Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2007, Article ID 74296, 6 pages doi:10.1155/2007/74296

Research Article Strong Laws of Large Numbers for Arrays of Rowwise ρ^* -Mixing Random Variables

Meng-Hu Zhu

Received 4 May 2006; Revised 20 August 2006; Accepted 16 November 2006

Some strong laws of large numbers for arrays of rowwise ρ^* -mixing random variables are obtained. The result obtainted not only generalizes the result of Hu and Taylor (1997) to ρ^* -mixing random variables, but also improves it.

Copyright © 2007 Meng-Hu Zhu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let $\{X, X_n, n \ge 1\}$ be a sequence of independent identically distributed (i.i.d.) random variables. The Marcinkiewicz-Zygmund strong law of large numbers (SLLN) provides that

$$\frac{1}{n^{1/\alpha}} \sum_{i=1}^{n} (X_i - EX_i) \longrightarrow 0 \quad \text{a.s. for } 1 \le \alpha < 2,$$

$$\frac{1}{n^{1/\alpha}} \sum_{i=1}^{n} X_i \longrightarrow 0 \quad \text{a.s. for } 0 < \alpha < 1$$
(1.1)

if and only if $E|X|^{\alpha} < \infty$. The case $\alpha = 1$ is due to Kolmogorov. In the case of independence (but not necessarily identically distributed), Hu and Taylor [1] proved the following strong law of large numbers.

THEOREM 1.1. Let $\{X_{ni}; 1 \le i \le n, n \ge 1\}$ be a triangular array of rowwise independent random variables. Let $\{a_n, n \ge 1\}$ be a sequence of positive real numbers such that $0 < a_n \uparrow \infty$. Let $\psi(t)$ be a positive, even function such that $\psi(|t|)/|t|^p$ is an increasing function of |t| and $\psi(|t|)/|t|^{p+1}$ is a decreasing function of |t|, respectively, that is,

$$\frac{\psi(|t|)}{|t|^{p}}\uparrow, \quad \frac{\psi(|t|)}{|t|^{p+1}}\downarrow, \quad as |t|\uparrow$$
(1.2)

2 Discrete Dynamics in Nature and Society

for some nonnegative integer p. If $p \ge 2$ and

$$EX_{ni} = 0,$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} E \frac{\psi(|X_{ni}|)}{\psi(a_n)} < \infty,$$

$$\sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} E \left(\frac{X_{ni}}{a_n}\right)^2\right)^{2k} < \infty,$$
(1.3)

where k is a positive integer, then

$$\frac{1}{a_n} \sum_{i=1}^n X_{ni} \longrightarrow 0 \quad a.s. \tag{1.4}$$

Let nonempty sets $S, T \subset N$, and define $\mathcal{F}_S = \sigma(X_k, k \in S)$, and the maximal correlation coefficient $\rho_n^* = \sup \operatorname{corr}(f,g)$ where the supremum is taken over all (S,T) with dist $(S,T) \ge n$ and all $f \in L_2(\mathcal{F}_S), g \in L_2(\mathcal{F}_T)$, and where dist $(S,T) = \inf_{x \in S, y \in T} |x - y|$.

A sequence of random variables $\{X_n, n \ge 1\}$ on a probability space $\{\Omega, \mathcal{F}, P\}$ is called ρ^* -mixing if

$$\lim_{n \to \infty} \rho_n^* < 1. \tag{1.5}$$

An array of random variables $\{X_{ni}; i \ge 1, n \ge 1\}$ is called rowwise ρ^* -mixing random variables if for every $n \ge 1$, $\{X_{ni}; i \ge 1\}$ is a ρ^* -mixing sequence of random variables.

As for ρ^* -mixing sequences of random variables, Bryc and Smoleński [2] established the moments inequality of partial sums. Peligrad [3] obtained a CLT. Peligrad [4] established an invariance principle. Peligrad and Gut [5] established the Rosenthal-type maximal inequality. Utev and Peligrad [6] obtained an invariance principle of nonstationary sequences.

The main purpose of this paper is to establish a strong law of large numbers for arrays of rowwise ρ^* -mixing random variables. The result obtained not only generalizes the result of Hu and Taylor [1] to ρ^* -mixing random variables, but also improves it.

