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1. Introduction

Let {X , Xn, n ≥ 1} be a sequence of independent identically distributed (i.i.d.) random
variables. The Marcinkiewicz-Zygmund strong law of large numbers (SLLN) provides
that
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)−→ 0 a.s. for 1≤ α < 2,

1
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Xi −→ 0 a.s. for 0 < α < 1

(1.1)

if and only if E|X|α <∞. The case α = 1 is due to Kolmogorov. In the case of indepen-
dence (but not necessarily identically distributed), Hu and Taylor [1] proved the follow-
ing strong law of large numbers.

Theorem 1.1. Let {Xni; 1 ≤ i ≤ n, n ≥ 1} be a triangular array of rowwise independent
random variables. Let {an, n ≥ 1} be a sequence of positive real numbers such that 0 <
an↑ ∞. Let ψ(t) be a positive, even function such that ψ(|t|)/|t|p is an increasing function of
|t| and ψ(|t|)/|t|p+1 is a decreasing function of |t|, respectively, that is,
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for some nonnegative integer p. If p ≥ 2 and
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(1.3)

where k is a positive integer, then

1
an

n∑

i=1

Xni −→ 0 a.s. (1.4)

Let nonempty sets S,T ⊂�, and define �S = σ(Xk, k ∈ S), and the maximal correla-
tion coefficient ρ∗n = supcorr( f ,g) where the supremum is taken over all (S,T) with dist
(S,T)≥ n and all f ∈ L2(�S), g ∈ L2(�T), and where dist(S,T)= infx∈S, y∈T |x− y|.

A sequence of random variables {Xn, n≥ 1} on a probability space {Ω,�,P} is called
ρ∗-mixing if

lim
n→∞ρ

∗
n < 1. (1.5)

An array of random variables {Xni; i ≥ 1, n ≥ 1} is called rowwise ρ∗-mixing random
variables if for every n≥ 1, {Xni; i≥ 1} is a ρ∗-mixing sequence of random variables.

As for ρ∗-mixing sequences of random variables, Bryc and Smoleński [2] established
the moments inequality of partial sums. Peligrad [3] obtained a CLT. Peligrad [4] estab-
lished an invariance principle. Peligrad and Gut [5] established the Rosenthal-type max-
imal inequality. Utev and Peligrad [6] obtained an invariance principle of nonstationary
sequences.

The main purpose of this paper is to establish a strong law of large numbers for arrays
of rowwise ρ∗-mixing random variables. The result obtained not only generalizes the
result of Hu and Taylor [1] to ρ∗-mixing random variables, but also improves it.

2. Main results

Throughout this paper, C will represent a positive constant though its value may change
from one appearance to the next, and an =O(bn) will mean an ≤ Cbn.

Let {X , Xn, n≥ 1} be a sequence of independent identically distributed (i.i.d.) random
variables and denote Sn =

∑n
i=1Xi. The Hsu-Robbins-Erdös law of large numbers (see

Hsu and Robbins [7], Erdös [8]) states that

∀ε > 0,
∞∑

n=1

P
(∣∣Sn
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)
<∞ (2.1)

is equivalent to EX = 0, EX2 <∞.
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This is a fundamental theorem in probability theory and has been intensively investi-
gated by many authors in the past decades. One of the most important results is Baum-
Katz [9] law of large numbers, which states that for p < 2 and r ≥ p,

∀ε > 0,
∞∑

n=1

nr/p−2P
(∣∣Sn

∣∣ > εn1/p) <∞ (2.2)

if and only if E|X|r <∞, r ≥ 1, and EX = 0.
There are many extensions in various directions. Some of them can be found by Chow

and Lai in [10, 11], where the authors propose a two-sided estimate, and by Petrov in [12].
In order to prove our main result, we need the following lemma.

Lemma 2.1 (see Utev and Peligrad [6]). Let {Xi, i≥ 1} be a ρ∗-mixing sequence of random
variables, EXi = 0, E|Xi|p <∞ for some p ≥ 2 and for every i ≥ 1. Then there exists C =
C(p), such that
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Theorem 2.2. Let {Xni; i≥ 1, n≥ 1} be an array of rowwise ρ∗-mixing random variables.
Let {an, n ≥ 1} be a sequence of positive real numbers such that 0 < an ↑ ∞. Let ψ(t) be a
positive, even function such that ψ(|t|)/|t| is an increasing function of |t| and ψ(|t|)/|t|p is
a decreasing function of |t|, respectively, that is,
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for some nonnegative integer p. If p ≥ 2 and
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where v is a positive integer, v ≥ p, then
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Proof of Theorem 2.2. For all i≥1, defineX (n)
i =XniI(|Xni|≤an),T(n)
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∑ j

i=1(X (n)
i −
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i ), then for all ε > 0,
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First, we show that
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In fact, by EXni = 0, ψ(|t|)/|t| ↑ as |t| ↑ and
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From (2.7) and (2.8), it follows that for n large enough,
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Hence, we need only to prove that
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From the fact that
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By v ≥ p and ψ(|t|)/|t|p ↓ as |t| ↑, then ψ(|t|)/|t|v ↓ as |t| ↑.
By Markov inequality, Lemma 2.1, and
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Now we complete the proof of Theorem 2.2. �

Corollary 2.3. Under the conditions of Theorem 2.2, then

1
an

n∑

i=1

Xni −→ 0 a.s . (2.14)

Proof of Corollary 2.3. By Theorem 2.2, the Proof of Corollary 2.3 is obvious. �

Remark 2.4. Corollary 2.3 not only generalizes the result of Hu and Taylor [1] to ρ∗-
mixing random variables, but also improves it.
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