ,k + 1. In particular, we obtain z0 = z−k−1 = y0, and
since x in a unique equilibrium of (1.1), it follows that z0 = y0 = x, which proves our
theorem. �

Example 2.6. Theorem 1.1 can be applied, for example, to the following difference equa-
tion

xn+1 = a

x
p
n + x

p+α
n

+
b

x
q
n−1 + x

q+β
n−1

+
c

xrn−2 + xr+δ
n−2

, (2.43)

when a,b,c, p,q,r > 0, α,β,δ ≥ 0, a+ b+ c > 2, and max{p+α,q+β,r + δ} ≤ 1.
Indeed, it is easy to see that conditions (H1) and (H2) are satisfied. Note that condition

(1.2) is satisfied for γ = 1 (here we use the condition a+ b+ c > 2).
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