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′
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1. Introduction

It is known (see, e.g., [1, 2]) that various mixed problems for the hyperbolic equations
can be reduced to the initial-value problem

d2u(t)
dt2

+A(t)u(t)= f (t) (0≤ t ≤ T),

u(0)= ϕ, u′(0)= ψ
(1.1)

for differential equation in a Hilbert space H . Here, A(t) are the self-adjoint positive
definite operators in H with a t-independent domain D =D(A(t)).

A function u(t) is called a solution of the problem (1.1) if the following conditions are
satisfied:

(i) u(t) is twice continuously differentiable on the segment [0,T]; the derivatives
as the endpoints of the segment are understood as the appropriate unilateral
derivatives;
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(ii) the element u(t) belongs to D for all t ∈ [0,T], and the function Au(t) is contin-
uous on the segment [0,T];

(iii) u(t) satisfies the equation and the initial conditions (1.1).
A large cycle of works on difference schemes for hyperbolic partial differential equa-

tions (see, e.g., [3–6] and the references given therein), in which stability was established
under the assumption that the magnitudes of the grid steps τ and h with respect to the
time and space variables is connected. In abstract terms this means, in particular, that the
condition τ‖Aτ,h‖→0 when τ→0 is satisfied.

Of great interest is the study of absolute stable difference schemes of a high order of
accuracy for hyperbolic partial differential equations, in which stability was established
without any assumptions in respect of the grid steps τ and h. The stability inequalities for
solutions of the first order of accuracy difference scheme

τ−2
(
uk+1− 2uk +uk−1

)
+Akuk+1 = fk,

Ak =A
(
tk
)
, fk = f

(
tk
)
, tk = kτ, 1≤ k ≤N − 1, Nτ = T ,

τ−1
(
u1−u0

)
+ iA1/2

1 u1 = iA1/2
0 u0 +ψ, u0 = ϕ

(1.2)

for approximately solving problem (1.1) were established without any assumtions for the
first time in the paper [7].

The study of the high order of accuracy of absolute stable difference schemes for ap-
proximately solving problem (1.1) in the case of A(t)= A has been studied in the papers
[3, 8–11]. The second order of accuracy difference schemes

τ−2
(
uk+1− 2uk +uk−1

)
+Auk +

τ2

4
A2uk+1 = fk,

fk = f
(
tk
)
, tk = kτ, 1≤ k ≤N − 1,Nτ = T ,

τ−1
(
u1−u0

)
+ iA1/2

(
I +

iτ

2
A1/2

)
u1 = z1,

z1 =
(
I + iτA1/2

)
ψ +

τ

2
f0 +

(
iA1/2− τA)u0, f0 = f (0), u0 = ϕ,

τ−2
(
uk+1− 2uk +uk−1

)
+

1
4
A
(
uk+1 + 2uk +uk−1

)= fk,

fk = f
(
tk
)
, tk = kτ, 1≤ k ≤N − 1,Nτ = T ,

τ−1
(
u1−u0

)
+
i

2
A1/2

(
u1 +u0

)= z1,

z1 =
(
I +

iτ

2
A1/2

)
ψ +

τ

2
f0 +

(
iA1/2− τA

2

)
u0, f0 = f (0), u0 = ϕ

(1.3)

was presented in the paper [8]. The stability estimates for the solution of these difference
schemes; and its first and second order difference derivatives were established. Unfortu-
nately, these difference schemes are generated by the A1/2. In paper [9], the first order of
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accuracy difference scheme

τ−2
(
uk+1− 2uk +uk−1

)
+Auk+1 = fk,

fk = f
(
tk
)
, tk = kτ, 1≤ k ≤N − 1,Nτ = T ,

τ−1
(
u1−u0

)= ψ, u0 = ϕ,

(1.4)

and second order of accuracy difference scheme

τ−2
(
uk+1− 2uk +uk−1

)
+Auk +

τ2

4
A2uk+1 = fk,

fk = f
(
tk
)
, tk = kτ, 1≤ k ≤N − 1,Nτ = T ,

(
I + τ2A

)
τ−1
(
u1−u0

)= τ

2

(
f0 −Au0

)
+ψ, f0 = f (0), u0 = ϕ,

(1.5)

τ−2
(
uk+1− 2uk +uk−1

)
+

1
2
Auk +

1
4
A
(
uk+1 +uk−1

)= fk,

fk = f
(
tk
)
, tk = kτ, 1≤ k ≤N − 1,Nτ = T ,

(
I + τ2A

)
τ−1
(
u1−u0

)= τ

2

(
f0 −Au0

)
+ψ, f0 = f (0), u0 = ϕ

(1.6)

for approximately solving this initial-value problem were presented. These difference
schemes were generated by the integer power of A. The stability estimates for the solution
of these difference schemes were established.

In papers [10, 11], the high order of accuracy two-step difference schemes generated
by an exact difference scheme or by the Taylor’s decomposition on three points for the nu-
merical solutions of this problem was presented. The stability estimates for the solutions
of these difference schemes were established. In applications, the stability estimates for the
solutions of the high order of accuracy difference schemes of the mixed type boundary
value problems for hyperbolic equations were obtained.

We are interested in studying the high order of accuracy two-step difference schemes
for the approximate solutions of the problem (1.1) in a Hilbert space H with self-adjoint
positive definite operators A(t). In paper [12], second order of accuracy difference
scheme

τ−2(uk+1− 2uk +uk−1
)

+Ak+1/24−1(uk+1 +uk
)

+A1/2
k+1/2A

1/2
k−1/24−1(uk +uk−1

)

+ τ−1(A1/2
k−1/2−A1/2

k+1/2

)
A−1/2
k−1/2τ

−1(uk −uk−1
)

+ 2−1τ−1(A1/2
k+1−A1/2

k

)
A−1/2
k+1/2τ

−1(uk+1−uk
)

+A1/2
k+1/2A

−1/2
k−1/22−1τ−1(A1/2

k −A1/2
k−1

)
A−1/2
k−1/2τ

−1(uk −uk−1
)

= 2−1( fk−1/2 + fk+1/2
)

+ 2−1(A1/2
k+1/2−A1/2

k−1/2

)
A−1/2
k−1/2 fk−1/2, 1≤ k ≤N − 1, u0 = u(0)

τ−1(u1−u0
)

+
τ

2
A1/22−1(u1 +u0

)
+
τ

2

(
A1/2

1/2

)′
A−1/2

1/2 τ−1(u1−u0
)= τ

2
f1/2 +A1/2

1/2A
−1/2
1/2 u′0

(1.7)
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generated by Crank-Nicholson difference scheme was presented. The following theorems
under the same smoothness assumption onA(t)A−1(0) (see, e.g., [12]) on the stability es-
timates for the solution of this difference scheme and its first and second order difference
derivatives were established.

Theorem 1.1. Let u(0)∈D(A1/2(0)). Then for the solution of the difference scheme (1.7),
the stability estimate

∥
∥
∥
∥

{
uk −uk−1

τ

}N−1

1

∥
∥
∥
∥
Cτ

+
∥
∥uτ

∥
∥
Cτ
≤M

[
∥
∥A1/2(0)u0

∥
∥
H +

∥
∥u′0

∥
∥
H +

N−1∑

s=0

∥
∥ fs+1/2

∥
∥
Hτ

]

(1.8)

holds, where M does not depend on u0,u′0, fs+1/2 (0≤ s≤N − 1) and τ.

