
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2007, Article ID 62731, 11 pages
doi:10.1155/2007/62731

Research Article
Global Attractivity of Positive Periodic Solutions of Delay
Differential Equations with Feedback Control

Zhi-Long Jin

Received 8 August 2006; Accepted 26 November 2006

By constructing suitable Liapunov functionals and estimating uniform upper and lower
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When these results are applied to the periodic logistic equation with several delays and
feedback control, some new results are obtained.
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1. Introduction

Recently, Huo and Li [1], Gopalsamy and Weng [2] introduced a feedback control vari-
able into the delayed logistic model and discussed the asymptotic behavior of solutions in
logistic models with feedback controls, in which the control variables satisfy certain dif-
ferential equation. We also refer to Xiaoxing and Fengde [3], Li and Zhu [4] for further
study on delay equations with feedback control.

In this paper, we consider the following general nonlinear nonautonomous delay dif-
ferential system with feedback control:

dy

dt
= y(t)F

(
t, y
(
t− τ1(t)

)
, . . . , y

(
t− τn(t)

)
,u
(
t− δ(t)

))
,

du

dt
=−η(t)u(t) + a(t)y

(
t− σ(t)

)
,

(1.1)

where F(t,z1,z2, . . . ,zn,zn+1) ∈ C(Rn+2,R), τi(t) (i = 1,2, . . . ,n), δ(t),σ(t) ∈ C(R,
R), η(t),a(t) ∈ C(R, (0,∞)), all functions are ω-periodic in t, and ω > 0 is a constant.
By constructing some suitable Liapunov functionals, we obtain sufficient conditions of
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global attractivity of periodic solutions for system (1.1). When we apply the obtained
results to the periodic logistic equation with several delays [5, 6] and feedback control,
some new results are obtained. In view of [1], let

u(t)=
∫ t+ω

t
G(t,s)a(s)y

(
s− σ(s)

)
ds := (Φy)(t), (1.2)

where

G(t,s)= exp
{∫ s

t η(r)dr
}

exp
{∫ ω

0 η(r)dr
}− 1

. (1.3)

We know that the existence of ω-periodic solution of (1.1) is equivalent to that of the
equation

dy(t)
dt

= y(t)F
(
t, y
(
t− τ1(t)

)
, . . . , y

(
t− τn(t)

)
, (Φy)

(
t− δ(t)

))
. (1.4)

2. Main results

From Huo and Li [1], we have the following theorem.

Theorem 2.1. If the following conditions hold:
(i) there exists a constant C > 0 such that if x(t) and u(t) are continuous ω-periodic

functions and satisfy

∫ ω

0
F
(
t,ex(t−τ1(t)), . . . ,ex(t−τn(t)),eu(t−δ(t)))dt = 0, (2.1)

then

∫ ω

0

∣
∣F
(
t,ex(t−τ1(t)), . . . ,ex(t−τn(t)),eu(t−δ(t)))∣∣dt ≤ C; (2.2)

(ii) there exists a constant H > 0 such that when vi ≥H , i= 1,2, . . . ,n+ 1,

F
(
t,ev1 ,ev2 , . . . ,evn ,evn+1

)
> 0, F

(
t,−ev1 ,−ev2 , . . . ,−evn ,−evn+1

)
< 0 (2.3)

uniformly hold for t ∈ [0,∞), then system (1.1) has at least one positive ω-periodic
solution.

Next we will derive sufficient conditions under which (1.1) has a unique positive ω-
periodic solution that attracts all other positive solutions. From now on we always assume
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that F ∈ C1(Rn+2,R). Let {y∗(t),u∗(t)} be a positive ω-periodic solution and set

y(t)= y∗(t)exp
{
x(t)

}
, u(t)= u∗(t)exp

{
x(t)

}
. (2.4)

Then (1.1) can be reduced to

dx

dt
=G

(
t,x
(
t− τ1(t)

)
, . . . ,x

(
t− τn(t)

)
,x
(
t− δ(t)

))−G(t,0, . . . ,0,0), (2.5)

where

G
(
t,u1, . . . ,un,un+1

)

= F
(
t, y∗

(
t− τ1(t)

)
exp

{
u1
}

, . . . , y∗
(
t− τn(t)

)
exp

{
un
}

,u∗
(
t− δ(t)

)
exp

{
un+1

})
.