2. Main results

Throughout this paper, *C* will represent a positive constant though its value may change from one appearance to the next, and $a_n = O(b_n)$ will mean $a_n \le Cb_n$.

Let {*X*, *X_n*, $n \ge 1$ } be a sequence of independent identically distributed (i.i.d.) random variables and denote $S_n = \sum_{i=1}^n X_i$. The Hsu-Robbins-Erdös law of large numbers (see Hsu and Robbins [7], Erdös [8]) states that

$$\forall \varepsilon > 0, \quad \sum_{n=1}^{\infty} P(|S_n| > \varepsilon n) < \infty$$
(2.1)

is equivalent to EX = 0, $EX^2 < \infty$.

This is a fundamental theorem in probability theory and has been intensively investigated by many authors in the past decades. One of the most important results is Baum-Katz [9] law of large numbers, which states that for p < 2 and $r \ge p$,

$$\forall \varepsilon > 0, \quad \sum_{n=1}^{\infty} n^{r/p-2} P(|S_n| > \varepsilon n^{1/p}) < \infty$$
(2.2)

if and only if $E|X|^r < \infty$, $r \ge 1$, and EX = 0.

There are many extensions in various directions. Some of them can be found by Chow and Lai in [10, 11], where the authors propose a two-sided estimate, and by Petrov in [12].

In order to prove our main result, we need the following lemma.

LEMMA 2.1 (see Utev and Peligrad [6]). Let $\{X_i, i \ge 1\}$ be a ρ^* -mixing sequence of random variables, $EX_i = 0$, $E|X_i|^p < \infty$ for some $p \ge 2$ and for every $i \ge 1$. Then there exists C = C(p), such that

$$E \max_{1 \le k \le n} \left| \sum_{i=1}^{k} X_i \right|^p \le C \left\{ \sum_{i=1}^{n} E \left| X_i \right|^p + \left(\sum_{i=1}^{n} E X_i^2 \right)^{p/2} \right\}.$$
 (2.3)

THEOREM 2.2. Let $\{X_{ni}; i \ge 1, n \ge 1\}$ be an array of rowwise ρ^* -mixing random variables. Let $\{a_n, n \ge 1\}$ be a sequence of positive real numbers such that $0 < a_n \uparrow \infty$. Let $\psi(t)$ be a positive, even function such that $\psi(|t|)/|t|$ is an increasing function of |t| and $\psi(|t|)/|t|^p$ is a decreasing function of |t|, respectively, that is,

$$\frac{\psi(|t|)}{|t|}\uparrow, \quad \frac{\psi(|t|)}{|t|^{p}}\downarrow, \quad as |t|\uparrow$$
(2.4)

for some nonnegative integer p. If $p \ge 2$ and

$$EX_{ni} = 0,$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} E \frac{\psi(|X_{ni}|)}{\psi(a_n)} < \infty,$$

$$\sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} E \left(\frac{X_{ni}}{a_n}\right)^2\right)^{\nu/2} < \infty,$$
(2.5)

where v is a positive integer, $v \ge p$, then

$$\forall \varepsilon > 0, \quad \sum_{n=1}^{\infty} P\left(\max_{1 \le k \le n} \left| \frac{1}{a_n} \sum_{i=1}^{k} X_{ni} \right| > \varepsilon \right) < \infty.$$
(2.6)

4 Discrete Dynamics in Nature and Society

Proof of Theorem 2.2. For all $i \ge 1$, define $X_i^{(n)} = X_{ni}I(|X_{ni}| \le a_n)$, $T_j^{(n)} = (1/a_n)\sum_{i=1}^j (X_i^{(n)} - EX_i^{(n)})$, then for all $\varepsilon > 0$,

$$P\left(\max_{1\leq k\leq n} \left| \frac{1}{a_n} \sum_{i=1}^{k} X_{ni} \right| > \varepsilon\right)$$

$$\leq P\left(\max_{1\leq j\leq n} |X_{nj}| > a_n\right) + P\left(\max_{1\leq j\leq n} |T_j^{(n)}| > \varepsilon - \max_{1\leq j\leq n} \left| \frac{1}{a_n} \sum_{i=1}^{j} EX_i^{(n)} \right| \right).$$
(2.7)

First, we show that

$$\max_{1 \le j \le n} \left| \frac{1}{a_n} \sum_{i=1}^j E X_i^{(n)} \right| \longrightarrow 0, \quad \text{as } n \longrightarrow \infty.$$
(2.8)