Theorem 1.2. Let u(0)∈D(A(0)), u′(0)∈D(A1/2(0)). Then for the solution of the differ-
ence scheme (1.7), the stability estimat

∥
∥
∥
∥

{
A1/2(0)

uk −uk−1

τ

}N−1

1

∥
∥
∥
∥
Cτ

+
∥
∥Ak+1/24−1(uk+1 +uk

)
+A1/2

k+1/2A
1/2
k−1/24−1(uk +uk−1

)

+ τ−1(A1/2
k−1/2−A1/2

k+1/2

)
A−1/2
k−1/2τ

−1(uk −uk−1
)

+ 2−1τ−1(A1/2
k+1−A1/2

k

)
A−1/2
k+1/2τ

−1(uk+1−uk
)

+A1/2
k+1/2A

−1/2
k−1/22−1τ−1(A1/2

k −A1/2
k−1

)
A−1/2
k−1/2τ

−1(uk −uk−1
)∥∥

H

+
∥
∥{τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
Cτ

≤M
[
∥
∥A(0)u0

∥
∥
H +

∥
∥A1/2(0)u′0

∥
∥
H + max

0≤s≤k
∥
∥ fs+1/2

∥
∥
H +

n−2∑

s=0

∥
∥ fs+1/2− fs−1/2

∥
∥
H

]

(1.9)

holds, where M does not depend on u0,u′0, fs+1/2 (0≤ s≤N − 1) and τ.

Note that the difference scheme (1.7) for approximately solving problem (1.1) in the
case of A(t) = A is (1.6). So, these stability estimates are generalization of the results of
paper [9] in the general case of A(t).

In the present paper, the difference scheme (1.5) for approximately solving problem
(1.1) in the general case of A(t) is presented. Unfortunately, the stability estimates for
‖{(uk − uk−1)/τ}N−1

1 ‖Cτ and ‖{uk}N−1
1 ‖Cτ cannot be obtained for the solution of this

difference scheme under the same conditions of Theorem 1.1. Nevertheless, the stabil-
ity estimates for ‖{A1/2

k−1/2(uk − uk−1/τ)}N−1
1 ‖Cτ , ‖{Akuk}N−1

1 ‖Cτ and ‖{τ−2(uk+1 − 2uk +
uk−1)}N−1

1 ‖Cτ are obtained for the solution of this difference scheme under the same con-
ditions.
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2. The construction of one difference scheme of a second order of accuracy

By papers [13, 14], we have the equivalent initial-value problem for a system of the first
order linear differential equations

du(t)
dt

= iA1/2(t)v(t), 0 < t < T , u(0)= u0, u′(0)= u′0,

dv(t)
dt

= iA1/2(t)u(t)−A−1/2(t)
[
A1/2(t)

]′
v(t)− iA−1/2(t) f (t).

(2.1)

For construction of a two-step difference scheme, we consider the uniform grid space

[0,T]τ =
{
tk = kτ, 0≤ k ≤N , Nτ = T}. (2.2)

Using the central difference formula for the derivative and (2.1), we can write

τ−1
(
u
(
tk
)−u(tk−1

))= iA1/2
k v

(
tk−1/2

)
+ o
(
τ2
)
, 1≤ k ≤N ,

τ−1
(
v
(
tk
)− v(tk−1

))= iA1/2
k u

(
tk−1/2

)−A−1/2
k

[
A1/2
k

]′
v
(
tk−1/2

)

−iA−1/2
k fk + o

(
τ2
)
, 1≤ k ≤N , v0 =−iA−1/2

0 u′0,

(2.3)

where

A1/2
k =A1/2

(
tk−1/2

)
,

[
A1/2
k

]′ = (A′)1/2(tk−1/2
)
, fk = f

(
tk−1/2

)
,

tk−1/2 =
(
tk − τ

2

)
, A0 = A(0).

(2.4)

Using the Taylor expansion, we can write

τ−1(u
(
tk
)−u(tk−1

))= u′(tk
)− τ

2
u′′
(
tk
)

+ o
(
τ2), 1≤ k ≤N ,

w
(
tk−1/2

)= 1
2

(
w
(
tk
)

+w
(
tk−1

))
+ o
(
τ2),

w
(
tk−1/2

)=
(
w
(
tk
)− τ

2
w′
(
tk
)
)

+ o
(
τ2).

(2.5)

Applying (2.5), and the formulas

u′
(
tk
)= iA1/2(tk

)
v
(
tk
)
, u′′

(
tk
)= f

(
tk
)−A(tk

)
u
(
tk
)
, (2.6)
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we get

τ−1(u
(
tk
)−u(tk−1

))

= τ

2
Aku

(
tk
)

+ i
(
A1/2
k +

τ

2

(
A1/2
k

)′
)
v
(
tk
)− τ

2
fk + o

(
τ2), 1≤ k ≤N ,

τ−1(v
(
tk
)− v(tk−1

))

= iA1/2
k u

(
tk
)

+
τ

2
Akv

(
tk
)− 2−1A−1/2

k

(
A1/2
k

)′(
v
(
tk
)

+ v
(
tk−1

))

− iA−1/2
k fk + o

(
τ2), 1≤ k ≤N , v0 =−iA−1/2

0 u′0,

v
(
tk
)=−iA−1/2

k+1/2

(
τ−1(u

(
tk
)−u(tk−1

))− τ

2
Aku

(
tk
)

+
τ

2
fk

)
+ o
(
τ2), 1≤ k ≤N.

(2.7)

Neglecting the small terms o(τ2), we obtain the following difference scheme:

τ−1(uk −uk−1
)= τ

2
Akuk + i

(
A1/2
k +

τ

2

(
A1/2
k

)′
)
vk − τ

2
fk, u0 = u(0), 1≤ k ≤N

τ−1(vk−vk−1
)= iA1/2

k uk+
τ

2
Akvk−2−1A−1/2

k

(
A1/2
k

)′(
vk+vk−1

)−iA−1/2
k fk, 1≤k≤N ,

vk =−iA−1/2
k+1/2

(
τ−1(uk −uk−1

)− τ

2
Akuk +

τ

2
fk

)
, 1≤ k ≤N ,

v0 =−iA−1/2
0 u′0.

(2.8)

for the approximate solution of the initial-value problem (1.1).
Using (2.8) and eliminating vk, collecting uk on the left side and tk on the right side of

the equation, and rearranging the terms in (2.8), we obtain two-step difference scheme
of a second order of accuracy

τ−2(uk+1− 2uk +uk−1
)

=
[
A1/2
k+1 +

τ

2

(
A1/2
k+1

)′
]{
−A1/2

k+1uk+1 +
[
τ

2
Ak+1− 1

2
A−1/2
k+1

(
A1/2
k+1

)′
]

×A−1/2
k+3/2

[
τ−1(uk+1−uk

)− τ

2
Ak+1uk+1 +

τ

2
fk+1

]
+A−1/2

k+1 fk+1

}

−
{[
A1/2
k+1 +

τ

2

(
A1/2
k+1

)′
]
A−1/2
k+1

(
A1/2
k+1

)′
A−1/2
k+1/2

− τ−1
[
(
A1/2
k+1−A1/2

k

)
+
τ

2

((
A1/2
k+1

)′ − (A1/2
k

)′)
]}
A−1/2
k+1/2

×
[
τ−1(uk −uk−1

)− τ

2
Akuk +

τ

2
fk

]
+ 2−1(Ak+1uk+1−Akuk

)

− 2−1( fk+1− fk
)
, 1≤ k ≤N − 1, u0 = u(0),

τ−1(u1−u0
)

+
τ

2
A1/22−1(u1 +u0

)
+
τ

2

(
A1/2

1/2

)′
A−1/2

1/2 τ−1(u1−u0
)= τ

2
f1 +A1/2

1/2A
−1/2
1/2 u′0

(2.9)
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for the approximate solution of the initial-value problem (1.1). Note that the difference
scheme (2.9) for approximately solving problem (1.1) in the case of A(t)=A is (1.5).