(2.6)

By the mean value theorem, we can rewrite (2.5) as

dx

dt
=

n∑

i=1

Ji(t)x
(
t− τi(t)

)
+ Jn+1(t)x

(
t− δ(t)

)
, (2.7)

where

Ji(t)= ∂G
(
t,η1(t), . . . ,ηn(t),ηn+1(t)

)

∂ηi
, i= 1, . . . ,n,n+ 1,

min
{
y∗
(
t− τi(t)

)
, y
(
t− τi(t)

)}≤ y∗
(
t− τi(t)

)
exp

{
ηi(t)

}

≤max
{
y∗
(
t− τi(t)

)
, y
(
t− τi(t)

)}
, i= 1,2, . . . ,n,

min
{
u∗
(
t− δ(t)

)
,u
(
t− δ(t)

)}≤ u∗
(
t− δ(t)

)
exp

{
ηn+1(t)

}

≤max
{
u∗
(
t− δ(t)

)
,u
(
t− δ(t)

)}
.

(2.8)

Theorem 2.2. In addition to the assumptions in Theorem 2.1, assume further that
(i) τi(t)= τi (i= 1,2, . . . ,n) and δ(t)= δ are constants;

(ii) there exists T1 > 0 such that

Ji(t) < 0, t > T1, i= 1,2, . . . ,n+ 1; (2.9)

(iii) there exist T2 > 0 and constants A1,A2 > 0 such that every solution {y(t),u(t)} of
(1.1) satisfies

A1 ≤ y(t)≤A2, A1 ≤ u(t)≤A2, t > T2; (2.10)
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(iv) max{β,γ} < 2, where

β = limsup
t→∞

[

−
n∑

i=1

∫ t

t−τi

(
Ji
(
s+ τi

)
+ Ji
(
s+ 2τi

))
ds−

∫ t

t−δ

(
Jn+1(s+ δ)

)
ds

−
∫ t

t−τi

(
Jn+1

(
s+ δ + τi

))
ds

]

,

γ = limsup
t→∞

[

−
n∑

i=1

∫ t

t−τi
Ji
(
s+ τi

)
ds−

∫ t

t−δ

(
Jn+1(s+ δ) + Jn+1(s+ 2δ)

)
ds

−
n∑

i=1

∫ t

t−δ
Ji
(
s+ δ + τi

)
ds

]

,

(2.11)

then system (1.1) has a unique positive ω-periodic solution {y∗(t),u∗(t)} such that
every solution {y(t),u(t)} of (1.1) satisfies

lim
t→∞

[
y(t)− y∗(t)

]= 0, lim
t→∞

[
u(t)−u∗(t)

]= 0. (2.12)

Proof. The existence of {y∗(t),u∗(t)} follows from Theorem 2.1 and the uniqueness will
follow from (2.12). Therefore, from the above discussion, it suffices to prove that every
solution of (2.7) has the asymptotic behavior

lim
t→∞x(t)= 0. (2.13)

To this end, we define a functional V(t)=V(x(t)) as

V(t)=
[

x(t) +
n∑

i=1

∫ t

t−τi
Ji
(
s+ τi

)
x(s)ds+

∫ t

t−δ
Jn+1(s+ δ)x(s)ds

]2

+
n∑

i=1

∫ t

t−τi
Ji
(
s+ 2τi

)
[ n∑

i=1

∫ t

s
Ji
(
h+ τi

)
x2(h)dh

]

ds

+
∫ t

t−δ
Jn+1(s+ 2δ)

[∫ t

s
Jn+1(h+ δ)x2(h)dh

]
ds

+
n∑

i=1

∫ t

t−δ
Ji
(
s+ δ + τi

)
[∫ t

s
Jn+1(h+ δ)x2(h)dh

]
ds

+
∫ t

t−τi
Jn+1

(
s+ δ + τi

)
[ n∑

i=1

∫ t

s
Ji
(
h+ τi

)
x2(h)dh

]

ds.