In fact, by $EX_{ni} = 0$, $\psi(|t|)/|t| \uparrow as |t| \uparrow and \sum_{n=1}^{\infty} \sum_{i=1}^{n} E(\psi(|X_{ni}|)/\psi(a_n)) < \infty$, then

$$\max_{1 \le j \le n} \left| \frac{1}{a_n} \sum_{i=1}^{j} EX_i^{(n)} \right| = \max_{1 \le j \le n} \left| \frac{1}{a_n} \sum_{i=1}^{j} EX_{ni} I(|X_{ni}| \le a_n) \right|$$
$$= \max_{1 \le j \le n} \left| \frac{1}{a_n} \sum_{i=1}^{j} EX_{ni} I(|X_{ni}| > a_n) \right|$$
$$\leq \sum_{i=1}^{n} \frac{E|X_{ni}| I(|X_{ni}| > a_n)}{a_n}$$
$$\leq \sum_{i=1}^{n} \frac{E\psi(|X_{ni}|) I(|X_{ni}| > a_n)}{\psi(a_n)}$$
$$\leq \sum_{i=1}^{n} \frac{E\psi(|X_{ni}|)}{\psi(a_n)} \longrightarrow 0, \quad \text{as } n \longrightarrow \infty.$$

From (2.7) and (2.8), it follows that for *n* large enough,

$$P\left(\max_{1\leq k\leq n} \left|\frac{1}{a_n}\sum_{i=1}^k X_{ni}\right| > \varepsilon\right) \leq \sum_{j=1}^n P\left(\left|X_{nj}\right| > a_n\right) + P\left(\max_{1\leq j\leq n} \left|T_j^{(n)}\right| > \frac{\varepsilon}{2}\right).$$
(2.10)

Hence, we need only to prove that

$$I =: \sum_{n=1}^{\infty} \sum_{j=1}^{n} P(|X_{nj}| > a_n) < \infty,$$

$$II =: \sum_{n=1}^{\infty} P\left(\max_{1 \le j \le n} |T_j^{(n)}| > \frac{\varepsilon}{2}\right) < \infty.$$
(2.11)

From the fact that $\sum_{n=1}^{\infty} \sum_{i=1}^{n} E(\psi(|X_{ni}|)/\psi(a_n)) < \infty$, it follows easily that

$$I = \sum_{n=1}^{\infty} \sum_{j=1}^{n} P(|X_{nj}| > a_n) \le \sum_{n=1}^{\infty} \sum_{j=1}^{n} E \frac{\psi(|X_{nj}|)}{\psi(a_n)} < \infty.$$
(2.12)

By $v \ge p$ and $\psi(|t|)/|t|^p \downarrow$ as $|t| \uparrow$, then $\psi(|t|)/|t|^v \downarrow$ as $|t| \uparrow$.

By Markov inequality, Lemma 2.1, and $\sum_{n=1}^{\infty} (\sum_{i=1}^{n} E(X_{ni}/a_n)^2)^{\nu/2} < \infty$, we have

$$\begin{split} II &= \sum_{n=1}^{\infty} P\left(\max_{1 \le j \le n} |T_{j}^{(n)}| > \frac{\varepsilon}{2}\right) \\ &\leq \sum_{n=1}^{\infty} \left(\frac{\varepsilon}{2}\right)^{-\nu} E \max_{1 \le j \le n} |T_{j}^{(n)}|^{\nu} \\ &\leq C \sum_{n=1}^{\infty} \left(\frac{\varepsilon}{2}\right)^{-\nu} \frac{1}{a_{n}^{\nu}} \left[\left(\sum_{j=1}^{n} E |X_{j}^{(n)}|^{2}\right)^{\nu/2} + \sum_{j=1}^{n} E |X_{j}^{(n)}|^{\nu} \right] \\ &\leq C \sum_{n=1}^{\infty} \frac{1}{a_{n}^{\nu}} \sum_{j=1}^{n} E |X_{j}^{(n)}|^{\nu} + C \sum_{n=1}^{\infty} \frac{1}{a_{n}^{\nu}} \left(\sum_{j=1}^{n} E |X_{j}^{(n)}|^{2}\right)^{\nu/2} \\ &= C \sum_{n=1}^{\infty} \frac{1}{a_{n}^{\nu}} \sum_{j=1}^{n} E |X_{nj}|^{\nu} I(|X_{nj}| \le a_{n}) + C \sum_{n=1}^{\infty} \frac{1}{a_{n}^{\nu}} \left(\sum_{j=1}^{n} E |X_{j}^{(n)}|^{2}\right)^{\nu/2} \\ &\leq C \sum_{n=1}^{\infty} \sum_{i=1}^{n} E \frac{\psi(|X_{ni}|)}{\psi(a_{n})} + C \sum_{n=1}^{\infty} \frac{1}{a_{n}^{\nu}} \left[\sum_{j=1}^{n} E |X_{j}^{(n)}|^{2}\right]^{\nu/2} \\ &\leq C \sum_{n=1}^{\infty} \sum_{i=1}^{n} E \frac{\psi(|X_{ni}|)}{\psi(a_{n})} + C \sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} E \left(\frac{X_{ni}}{a_{n}}\right)^{2}\right)^{\nu/2} < \infty. \end{split}$$