Let us establish the formula for the solution of this difference scheme (2.9).
Making the transformation ηk = uk + vk and μk = uk − vk in (2.8), we obtain the fol-

lowing system of the difference equations:

τ−1
(
ηk −ηk−1

)=
(
iA1/2

k +
τ

2
Ak

)
ηk +ϕ+

k , 2≤ k ≤N ,

η1 = K
(
B+u0 +C+u′0 +D+ f1

)
,

τ−1
(
μk −μk−1

)=
(
− iA1/2

k +
τ

2
Ak

)
μk +ϕ−k , 2≤ k ≤N ,

μ1 = K
(
B−u0 +C−u′0 +D− f1

)
,

ϕ±k = i
τ

2

(
A1/2
k

)′
vk − τ

2
fk ∓A−1/2

k

(
A1/2
k

)′
2−1
(
vk + vk−1

)∓ iA−1/2
k fk,

vk =−iA−1/2
k+1/2

(
τ−1
(
uk −uk−1

)− τ

2
Akuk +

τ

2
fk

)
, 2≤ k ≤N ,

(2.10)

where

K =
[

1 +
τ4

4
A2

1 +
τ

2
A−1/2

1

(
A1/2

1

)′
+
τ3

2
A1/2

1

(
A1/2

1

)′
]−1

,

B± = 1− τ2

2
A1 +

τ

2
A−1/2

1

(
A1/2

1

)′ ± iτA1/2
1 ,

C± = τA1/2
1 A−1/2

0 − τ3

4

(
A1/2

1

)′
A−1/2

1

(
A1/2

1

)′
A−1/2

0 ∓ iA−1/2
0

± i τ
2
A−1/2

1

(
A1/2

1

)′
A−1/2

0 ± i τ
2

2
A1A

−1/2
0 ∓ i τ

3

4
A1/2

1

(
A1/2

1

)′
A−1/2

0 ,

D± = τ4

4
A1− τ3

4
A−1/2

1

(
A1/2

1

)′
+

3
2
τ2 +

τ3

2

(
A1/2

1

)′
A−1/2

1 ∓ iτA−1/2
1 .

(2.11)

From this, it follows the system of recursion formulas

ηk =
(
I − τ2

2
Ak − iτA1/2

k

)−1

ηk−1 +
(
I − τ2

2
Ak − iτA1/2

k

)−1

ϕ+
k , 2≤ k ≤N ,

μk =
(
I − τ2

2
Ak + iτA1/2

k

)−1

μk−1 +
(
I − τ2

2
Ak + iτA1/2

k

)−1

ϕ−k , 2≤ k ≤N.
(2.12)

Hence,

ηk = P−k (k)η1 +
k∑

m=2

R−m(k)ϕ+
m, μk = P+

k (k)μ1 +
k∑

m=2

R+
m(k)ϕ−m. (2.13)

Here,

P±k (k)= X±k X±k−1 ···X±2 , R±m(k)= X±k X±k−1 ···X±m , (2.14)
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where

X±k =
(
I − τ2

2
Ak ± iτA1/2

k

)−1

. (2.15)

Then, using the formula uk = (1/2)(ηk +μk), we obtain

uk= 2−1
{
[
P+
k (k)KB− +P−k (k)KB+]u0 +

[
P+
k (k)KC− +P−k (k)KC+]u′0

+
[
P+
k (k)KD− +P−k (k)KD+] f1 +

k∑

m=2

[
R+
m(k)ϕ−m +R−m(k)ϕ+

m

]
}
.

(2.16)

Furthermore, by making the transformation k−m= s, we obtain

uk= 2−1
{
[
P+
k (k)KB− +P−k (k)KB+]u0 +

[
P+
k (k)KC− +P−k (k)KC+]u′0

+
[
P+
k (k)KD− +P−k (k)KD+] f1 +

k−2∑

s=0

[
E+
s (k)ϕ−k−s +E−s (k)ϕ+

k−s
]}

,
(2.17)

where

ϕ±k−s = i
[
± τ

2
A−1/2
k−s

(
A1/2
k−s
)′ − i τ

2

2

(
A1/2
k−s
)′
]
A−1/2
k−s+1/2

×
[
τ−1(uk−s−uk−s−1

)− τ

2
Ak−suk−s +

τ

2
fk−s
]

± i τ
2
A−1/2
k−s

(
A1/2
k−s
)′
A−1/2
k−s−1/2

[
τ−1(uk−s−1−uk−s−2

)− τ

2
Ak−s−1uk−s−1 +

τ

2
fk−s−1

]

+
(
− τ2

2
∓ iτA−1/2

k−s

)
fk−s,

E±s (k)= X±k X±k−1···X±k−s, E±0 (k)= X±k .
(2.18)

Finally, from the last formula, it follows that

A1/2
k−1/2τ

−1(uk −uk−1
)

= A1/2
k−1/2(2τ)−1

{
[[
P+
k (k)−P+

k−1(k− 1)
]
KB− +

[
P−k (k)−P−k−1(k− 1)

]
KB+]u0

+
[[
P+
k (k)−P+

k−1(k− 1)
]
KC− +

[
P−k (k)−P−k−1(k− 1)

]
KC+]u′0

+
[[
P+
k (k)−P+

k−1(k− 1)
]
KD− +

[
P−k (k)−P−k−1(k− 1)]KD+] f1

+
[
E+

0 (k)ϕ−k +E−0 (k)ϕ+
k

]
+
k−2∑

s=1

[
E+
s (k)−E+

s−1(k− 1)
]
ϕ−k−s

+
k−2∑

s=1

[
E−s (k)−E−s−1(k− 1)

]
ϕ+
k−s

}
.

(2.19)



A. Ashyralyev and M. E. Koksal 9

In the following section, these formulas will be used to establish the stability inequality
of the difference scheme (2.9).

3. Stability of difference scheme (2.9)

First of all, let us give some subsidiary conditions for operators A(t) that will be needed
below. Let A(t) be self-adjoint positive definite operators in H with a t-independent do-
main D =D(A(t)) : A(t)≥ δI > 0. Then, the following estimates hold:

∥
∥
∥
∥τ

αAα/2k

(
I +

τ4

4
A2
k

)−1∥∥
∥
∥≤ 1, α= 0,1,2, (3.1)

∥
∥
∥
∥τ

αAα/2k

(
I +

τ4

4
A2
k

)−1∥∥
∥
∥≤

(
4−√2

)
α+ 4

(√
2− 3

)
, α= 3,4, (3.2)

∥
∥
∥
∥τ

αAα/2k

(
I − τ2

2
Ak ± iτA1/2

k

)−1∥∥
∥
∥≤

α2−α
2

+ 1, α= 0,1,2. (3.3)

Let the operator function Aρ(t)A−ρ(z), ρ ∈ [0,2] satisfies the conditions

∥
∥[Aρ(t)−Aρ(s)

]
A−ρ(z)

∥
∥≤Mρ‖t− s‖, (3.4)

∥
∥[(Aρ(t)

)′ − (Aρ(s)
)′]
A−ρ(z)

∥
∥≤Mρ‖t− s‖, (3.5)

where Mρ is a positive constant independent of t, s, z for t,s,z ∈ [0,T]. From this, it
follows that the operator function Aρ(t)A−ρ(z) has a finite variation on [0,T], that is,
there exists a number Pρ such that

N∑

k=1

∥
∥(Aρ

(
sk
)−Aρ(sk−1

))
A−ρ(z)

∥
∥≤ Pρ (3.6)

for any 0 = s0 < s1 < ··· < sN = T. Here, Pρ is a positive constant independent of s0,
s1, . . . ,sN , and z.

