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We prove that all positive solutions of the autonomous difference equation xn =
αxn−k/(1 + xn−k + f (xn−1, . . . ,xn−m)), n∈N0, where k,m∈N, and f is a continuous func-
tion satisfying the condition βmin{u1, . . . ,um} ≤ f (u1, . . . ,um) ≤ βmax{u1, . . . ,um} for
some β ∈ (0,1), converge to the positive equilibrium

––
x= (α− 1)/(β+ 1) if α > 1.
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1. Introduction

In this paper, we investigate the global stability of positive solutions of the following au-
tonomous difference equation:

xn = αxn−k
1 + xn−k + f

(
xn−1, . . . ,xn−m

) , n∈N0 := {0,1,2, . . .}, (1.1)

where k,m∈N, and f is a continuous function satisfying the condition

βmin
{
u1, . . . ,um

}≤ f
(
u1, . . . ,um

)≤ βmax
{
u1, . . . ,um

}
(1.2)

for some β ∈ (0,1) (the case β = 0 is not of some interest since in the case equation it
turned as Riccati’ one).

Note that in a view of relations (1.2), x = (α− 1)/(β+ 1) is a unique positive equilib-
rium of (1.1), if α > 1.

Further, note that the behaviour of positive solutions of (1.1) for the case α∈ (0,1) is
quite simple. Namely, in this case, we have xn ≤ αxn−k, so that the sequences (xlk+r)l∈N,
r ∈ {0,1, . . . ,k− 1} converge to zero, and consequently, the sequence xn does. The case
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α = 1 is slightly complicated. In this case, the sequences (xlk+r)l∈N, r ∈ {0,1, . . . ,k − 1}
are still convergent, as positive and nonincreasing. If we replace n in (1.1) by kl, l ∈ N,
and then let l→∞, we obtain

φ0 = φ0

1 +φ0 + f
(
φ1, . . . ,φm

) , (1.3)

where φi := liml→∞xkl+i, i ∈ {0,1, . . . ,k− 1}. Without loss of generality, we may assume
that φ0 �= 0. From (1.3), we have that φ0 + f (φ1, . . . ,φm)= 0, which implies φ0 = 0, a con-
tradiction. Hence, every positive solution of (1.1) converges to zero, also in this case.

Equation (1.1) for the case α∈ (0,1] is a particular case of the difference equation

xn = g
(
xn−1, . . . ,xn−s

)
, (1.4)

where the function g satisfies the condition

g
(
u1, . . . ,us

)≤max
{
u1, . . . ,us

}
. (1.5)

Equation (1.4), whose function g satisfies condition (1.5) or the following condition:

lim
x→∞

g(x, . . . ,x)
x

= 1, (1.6)

has been extensively studied by many authors (see, e.g., [9, 14–21, 25]).
In the proof of the result, we use the method of so-called “frame” sequences, that is, a

discrete analog of the method of frame curves, commonly used in the theory of differen-
tial equations. This method and closely related methods have been used in the literature
for many times; see, for example, [21, 1–5, 7, 10, 11, 22–24] and the related references
therein. Our motivation stems from [10–12]. Recently, there has been a great interest in
studying nonlinear difference equations and systems, in particular those which model
some real-life situations in population biology and ecology (see, e.g., [18, 20, 21, 25, 10,
6, 8, 13] and the references cited therein).

2. The global stability of (1.1)

We prove the main result of this paper in this section. Before this, we need a lemma.

Lemma 2.1. Assume that α > 1, β ∈ (0,1), ε ∈ (0,(α− 1)(1−β)/(1 +β)), and that (mn)n∈N
and (Mn)n∈N are sequences defined as follows:

mn = α− 1−βMn−1− ε

2n−1
, Mn = α− 1−βmn +

ε

2n−1
, (2.1)

for n≥ 2, with initial values

m1 = (α− 1)−β(α− 1 + ε)− ε, M1 = α− 1 + ε. (2.2)

Then

lim
n→∞mn = lim

n→∞Mn = α− 1
1 +β

. (2.3)
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Proof. From (2.1) we obtain the following linear first-order difference equation:

Mn = β2Mn−1 + (α− 1)(1−β) + (2β+ 1)
ε

2n−1
, n≥ 2, (2.4)

whose general solution is

Mn = β2n−2M1 + (α− 1)(1−β)
β2n−2− 1
β2− 1

+
(2β+ 1)ε

2n−1

n−2∑

j=0

(
2β2
) j
. (2.5)

Letting n→∞ in (2.5), using the assumption β ∈ (0,1) and Stoltz theorem, it follows that
limn→∞Mn = (α− 1)/(1 +β).