Now we complete the proof of Theorem 2.2.

COROLLARY 2.3. Under the conditions of Theorem 2.2, then

$$\frac{1}{a_n} \sum_{i=1}^n X_{ni} \longrightarrow 0 \ a.s \,. \tag{2.14}$$

Proof of Corollary 2.3. By Theorem 2.2, the Proof of Corollary 2.3 is obvious. \Box *Remark 2.4.* Corollary 2.3 not only generalizes the result of Hu and Taylor [1] to ρ^* -mixing random variables, but also improves it.

Acknowledgments

The author would like to thank two anonymous referees for valuable comments. This research is supported by National Natural Science Foundation of China.

6 Discrete Dynamics in Nature and Society

References

- T.-C. Hu and R. L. Taylor, "On the strong law for arrays and for the bootstrap mean and variance," *International Journal of Mathematics and Mathematical Sciences*, vol. 20, no. 2, pp. 375– 382, 1997.
- [2] W. Bryc and W. Smoleński, "Moment conditions for almost sure convergence of weakly correlated random variables," *Proceedings of the American Mathematical Society*, vol. 119, no. 2, pp. 629–635, 1993.
- [3] M. Peligrad, "On the asymptotic normality of sequences of weak dependent random variables," *Journal of Theoretical Probability*, vol. 9, no. 3, pp. 703–715, 1996.
- [4] M. Peligrad, "Maximum of partial sums and an invariance principle for a class of weak dependent random variables," *Proceedings of the American Mathematical Society*, vol. 126, no. 4, pp. 1181–1189, 1998.
- [5] M. Peligrad and A. Gut, "Almost-sure results for a class of dependent random variables," *Journal of Theoretical Probability*, vol. 12, no. 1, pp. 87–104, 1999.
- [6] S. Utev and M. Peligrad, "Maximal inequalities and an invariance principle for a class of weakly dependent random variables," *Journal of Theoretical Probability*, vol. 16, no. 1, pp. 101–115, 2003.
- [7] P. L. Hsu and H. Robbins, "Complete convergence and the law of large numbers," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 33, no. 2, pp. 25–31, 1947.
- [8] P. Erdös, "On a theorem of Hsu and Robbins," *The Annals of Mathematical Statistics*, vol. 20, pp. 286–291, 1949.
- [9] L. E. Baum and M. Katz, "Convergence rates in the law of large numbers," *Transactions of the American Mathematical Society*, vol. 120, no. 1, pp. 108–123, 1965.
- [10] Y. S. Chow and T. L. Lai, "Some one-sided theorems on the tail distribution of sample sums with applications to the last time and largest excess of boundary crossings," *Transactions of the American Mathematical Society*, vol. 208, pp. 51–72, 1975.
- [11] Y. S. Chow and T. L. Lai, "Paley-type inequalities and convergence rates related to the law of large numbers and extended renewal theory," *Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete*, vol. 45, no. 1, pp. 1–19, 1978.
- [12] V. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables, vol. 4 of Oxford Studies in Probability, Oxford University Press, New York, NY, USA, 1995.

Meng-Hu Zhu: Department of Mathematics and Statistics, Zhejiang Gongshang University, Hangzhou 310035, China *Email address*: zmhzju@163.com