Furthermore, let the operator functions (Aρ(t))′A−ρ(z) and Aρ(p)(Ar(t))′A−ρ−r(z)
satisfy the conditions

∥
∥(Aρ(t)

)′
A−ρ(z)

∥
∥≤M3, (3.7)

∥
∥Aρ(p)

(
Ar(t)

)′
A−ρ−r(z)

∥
∥≤M4, (3.8)

where M3 and M4 are positive constants independent of t, z for t,z ∈ [0,T] and t, z, p for
t,z, p ∈ [0,T], respectively.
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Finally, let P±k (k) = X±k X
±
k−1 ···X±2 and E±s (k) = X±k X

±
k−1 ···X±k−s such that X±k =

(I − (τ2/2)Ak ± iτA1/2
k )

−1
. We have

∥
∥AkP

±
k (k)A−1

1

∥
∥≤ eM1

∑k
i=1‖(A1

i −A1
i−1)A−1

0 ‖, (3.9)

∥
∥
∥AkE

±
s (k)Aα/2−1

1,k−s τ
α
∥
∥
∥≤

(
α2−α

2
+ 1
)
eM1

∑k
i=1‖(A1

i −A1
i−1)A−1

0 ‖, α= 0,1,2, (3.10)

∥
∥A1/2

k−1/2(2τ)−1[P±k (k)−P±k−1(k− 1)
]
A
−ρ
1

∥
∥≤ 3M1/2

4
eMρ

∑k
i=1‖(A

ρ
i −Aρi−1)A

−ρ
0 ‖, (3.11)

∥
∥
∥A1/2

k−s−1/2(2τ)−1[E±s (k)−E±s−1(k− 1)
](
A
ρ
k−s
)α/2−1

τα
∥
∥
∥

≤ 3M1/2

4
eMρ

∑k
i=1‖(A

ρ
i −Aρi−1)A

−ρ
0 ‖, α= 0,1,2.

(3.12)

Theorem 3.1. Let u(0) ∈ D(A1/2(0)) and f1 ∈ D((A1/2
1 )′). Then, for the solution of the

difference scheme (2.9), the stability estimate

∥
∥
∥
∥

{
A1/2
k−1/2

uk −uk−1

τ

}N

1

∥
∥
∥
∥
Cτ

+
∥
∥{Akuk

}N
1

∥
∥
Cτ

≤M
[
∥
∥A(0)u0

∥
∥
H +

∥
∥A1/2(0)u′0

∥
∥
H + max

1≤s≤N
∥
∥ fk
∥
∥+

∥
∥τ2(A1/2

1 )
′
f1
∥
∥
H +

N∑

s=1

∥
∥ fs− fs−1

∥
∥
H

]

(3.13)

holds, where M does not depend on u0,u′0, fs (1≤ s≤N), and τ.

Proof. Firstly, the estimate ‖{A1/2
k−1/2(uk − uk−1/τ)}N1 ‖Cτ will be obtained. Applying for-

mula (2.19), we can write

A1/2
k−1/2τ

−1(uk −uk−1
)= J1k + J2k + J3k + J4k + J5k, (3.14)

where

J1k =A1/2
k−1/2(2τ)−1{[P+

k (k)−P+
k−1(k− 1)

]
KB− +

[
P−k (k)−P−k−1(k− 1)

]
KB+}u0,

J2k =A1/2
k−1/2(2τ)−1{[P+

k (k)−P+
k−1(k− 1)

]
KC− +

[
P−k (k)−P−k−1(k− 1)

]
KC+}u′0,

J3k =A1/2
k−1/2(2τ)−1{[P+

k (k)−P+
k−1(k− 1)

]
KD− +

[
P−k (k)−P−k−1(k− 1)

]
KD+} f1,

J4k =A1/2
k−1/2(2τ)−1[E+

0 (k)ϕ−k +E−0 (k)ϕ+
k

]
,

J5k =A1/2
k−1/2(2τ)−1

{k−2∑

s=1

[
E+
s (k)−E+

s−1(k− 1)
]
ϕ−k−s +

k−2∑

s=1

[
E−s (k)−E−s−1(k− 1)

]
ϕ+
k−s

}

.

(3.15)
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Now, let us estimate the terms ‖Jmk‖H , m= 1,5, separately. Let m= 1. Then applying
estimates (3.1), (3.2), (3.4), (3.8), and (3.11), we get

∥
∥J1k

∥
∥
H ≤ 2

∥
∥A1/2

k−1/2(2τ)−1[P+
k (k)−P+

k−1(k− 1)
]
KB−u0

∥
∥
H

≤ 2
∥
∥A1/2

k−1/2(2τ)−1[P+
k (k)−P+

k−1(k− 1)
]
A−1

1

∥
∥A1kb

−A−1
1

∥
∥
∥
∥A1A

−1
0

∥
∥
∥
∥A0u0

∥
∥
H

≤ 2
∥
∥A1/2

k−1/2(2τ)−1[P+
k (k)−P+

k−1(k− 1)
]
A−1

1

∥
∥

×
∥
∥
∥
∥A1

[
1 +

τ4

4
A2

1 +
τ

2
A−1/2

1

(
A1/2

1

)′
+
τ3

2
A1/2

1

(
A1/2

1

)′
]−1

×
[

1− τ2

2
A1 +

τ

2
A−1/2

1

(
A1/2

1

)′ − iτA1/2
1

]∥∥
∥
∥
∥
∥A1A

−1
0

∥
∥
∥
∥A0u0

∥
∥
H

≤ 3
4

(
M1/2 + 1

)
M1

[
1

1− τM4

(
1 +

5τ
4
M4

)
+

3
2

]
eM1P1

∥
∥A0u0

∥
∥
H = c1

∥
∥A0u0

∥
∥
H.

(3.16)

Let m= 2. Then applying estimates (3.1), (3.2), (3.4), (3.7), (3.8), and (3.11), we get

∥
∥J2k

∥
∥
H ≤ 2

∥
∥A1/2

k−1/2(2τ)−1[P+
k (k)−P+

k−1(k− 1)
]
KC−u′0

∥
∥
H

≤ 2
∥
∥A1/2

k−1/2(2τ)−1[P+
k (k)−P+

k−1(k− 1)
]
A−1

1

∥
∥
∥
∥A1KC

−A−1/2
0

∥
∥
∥
∥A1/2

0 u′0
∥
∥
H

≤ 2
∥
∥A1/2

k−1/2(2τ)−1[P+
k (k)−P+

k−1(k− 1)
]
A−1

1

∥
∥

×
∥
∥
∥
∥A1

[
1 +

τ4

4
A2

1 +
τ

2
A−1/2

1

(
A1/2

1

)′
+
τ3

2
A1/2

1

(
A1/2

1

)′
]−1

×
[
τA1/2

1 A−1/2
0 − τ

3

4

(
A1/2

1

)′
A−1/2

1

(
A1/2

1

)′
A−1/2

0 −iA−1/2
0 +i

τ

2
A−1/2

1

(
A1/2

1

)′
A−1/2

0

+ i
τ2

2
A1A

−1/2
0 − i τ

3

4
A1/2

1

(
A1/2

1

)′
A−1/2

0

]
A−1/2

0

∥
∥
∥
∥
∥
∥A1/2

0 u′0
∥
∥
H

≤ 3
2
M1/2

[(
M1 +

M3

2

)
+
τ

4
M2

3√
δ

+
1

1− τM4

×
(

3M1

2
+
τ

4
M4
(
1 + 3M1) +

3τ2

8
M4

(
M2

3√
δ

+M4

))]
eM1P1

∥
∥A1/2

0 u0
∥
∥
H

= C2
∥
∥A1/2

0 u0
∥
∥
H.