(2.14)
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Then along the solutions of (2.7), we have

dV(t)
dt

= 2

[

x(t) +
n∑

i=1

∫ t

t−τi
Ji
(
s+ τi

)
x(s)ds+

∫ t

t−δ
Jn+1(s+ δ)x(s)ds

]

×
[

x(t)
n∑

i=1

Ji
(
t+ τi

)
+ x(t)Jn+1(t+ δ)

]

+
n∑

i=1

∫ t

t−τi
Ji
(
s+ 2τi

)
ds

n∑

i=1

Ji
(
t+ τi

)
x2(t)

−
n∑

i=1

Ji
(
t+ τi

) n∑

i=1

∫ t

t−τi
Ji
(
s+ τi

)
x2(s)ds

+
∫ t

t−δ
Jn+1(s+ 2δ)dsJn+1(t+ δ)x2(t)

− Jn+1(t+ δ)
∫ t

t−δ
Jn+1(s+ δ)x2(s)ds

+
n∑

i=1

∫ t

t−δ
Ji
(
s+ δ + τi

)
dsJn+1(t+ δ)x2(t)

−
n∑

i=1

Ji
(
t+ τi

)
∫ t

t−δ
Jn+1(s+ δ)x2(s)ds

+
∫ t

t−τi
Jn+1

(
s+ δ + τi

)
ds

n∑

i=1

Ji
(
t+ τi

)
x2(t)

− Jn+1(t+ δ)
n∑

i=1

∫ t

t−τi
Ji
(
s+ τi

)
x2(s)ds.

(2.15)

When t > T1, using inequality 2x(t)x(s)≤ x2(t) + x2(s) to make estimation and simplifi-
cation, we obtain

dV(t)
dt

≤ x2(t)

[ n∑

i=1

Ji
(
t+ τi

)
][

2 +
n∑

i=1

∫ t

t−τi
Ji
(
s+ τi

)
ds+

∫ t

t−δ
Jn+1(s+ δ)ds

+
n∑

i=1

∫ t

t−τi
Ji
(
s+ 2τi

)
ds+

∫ t

t−τi
Jn+1

(
s+ δ + τi

)
ds

]

+ x2(t)Jn+1(t+ δ)

[

2 +
n∑

i=1

∫ t

t−τi
Ji
(
s+ τi

)
ds+

∫ t

t−δ
Jn+1(s+ δ)ds

+
∫ t

t−δ
Jn+1(s+ 2δ)ds+

n∑

i=1

∫ t

t−δ
Ji
(
s+ δ + τi

)
ds

]

.

(2.16)
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This and conditions (ii) and (iv) show that for ε0 = (2−β)/4, ε1 = (2− γ)/4, there exists
a sufficiently large T(≥max{T1,T2}) such that

dV(t)
dt

≤ x2(t)

[
(
2−β− ε0

) n∑

i=1

Ji
(
t+ τi

)
+
(
2− γ− ε1

)
Jn+1(t+ δ)

]

, t ≥ T. (2.17)

Thus, V is eventually nonincreasing. From (2.4), (2.5), and condition (iii), it follows that
x(t) is uniformly continuous on [0,∞). Moreover, by (2.6), (2.8), conditions (ii) and (iii),
it follows that there exist a T3(≥ T) and constants Di,Ei > 0, i= 1, . . . ,n,n+ 1 such that

Di ≤−Ji(t)≤ Ei, t ≥ T3, i= 1, . . . ,n,n+ 1. (2.18)

Taking this into account and integrating (2.17) over [T3, t], we have

V(t) +
(
2−β− ε0

)
[ n∑

i=1

Di

]∫ t

T3

x2(s)ds+
(
2− γ− ε1

)
Dn+1

∫ t

T3

x2(s)ds≤V
(
T3
)
<∞.

(2.19)

Hence, x2 ∈ L1(T3,∞). By Barbălat’s lemma [7], we have

lim
t→∞x

2(t)= 0. (2.20)

This completes the proof. �

3. Applications

In this section, we apply the results obtained in the previous section to the following
logistic model with several delays [5, 6] with feedback control:

dy

dt
= y(t)

[

r(t)−
n∑

i=1

ai(t)y
(
t− τi(t)

)− c(t)u
(
t− δ(t)

)
]

,

du

dt
=−η(t)u(t) + a(t)y

(
t− σ(t)

)
,

(3.1)

where τi(t), i = 1,2, . . . ,n, δ(t),σ(t) ∈ C(R,R), r(t), c(t), ai(t), i = 1,2, . . . ,n, η(t),
a(t) ∈ C(R, (0,∞)), all of the above functions are ω-periodic functions and ω > 0 is a
constant. By [1], we have the following theorem.