From this and (2.1), it easily follows that limn→∞mn = (α− 1)/(1 + β) too, as claimed.
�

Now, we are able to formulate and to prove our main result.

Theorem 2.2. Assume that α > 1, and f is a continuous function satisfying condition (1.2)
for some β ∈ (0,1). Then, every positive solution of (1.1) converges to the positive equilibrium
x = (α− 1)/(β+ 1).

Proof. From (1.1), we have that

xn = αxn−k
1 + xn−k + f

(
xn−1, . . . ,xn−m

) ≤ αxn−k
1 + xn−k

, n∈N. (2.6)

Assume that un is a solution of the following difference equation:

un = αun−k
1 +un−k

, (2.7)

with initial values u0 = x0, . . . ,u−k = x−k. It is clear that (2.7) can be reduced into k-
independent Riccati equations of the form zn = αzn−1/(1 + zn−1). It is well known that
for α > 1, there is finite limit limn→∞zn (which is equal to α− 1). From this and since in
the light of the monotonicity of the function f (x)= αx/(1 + x), we have that xn ≤ un for
n≥−k. By letting n→∞, it follows that

S= limsup
n→∞

xn ≤ α− 1= lim
n→∞un. (2.8)

From (2.8), we have that for every ε ∈ (0,(α− 1)(1−β)/(1 +β)),

xn ≤ α− 1 + ε, (2.9)

for n≥ n0. From (1.1), condition (1.2), and relation (2.9), it follows that

αxn−k
1 + xn−k +β(α− 1 + ε)

≤ αxn−k
1 + xn−k + f

(
xn−1, . . . ,xn−m

) = xn (2.10)

for every n≥ n0 +m. Assume that (yn) is a solution of the following difference equation:

yn = αyn−k
1 + yn−k +β(α− 1 + ε)

(2.11)
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with initial values yn0 = xn0 , . . . , yn0+k−1 = xn0+k−1. Then, since the function g(x)= αx/(1 +
β(α− 1 + ε) + x) is increasing on the interval (0,∞), it is easy to see by the induction that
yn ≤ xn for n≥ n0, and that

lim
n→∞yn = (α− 1)−β(α− 1 + ε). (2.12)

Hence, we obtain that

0 < (α− 1)−β(α− 1 + ε)≤ liminf
n→∞ xn = I. (2.13)

In this way, we formed two frame sequences (yn) and (un) such that yn ≤ xn ≤ un for
n≥ n0 +m.

Now, let ε ∈ (0,(α− 1)(1−β)/(1 +β)) and sequences (mn)n∈N and (Mn)n∈N be defined
by (2.1) with (2.2).

Then we have

0 <m1 ≤ I ≤ S≤M1. (2.14)

On the other hand, similar to (2.6)–(2.13), for each t ∈ N\{1} fixed, we can form the
sequences (y(t)

n ) and (u(t)
n ) defined by

u(t)
n = αu(t)

n−k
1 +u(t)

n−k +βmt−1

, y(t)
n = αy(t)

n−k
1 + y(t)

n−k +βMt

, (2.15)

and easily show that

lim
n→∞u

(t)
n = α− 1−βmt−1, lim

n→∞y
(t)
n = α− 1−βMt,

α− 1−βMt − ε

2t−1
< y(t)

n ≤ xn ≤ u(t)
n < α− 1−βmt−1 +

ε

2t−1
, n≥ nt.

(2.16)

From this and Lemma 2.1, it follows that

mt ≤ I ≤ S≤Mt (2.17)

for every t ∈N. Letting t→∞ in relations (2.17), the result follows. �

By Theorem 2.2 and the change of variables xn = yn/c, we obtain the following corol-
lary.

Corollary 2.3. Assume that k,m ∈N, αj , j ∈ {1, . . . ,m}, are nonnegative numbers such
that

∑m
j=1αj = 1, α > 1, c > 0, and β ∈ (0,c). Then, every positive solution of the difference

equation

xn = αxn−k
1 + cxn−k +β

∑m
j=1αjxn− j

, n∈N0, (2.18)

converges to the positive equilibrium x = (α− 1)/(β+ c).

In the following example, we show that the function f need not be a linear one.
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Example 2.4. Let

f
(
u1, . . . ,um

)= a

√∑m
j=1u

a
j

m
, (2.19)

where a > 0; then this function satisfies conditions of Theorem 2.2. Hence, every positive
solution of the difference equation

xn = αxn−k
1 + xn−k +β a

√(
xan−1 + xan−2 + ···+ xan−m

)
/m

(2.20)

converges to the positive equilibrium x = (α− 1)/(β+ 1).
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