(3.17)

Let m= 3. Then applying estimates (3.1), (3.2), (3.4), (3.7), (3.8), and (3.11), we get

∥
∥J3k

∥
∥
H ≤ 2

∥
∥A1/2

k−1/2(2τ)−1[P+
k (k)−P+

k−1(k− 1)
]
KD− f1

∥
∥
H

≤ 2
∥
∥A1/2

k−1/2(2τ)−1[P+
k (k)−P+

k−1(k− 1)
]
A−1

1

∥
∥

×
∥
∥
∥
∥A1

[
1 +

τ4

4
A2

1 +
τ

2
A−1/2

1

(
A1/2

1

)′
+
τ3

2
A1/2

1

(
A1/2

1

)′
]−1

×
[
τ4

4
A1− τ3

4
A−1/2

1

(
A1/2

1

)′
+

3τ2

2
+
τ3

2

(
A1/2

1

)′
A−1/2

1 − iτA−1/2
1

]∥∥
∥
∥
∥
∥ f1
∥
∥
H
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≤ 3
2

(
M1/2 + 1

)
+
[

5
2

+
τ

2

(
M4 +M3

)
+

5τ
4

M4

1− τM4
+

3τ2

4
M4
(
M4 +M3

)

1− τM4

]
eM1P1

× (∥∥ f1
∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H

)= C3
[∥∥ f1

∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H

]
.

(3.18)

Let m= 4. We have that

J4k = A1/2
k−1/2(2τ)−1[E+

0 (k)ϕ−k +E−0 (k)ϕ+
k

]

=
[
i
1
4
A1/2
k−1/2

(
X−k −X+

k

)
A−1/2
k

(
A1/2
k

)′
+
τ

4
A1/2
k−1/2

(
X−k +X+

k

)(
A1/2
k

)′
]

×A−1/2
k+1/2

uk −uk−1

τ
+ i

1
4
A1/2
k−1/2

(
X−k −X+

k

)
A−1/2
k

(
A1/2
k

)′
A−1/2
k−1/2

uk−1−uk−2

τ

+
[
i
τ

8
A1/2
k−1/2

(
X+
k −X−k

)
A−1/2
k +

τ2

8
A1/2
k−1/2

(
X+
k +X−k

)
]
(
A1/2
k

)′
A−1/2
k+1/2Akuk

+ i
τ

8
A1/2
k−1/2

(
X+
k −X−k

)
A−1/2
k

(
A1/2
k

)′
A−1/2
k−1/2Ak−1uk−1

+
τ

8
A1/2
k−1/2

[
X+
k

(− iA−1/2
k + τ

)
+X−k

(
iA−1/2

k + τ
)](

A1/2
k

)′
A−1/2
k+1/2 fk

+A1/2
k−1/2(2τ)−1

[
X+
k

(
− τ2

2
+ iτA−1/2

k

)
+X−k

(
− τ2

2
− iτA−1/2

k

)]
fk

+A1/2
k−1/2i

τ

8

(
X−k −X+

k

)
A−1/2
k

(
A1/2
k

)′
A−1/2
k−1/2 fk−1.

(3.19)

Then applying estimates (3.3), (3.4), (3.7), and (3.8), we get

∥
∥J4k

∥
∥
H ≤

τ

2

∥
∥A1/2

k−1/2A
−1/2
k

∥
∥(
∥
∥X−k

∥
∥+ 1

)∥∥X+
k

∥
∥
∥
∥A1/2

k

(
a1/2
k

)′
A−1
k+1/2

∥
∥

×∥∥A1/2
k+1/2A

−1/2
k−1/2

∥
∥
∥
∥
∥
∥A

1/2
k−1/2

uk −uk−1

τ

∥
∥
∥
∥
H

+
τ

2

∥
∥A1/2

k−1/2A
−1/2
k

∥
∥
∥
∥X−k

∥
∥
∥
∥X+

k

∥
∥

×∥∥A1/2
k

(
A1/2
k

)′
A−1
k−1/2

∥
∥
∥
∥A1/2

k−1/2A
−1/2
k−3/2

∥
∥
∥
∥
∥
∥A

1/2
k−3/2

uk −uk−1

τ

∥
∥
∥
∥
H

+
τ

4

(∥∥A1/2
k−1/2A

−1/2
k

∥
∥
∥
∥X+

k

∥
∥+

∥
∥A1/2

k τX+
k

∥
∥)
∥
∥(A1/2

k

)′
A−1/2
k+1/2

∥
∥
∥
∥Akuk

∥
∥
H

+
τ

4

∥
∥A1/2

k−1/2A
−1/2
k

∥
∥
∥
∥X+

k

∥
∥
∥
∥(A1/2

k

)′
A−1/2
k+1/2

∥
∥
∥
∥Ak−1uk−1

∥
∥
H

+
τ2

2

∥
∥A1/2

k−1/2A
−1/2
k

∥
∥(
∥
∥X+

k

∥
∥+ 2

∥
∥A1/2

k τX+
k

∥
∥)
∥
∥(A1/2

k

)′
A−1/2
k+1/2

∥
∥
∥
∥ fk
∥
∥
H

+ τ
∥
∥A1/2

k−1/2A
−1/2
k

∥
∥(2

∥
∥X+

k

∥
∥+

∥
∥A1/2

k τX+
k

∥
∥)
∥
∥ fk
∥
∥
H

+
τ2

2

∥
∥A1/2

k−1/2A
−1/2
k

∥
∥
∥
∥X+

k

∥
∥
∥
∥(A1/2

k

)′
A−1/2
k+1/2

∥
∥
∥
∥ fk−1

∥
∥
H

≤ τC4

[∥∥
∥
∥A

1/2
k−1/2

uk −uk−1

τ

∥
∥
∥
∥
H

+
∥
∥
∥
∥A

1/2
k−3/2

uk−1−uk−2

τ

∥
∥
∥
∥
H

+
∥
∥Akuk

∥
∥
H +

∥
∥Ak−1uk−1

∥
∥
H +

∥
∥ fk
∥
∥
H +

∥
∥ fk−1

∥
∥
H +

3
2
M1/2

∥
∥ fk
∥
∥
H

]
,

(3.20)
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where

C4 =max
{
(
M1/2 + 1

)2
M4,

1
2

(
M1/2 + 1

)
M3

}
. (3.21)

Let m= 5. It is clear that

J5k = S1k + S2k + S3k + S4k + S5k + S6k + S7k, (3.22)

where

S1k =A1/2
k−1/2(2τ)−1

k−2∑

s=1

{
[
E+
s (k)−E+

s−1(k− 1)
]
(
− i τ

2
A−1/2
k−s +

τ2

2

)
+
[
E−s (k)−E−s−1(k− 1)

]

×
(
i
τ

2
A−1/2
k−s +

τ2

2

)}
(
A1/2
k−s
)′
A−1/2
k−s+1/2τ

−1(uk−s−uk−s−1
)
,

S2k =A1/2
k−1/2(2τ)−1i

k−2∑

s=1

{− [E+
s (k)−E+

s−1(k− 1)
]