Theorem 3.1. System (3.1) has at least one positive ω-periodic solution.

In order to establish the uniqueness and global attractivity of the positive periodic
solutions, we need to obtain certain upper and lower bounds for the positive solutions.
For convenience, we introduce the following notations:

( f )M = max
t∈[0,ω]

f (t), ( f )m = min
t∈[0,ω]

f (t), τ∗ = max
1≤i≤n

{
max
t∈[0,∞]

τi(t)
}

, (3.2)

where f is a continuous nonnegative ω-periodic solution.
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Lemma 3.2. Assume that {y(t),u(t)} is a solution of (3.1) and

(r)m− (c)MU1 > 0. (3.3)

Then there exists a number T3 such that

U1 ≤ y(t)≤U1, U1 ≤ u(t)≤U1, t ≥ T3, (3.4)

where

U1 =max

{
(r)M∑n
i=1

(
ai
)
m

exp
(
(r)Mτ∗

) (a)M
(η)m

,
(r)M∑n
i=1

(
ai
)
m

exp
(
(r)Mτ∗

)
}

,

U1 =min

{
(r)m− (c)MU1∑n

i=1

(
ai
)
M

exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}

(a)m
(η)M

,

(r)m− (c)MU1∑n
i=1

(
ai
)
M

exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}}

.

(3.5)

Proof. Clearly, any solution y(t) of (3.1) satisfies the delay differential inequality

dy

dt
≤ y(t)

[

(r)M −
n∑

i=1

(
ai
)
my
(
t− τi(t)

)
]

. (3.6)

Now either y(t) is oscillatory about

W = (r)M∑n
i=1

(
ai
)
m

(3.7)

or it is nonoscillatory. In the case when y(t) is oscillatory about W , we let τ∗ < t1 < t2 <
··· < tn < ··· be a sequence of zeros of y(t)−W with limn→∞ tn =∞ and y(tn) =W .
Our strategy is to establish the upper bound in each interval (tn, tn+1). For this, let t∗n be
a point where y(t) attends its maximum in (tn, tn+1). Now, since y(t∗n ) is the maximum,
then we have y(t∗n )≥ y(tn)=W . Since y′(t∗n )= 0, it follows from (3.6) that we have

0= y′
(
t∗n
)
<

y
(
t∗n
)

∑n
i=1

(
ai
)
m

[
W − y

(
t∗n − τ∗

)]
. (3.8)

Hence,

y
(
t∗n − τ∗

)
<W. (3.9)

Since y(t∗n )≥W and y(t∗n − τ∗) <W , we can let ξ be the first zero of y(t)−W in (t∗n −
τ∗, t∗n ), that is, y(ξ)= Ẇ . Integrating (3.6) from ξ to t∗n , we have

ln
(
y
(
t∗n
)

y(ξ)

)
≤
∫ t∗n

ξ
(r)Mdt ≤

∫ t∗n

t∗n −τi(t∗n )
(r)Mdt (3.10)
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or

y
(
t∗n
)≤W exp

(
(r)Mτ∗

)
. (3.11)

Since the right-hand side of (3.11) is independent of t, we conclude that

y(t)≤W exp
(
(r)Mτ∗

)
, t ≥ t1 + 2τ∗. (3.12)

Next, assume that y(t) is nonoscillatory about W . Then we can see that for every ε > 0,
there exists a T′1 = T′1(ε) such that

y(t) <W + ε, t > T′1. (3.13)

From this and (3.11) it follows that there exists a T′2 such that

y(t)≤W exp
(
(r)Mτ∗

)
, t > T′2. (3.14)

By (1.2) and (3.14), there exists a T′3, for t > T′3, we have

u(t)≤W exp
(
(r)Mτ∗

)
∫ t+ω

t
G(t,s)a(s)ds

≤W exp
(
(r)Mτ∗

) (a)M
(η)m

∫ t+ω

t
G(t,s)η(s)ds=W exp

(
(r)Mτ∗

) (a)M
(η)m

.