+
[
E−s (k)−E−s−1(k− 1)

]}

× τ

2
A−1/2
k−s

(
A1/2
k−s
)′
A−1/2
k−s−1/2τ

−1(uk−s−1−uk−s−2
)
,

S3k =A1/2
k−1/2(2τ)−1

k−2∑

s=1

{
[
E+
s (k)−E+

s−1(k− 1)
]
(
− i τ

2
A−1/2
k−s +

τ2

2

)
[
E−s (k)−E−s−1(k− 1)

]

×
(
i
τ

2
A−1/2
k−s +

τ2

2

)}
(
A1/2
k−s
)′
A−1/2
k−s+1/2

τ

2
Ak−suk−s,

S4k =A1/2
k−1/2(2τ)−1i

k−2∑

s=1

{− [E+
s (k)−E+

s−1(k− 1)
]

+
[
E−s (k)−E−s−1(k− 1)

]}

× τ

2
A−1/2
k−s

(
A1/2
k−s
)′
A−1/2
k−s−1/2

τ

2
Ak−s−1uk−s−1,

S5k =A1/2
k−1/2(2τ)−1

k−2∑

s=1

{
[
E+
s (k)−E+

s−1(k− 1)
]
(
− i τ

2
A−1/2
k−s +

τ2

2

)

+
[
E−s (k)−E−s−1(k− 1)

]
(
i
τ

2
A−1/2
k−s +

τ2

2

)}
(
A1/2
k−s
)′
A−1/2
k−s+1/2

τ

2
fk−s,

S6k =A1/2
k−1/2(2τ)−1

k−2∑

s=1

{
[
E+
s (k)−E+

s−1(k− 1)
]
(
− τ2

2
− iτA−1/2

k−s

)

+
[
E−s (k)−E−s−1(k− 1)

](− τ2

2
+ iτA−1/2

k−s

)}
fk−s,

S7k =A1/2
k−1/2(2τ)−1i

k−2∑

s=1

{− [E+
s (k)−E+

s−1(k− 1)
]

+
[
E−s (k)−E−s−1(k− 1)

]}

×
(
i
τ

2
A−1/2
k−s

(
A1/2
k−s
)′
)
A−1/2
k−s−1/2

τ

2
fk−s−1.

(3.23)
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Now, let us estimate the terms ‖Smk‖H , m= 1,7, separately. Let m= 1. Then applying
estimates (3.4), (3.8), and (3.12), we get

∥
∥S1k

∥
∥
H ≤ 2

∥
∥
∥
∥
∥

k−2∑

s=1

A1/2
k−1/2(2τ)−1[E+

s (k)−E+
s−1(k− 1)

]
A−1/2
k−s

×
(
− i τ

2
+
τ2

2
A1/2
k−s

)
(
A1/2
k−s
)′
A−1/2
k−s+1/2τ

−1(uk−s−uk−s−1
)
∥
∥
∥
∥
∥
H

≤ 2
k−2∑

s=1

[∥∥A1/2
k−1/2(2τ)−1[E+

s (k)−E+
s−1(k− 1)

]
A−1
k−s
∥
∥

+
∥
∥A1/2

k−1/2(2τ)−1[E+
s (k)−E+

s−1(k− 1)
]
A−1/2
k−s τ

∥
∥]

×∥∥A1/2
k−s
(
A1/2
k−s
)′
A−1
k−s+1/2

∥
∥
∥
∥A1/2

k−s+1/2A
−1/2
k−s−1/2

∥
∥
∥
∥A1/2

k−s−1/2τ
−1(uk−s−uk−s−1

)∥∥
H

≤ τC5

k−2∑

s=1

∥
∥A1/2

k−s−1/2τ
−1(uk−s−uk−s−1

)∥∥
H ,

(3.24)

where

C5 = 3
2

(
M1/2 + 1

)2
M4e

M1P1 . (3.25)

Let m= 2. Then applying estimates (3.4), (3.8), and (3.12), we get

∥
∥S2k

∥
∥
H ≤ 2

∥
∥
∥
∥
∥

k−2∑

s=1

A1/2
k−1/2(2τ)−1[E+

s (k)−E+
s−1(k− 1)

]
τA−1/2

k−s
(
A1/2
k−s
)′

×A−1/2
k−s−1/2τ

−1(uk−s−1−uk−s−2
)
∥
∥
∥
∥
∥
H

≤ 2τ
k−2∑

s=1

∥
∥A1/2

k−1/2(2τ)−1[E+
s (k)−E+

s−1(k− 1)
]
A−1
k−s
∥
∥

×∥∥A1/2
k−s
(
A1/2
k−s
)′
A−1
k−s−1/2

∥
∥
∥
∥A1/2

k−s−1/2A
−1/2
k−s−3/2

∥
∥
∥
∥A1/2

k−s−3/2τ
−1(uk−s−1−uk−s−2

)∥∥
H ,

∥
∥S2k

∥
∥
H ≤

τ

2
C5

k−2∑

s=1

∥
∥A1/2

k−s−3/2τ
−1(uk−s−1−uk−s−2

)∥∥
H.

(3.26)

Let m= 3. Then applying estimates (3.7) and (3.12), we get

∥
∥S3k

∥
∥
H ≤ 2

∥
∥
∥
∥
∥

k−2∑

s=1

A1/2
k−1/2(2τ)−1[E+

s (k)−E+
s−1(k− 1)

]
A−1/2
k−s

×
[
i
τ

2
A−1/2
k−s

(
A1/2
k−s
)′ − τ2

2

(
A1/2
k−s
)′
]
A−1/2
k−s+1/2

τ

2
Ak−suk−s

∥
∥
∥
∥
∥
H
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≤ 2
k−2∑

s=1

∥
∥A1/2

k−1/2(2τ)−1[E+
s (k)−E+

s−1(k− 1)
]
A−1/2
k−s τ

∥
∥

×∥∥(A1/2
k−s
)′
A−1
k−s+1/2

∥
∥
∥
∥Ak−suk−s

∥
∥
H ≤ τC6

k−2∑

s=1

∥
∥Ak−suk−s

∥
∥
H ,

(3.27)

where

C6 = 3
4

(
M1/2 + 1

)
M4e

M1P1 . (3.28)

Let m= 4. Then applying estimates (3.7) and (3.12), we get

∥
∥S4k

∥
∥
H ≤ 2

∥
∥
∥
∥
∥

k−2∑

s=1

A1/2
k−1/2(2τ)−1[E+

s (k)−E+
s−1(k− 1)

]
A−1/2
k−s

×
[
i
τ

2
A−1/2
k−s

(
A1/2
k−s
)′ − τ2

2

(
A1/2
k−s
)′
]
A−1/2
k−s+1/2

τ

2
Ak−suk−s

∥
∥
∥
∥
∥
H

≤ 2τ
k−2∑

s=1

∥
∥A1/2

k−1/2(2τ)−1[E+
s (k)−E+

s−1(k− 1)
]
A−1/2
k−s τ

∥
∥

×∥∥(A1/2
k−s
)′
A−1
k−s−1/2

∥
∥
∥
∥Ak−s−1uk−s−1

∥
∥
H ≤

τ

2
C6

k−2∑

s=1

∥
∥Ak−s−1uk−s−1

∥
∥
H.

(3.29)

Let m= 5. Then applying estimates (3.7) and (3.12), we get

∥
∥S5k

∥
∥
H ≤ τ

k−2∑

s=1

[∥∥A1/2
k−1/2(2τ)−1[E+

s (k)−E+
s−1(k− 1)

]
A−1/2
k−s τ

∥
∥

+
∥
∥A1/2

k−1/2(2τ)−1[E+
s (k)−E+

s−1(k− 1)
]
τ2
∥
∥]
∥
∥(A1/2

k−s
)′
A−1
k−s−1/2

∥
∥
∥
∥ fk−s

∥
∥
H

≤ τC6

k−2∑

s=1

∥
∥ fk−s

∥
∥
H.

(3.30)

Letm= 6. It is easy to show that−(τ2/2)Ak−s + iτA1/2
k−s =−I + (X+

k−s)
−1.Making s− 1=m

for the first term in the parenthesis in S6, we get

A1/2
k−1/2(2τ)−1

k−2∑

s=1

{− [E+
s (k)−E+

s−1(k− 1)
]
A−1/2
k−s +

[
E+
s (k)−E+

s−1(k− 1)
](
X+
k−s
)−1}

fk−s

= A1/2
k−1/2(2τ)−1[E+

0 (k)−E+
−1(k− 1)

]
fk−1

+A1/2
k−1/2(2τ)−1[E+

k−2(k)−E+
k−3(k− 1)

]
f1

+A1/2
k−1/2(2τ)−1

k−2∑

s=1

[
E+
s (k)−E+

s−1(k− 1)
](
fk−s−1− fk−s

)
.

(3.31)
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Then applying estimates (3.3) and (3.4), we get

∥
∥S6k

∥
∥
H ≤

1
2

∥
∥A1/2

k−1/2A
−1/2
k

∥
∥(
∥
∥τA1/2

k X+
k

∥
∥+ 2

∥
∥X+

k

∥
∥)

× (∥∥ fk−1
∥
∥
H +

∥
∥X+

k−1

∥
∥···∥∥X+

2

∥
∥
∥
∥ f1
∥
∥
H

)

+
k−2∑

s=1

∥
∥A1/2

k−1/2A
−1/2
k

∥
∥(2−1

∥
∥τA1/2

k X+
k

∥
∥+

∥
∥X+

k

∥
∥)

×∥∥X+
k−1

∥
∥···∥∥X+

k−s
∥
∥
∥
∥ fk−s− fk−s−1

∥
∥
H

≤ 3
4

(
M1/2 + 1

)
[
∥
∥ fk−1

∥
∥
H +

∥
∥ f1
∥
∥
H +

k−2∑

s=1

∥
∥ fk−s− fk−s−1

∥
∥
H

]

.

(3.32)

Let m= 7. Then applying estimates (3.7) and (3.12), we get

∥
∥S7k

∥
∥
H ≤ τ

k−2∑

s=1

∥
∥A1/2

k−1/2(2τ)−1[E+
s (k)−E+

s−1(k− 1)
]
A−1/2
k−s τ

∥
∥

×∥∥(A1/2
k−s
)′
A−1
k−s−1/2

∥
∥
∥
∥ fk−s−1

∥
∥
H ≤

τ

2
C6

k−2∑

s=1

∥
∥ fk−s

∥
∥
H.

(3.33)

Using formula (3.22), the triangle inequality, and the last seven estimates, we obtain

∥
∥J5k

∥
∥
H ≤ τC7

k−1∑

s=2

[∥∥A1/2
s−1/2τ

−1(us−us−1
)∥∥

H +
∥
∥A1/2

s−3/2τ
−1(us−1−us−2

)∥∥
H

+
∥
∥Asus

∥
∥
H +

∥
∥As−1us−1

∥
∥
H +

∥
∥ fs
∥
∥
H +

∥
∥ fs−1

∥
∥
H

]

+ 3
(
M1/2 + 1

)
[
∥
∥ fk−1

∥
∥
H +

∥
∥ f1
∥
∥
H +

k−1∑

s=2

∥
∥ fs− fs−1

∥
∥
H

]

,

(3.34)

where

C7 =max
{
C5,

3
2
C6

}
. (3.35)
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Using formula (3.14), the triangle inequality, and the estimates for ‖Jmk‖H , m= 1,5 , we
obtain

∥
∥
∥
∥A

1/2
k−1/2

uk −uk−1

τ

∥
∥
∥
∥
H

≤ C1
∥
∥A0u0

∥
∥
H +C2

∥
∥A1/2

0 u′0
∥
∥
H +C3

[∥∥ f1
∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H

]

+ τC4
[∥∥A1/2

k−1/2τ
−1(uk −uk−1

)∥∥
H +

∥
∥Akuk

∥
∥
H +

∥
∥A1/2

k−3/2τ
−1(uk−1−uk−2

)∥∥
H

+
∥
∥Ak−1uk−1

∥
∥
H +

∥
∥ fk
∥
∥
H +

∥
∥ fk−1

∥
∥
H

]
+

3
2
M1/2

∥
∥ fk
∥
∥
H

+ τC7

k−1∑

s=2

[∥∥A1/2
s−1/2τ

−1(us−us−1
)∥∥

H +
∥
∥Asus

∥
∥
H +

∥
∥A1/2

s−3/2τ
−1(us−1−us−2

)∥∥
H

+
∥
∥As−1us−1

∥
∥
H +

∥
∥ fs
∥
∥
H +

∥
∥ fs−1

∥
∥
H

]

+ 3M1/2

[
∥
∥ fk−1

∥
∥
H +

∥
∥ f1
∥
∥
H +

k−1∑

s=2

∥
∥ fs− fs−1

∥
∥
H

]

.

(3.36)

From the above result, it follows that

∥
∥
∥
∥A

1/2
k−1/2

uk −uk−1

τ

∥
∥
∥
∥
H

≤ C8

[
∥
∥A0u0

∥
∥
H +

∥
∥A1/2

0 u′0
∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H + max

1≤s≤k
∥
∥ fs
∥
∥
H

+ τ
k∑

s=1

(∥∥A1/2
s−1/2τ

−1(us−us−1
)∥∥

H +
∥
∥Asus

∥
∥
H

)
+

k∑

s=2

∥
∥ fs− fs−1

∥
∥
H

]

,

(3.37)

where

C8 =max{C1,C2,C3 + 3
(
M1/2 + 1

)
,C4 +C7}. (3.38)

Second, let us estimate ‖{Akuk}N1 ‖H. Applying formula (2.17), we can write

Akuk = Y1k +Y2k +Y3k +Y4k, (3.39)

where

J1k =Ak2−1[P+
k (k)KB− +P−k (k)KB+]u0,

J2k =Ak2−1[P+
k (k)KC− +P−k (k)KC+]u′0,

J3k =Ak2−1[P+
k (k)KD− +P−k (k)KD+] f1,

J4k =Ak2−1
k−2∑

s=0

[
E+
s (k)ϕ−k−s +E−s (k)ϕ+

k−s
]
.

(3.40)
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Now, let us estimate the terms ‖Ymk‖H , m = 1,4, separately. Let m = 1. Then applying
estimates (3.1), (3.2), (3.4), (3.8), and (3.9), we get

∥
∥Y1k

∥
∥
H ≤

∥
∥A1/2

k−1/2P
+
k (k)KB−u0

∥
∥
H

≤ ∥∥AkP+
k (k)A−1

1

∥
∥
∥
∥A1KB

−A−1
1

∥
∥
∥
∥A1A

−1
0

∥
∥
∥
∥A0u0

∥
∥
H

≤M1

[
1

1− τM4

(
1 +

5τ
4
M4

)
+

3
2

]
eM1P1

∥
∥A0u0

∥
∥
H = C9

∥
∥A0u0

∥
∥
H.