(3.15)

From (3.12), (3.14), and (3.15), there exists a T′4 > 0 such that for t > T′4,

y(t)≤max
{
W exp

(
(r)Mτ∗

) (a)M
(η)m

,W exp
(
(r)Mτ∗

)
}
=U1, (3.16)

u(t)≤max
{
W exp

(
(r)Mτ∗

) (a)M
(η)m

,W exp
(
(r)Mτ∗

)}=U1. (3.17)

In a similar way we can derive a lower bound for the solution of (3.1). In fact, by (3.1)
and (3.17), we have

dy(t)
dt

≥ y(t)

[

(r)m−
n∑

i=1

(
ai
)
My
(
t− τi(t)

)− (c)MU1

]

. (3.18)

Set

V = (r)m− (c)MU1∑n
i=1

(
ai
)
M

. (3.19)

If y(t) is oscillatory about V , let τ∗ < s1 < s2 < ··· < sn < ··· be a sequence of zeros of
y(t)−V with limn→∞ sn =∞ and y(sn)=V . Our strategy is to establish the upper bound
in each interval (sn,sn+1). For this, let s∗n be a point where y(t) attends its minimum
in (sn,sn+1). Now, since y(s∗n ) is the minimum, then we have y(s∗n ) ≤ y(sn) = V . Since
y′(s∗n )= 0, it follows from (3.18) that we have

0= y′
(
s∗n
)
>

y
(
s∗n
)

∑n
i=1

(
ai
)
M

[
V − y

(
s∗n − τ∗

)]
. (3.20)
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Hence,

y
(
t∗n − τ∗

)
> V. (3.21)

Since y(t∗n ) ≤W and y(t∗n − τ∗) > V , we can let ζ be the first zero of y(t)−V in (s∗n −
τ∗,s∗n ), that is, y(ζ)=V . Integrating (3.20) from ζ to s∗n , we have

ln
(
y
(
s∗n
)

y(ζ)

)
≥
∫ s∗n

ζ

[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

dt

≥
[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]
(
s∗n − ζ

)
(3.22)

or

y
(
s∗n
)≥V exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}

. (3.23)

Thus,

y(t)≥V exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}

, t ≥ s1 + 2τ∗. (3.24)

Now assume that y(t) is nonoscillatory about V . Then for every ε > 0, there exists a
T′′1 = T′′1 (ε) > 0 such that

y(t) > V − ε, t > T′′1 . (3.25)

From this and (3.24) it follows that there exists a T′′2 > 0 such that

y(t)≥V exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}

, t > T′′2 . (3.26)

By (1.2), (3.24), and (3.26), we have T′′3 > 0 such that when t > T′′3 ,

u(t)≥V exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}∫ t+ω

t
G(t,s)a(s)ds

≥V exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}

(a)m
(η)M

∫ t+ω

t
G(t,s)η(s)ds

=V exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}

(a)m
(η)M

.

(3.27)
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From (3.24), (3.26), and (3.27), there exists a T′′4 > 0 such that for t > T′′4 ,

y(t)≥min

{

V exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}

(a)m
(η)M

,

V exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}}

=U1,

u(t)≥min

{

V exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}

(a)m
(η)M

,

V exp

{[

(r)m−
( n∑

i=1

(
ai
)
M + (c)M

)

U1

]

τ∗
}}

=U1.

(3.28)

The proof is complete. �

By Theorem 3.1, Lemma 3.2, and Theorem 2.2, we have the following results.

Theorem 3.3. Assume that τi(t)= τi (i= 1,2, . . . ,n), δ(t)= δ are constants. If
(i) (r)m− (c)MU1 > 0;

(ii) max{β,γ} < 2, where

β = limsup
t→∞

{

U1

[ n∑

i=1

∫ t

t−τi

(
bi
(
s+ τi

)
+ bi

(
s+ 2τi

))
ds

+
∫ t

t−δ
c(s+ δ)ds+

∫ t

t−τi
c
(
s+ δ + τi

)
ds

]}

,

γ = limsup
t→∞

{

U1

[ n∑

i=1

∫ t

t−τi
bi
(
s+ τi

)
ds+

∫ t

t−δ

(
c(s+ δ) + c(s+ 2δ)

)
ds

+
n∑

i=1

∫ t

t−δ
b
(
s+ 2δ + τi

)
ds

]}

,

(3.29)

then system (3.1) has a unique positive ω-periodic solution {y∗(t),u∗(t)} such that every
solution {y(t),u(t)} of (3.1) satisfies (2.12).
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