(3.41)

Let m= 2. Then applying estimates (3.1), (3.2), (3.3), (3.4), (3.7), (3.8), and (3.9), we get

∥
∥Y2k

∥
∥
H ≤

∥
∥A1/2

k−1/2P
+
k (k)KC−u′0

∥
∥
H ≤

∥
∥AkP

+
k (k)A−1

1

∥
∥
∥
∥A1KC

−u′0
∥
∥
H

≤
[

5
4

(
M1 +

1
2
M3

)
+
τ

4

(
15
8
M4 +

1
2
M3

)
+

3
4
τ2(M2

4 +M4M3
)
]

× eM1P1
∥
∥A1/2

0 u′0
∥
∥
H = C10

∥
∥A1/2

0 u′0
∥
∥
H.

(3.42)

Let m= 3. Then applying estimates (3.1), (3.2), (3.4), (3.7), (3.8), and (3.9), we get

∥
∥Y3k

∥
∥
H ≤

∥
∥AkP

+
k (k)KD− f1

∥
∥
H ≤

∥
∥AkP

+
k (k)A−1

1

∥
∥
∥
∥A1KD

−∥∥∥∥ f1
∥
∥
H

≤
[

5
4

+ τ
(

15
8
M4 +

1
2
M3

)
+

3
4
τ2(M2

4 +M4M3
)
]
eM1P1

× (∥∥ f1
∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H

)= C11
[∥∥ f1

∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H

]
.

(3.43)

Let m= 4. We have that

Y4 =Q1k +Q2k +Q3k +Q4k +Q5k +Q6k +Q7k, (3.44)

where

Q1k =Ak2−1
k−2∑

s=1

[
E+
s (k)

(
− i τ

2
A−1/2
k−s +

τ2

2

)

+E−s (k)
(
i
τ

2
A−1/2
k−s +

τ2

2

)]
(
A1/2
k−s
)′
A−1/2
k−s+1/2τ

−1(uk−s−uk−s−1),

Q2k =Ak2−1
k−2∑

s=1

i
[−E+

s (k) +E−s (k)
]τ

2
A−1/2
k−s

(
A1/2
k−s
)′
A−1/2
k−s−1/2τ

−1(uk−s−1−uk−s−2
)
,

Q3k =−Ak2−1
k−2∑

s=1

[
E+
s (k)

(
− i τ

2
A−1/2
k−s +

τ2

2

)

+E−s (k)
(
i
τ

2
A−1/2
k−s +

τ2

2

)]
(
A1/2
k−s
)′
A−1/2
k−s+1/2

τ

2
Ak−suk−s,
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Q4k =−Ak2−1
k−2∑

s=1

[
E+
s (k)

(
− i τ

2
A−1/2
k−s +

τ2

2

)

+E−s (k)
(
i
τ

2
A−1/2
k−s +

τ2

2

)]
(
A1/2
k−s
)′
A−1/2
k−s−1/2

τ

2
Ak−s−1uk−s−1,

Q5k =Ak2−1
k−2∑

s=1

[
E+
s (k)

(
− i τ

2
A−1/2
k−s +

τ2

2

)
+E−s (k)

(
i
τ

2
A−1/2
k−s +

τ2

2

)]
(
A1/2
k−s
)′ τ

2
fk−s,

Q6k =Ak2−1
k−2∑

s=1

[
E+
s (k)

(
− i τ

2
A−1/2
k−s +

τ2

2

)

+E−s (k)
(
i
τ

2
A−1/2
k−s +

τ2

2

)]
(
A1/2
k−s
)′
A−1/2
k−s−1/2

τ

2
fk−s−1,

Q7k =Ak2−1
k−2∑

s=1

[
E+
s (k)

(
iτA−1/2

k−s −
τ2

2

)
+E−s (k)

(
− iτA−1/2

k−s −
τ2

2

)]
fk−s.

(3.45)

Now, let us estimate the terms ‖Qmk‖H , m = 1,7, separately. Let m = 1. Then applying
estimates (3.4), (3.8), and (3.10), we get

∥
∥Q1k

∥
∥
H ≤

k−2∑

s=1

τ

2

[∥∥AkE
+
s (k)A−1

k−s
∥
∥+

∥
∥AkE

+
s (k)A−1/2

k−s τ
∥
∥]

×∥∥A1/2
k−s
(
A1/2
k−s
)′
A−1
k−s+1/2

∥
∥
∥
∥A1/2

k−s+1/2A
−1/2
k−s−1/2

∥
∥
∥
∥A1/2

k−s−1/2τ
−1(uk−s−uk−s−1

)∥∥
H ,

∥
∥Q1k

∥
∥
H ≤

2τ
3
C6

k−2∑

s=1

∥
∥A1/2

k−s−1/2τ
−1(uk−s−uk−s−1

)∥∥
H.

(3.46)

Let m= 2. Then applying estimates (3.4), (3.8), and (3.10), we get

∥
∥Q2k

∥
∥
H ≤

k−2∑

s=1

τ

2

∥
∥AkE

+
s (k)A−1

k−s
∥
∥
∥
∥A1/2

k−s
(
A1/2
k−s
)′
A−1
k−s+1/2

∥
∥

×∥∥A1/2
k−s+1/2A

−1/2
k−s−1/2

∥
∥
∥
∥A1/2

k−s−1/2τ
−1(uk−s−uk−s−1

)∥∥
H.

∥
∥Q2k

∥
∥
H ≤

2τ
3
C6

k−2∑

s=1

∥
∥A1/2

k−s−3/2τ
−1(uk−s−1−uk−s−2

)∥∥
H.

(3.47)

Let m= 3. Then applying estimates (3.7) and (3.10), we get

∥
∥Q3k

∥
∥
H ≤

k−2∑

s=1

τ

8

[∥∥AkE
+
s (k)A−1/2

k−s τ
∥
∥+

∥
∥AkE

+
s (k)τ2

∥
∥]

×∥∥(A1/2
k−s
)′
A−1
k−s+1/2

∥
∥
∥
∥Ak−suk−s

∥
∥
H ≤ τC12

k−2∑

s=1

∥
∥Ak−suk−s

∥
∥,

(3.48)
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where

C12 = 3
2
M3e

M1P1 . (3.49)

Let m= 4. Then applying estimates (3.7) and (3.10), we get

∥
∥Q4k

∥
∥
H ≤

k−2∑

s=1

τ

4

∥
∥AkE

+
s (k)A−1/2

k−s τ
∥
∥
∥
∥(A1/2

k−s
)′
A−1
k−s−1/2

∥
∥
∥
∥Ak−s−1uk−s−1

∥
∥
H

≤ τ

3
C12

k−2∑

s=1

∥
∥Ak−s−1uk−s−1

∥
∥
H.

(3.50)

Let m= 5. Then applying estimates (3.7) and (3.10), we get

∥
∥Q5k

∥
∥
H ≤

k−2∑

s=1

τ

8

[∥∥AkE
+
s (k)A−1/2

k−s τ
∥
∥+

∥
∥AkE

+
s (k)τ2

∥
∥]
∥
∥(A1/2

k−s
)′
A−1
k−s+1/2

∥
∥
∥
∥ fk−s

∥
∥
H

≤ τC12

k−2∑

s=1

∥
∥ fk−s

∥
∥
H.

(3.51)

Let m= 6. Then applying estimates (3.7) and (3.10), we get

∥
∥Q6k

∥
∥
H ≤

k−2∑

s=1

τ

4

∥
∥AkE

+
s (k)A−1/2

k−s τ
∥
∥
∥
∥(A1/2

k−s
)′
A−1/2
k−s−1/2

∥
∥
∥
∥ fk−s−1

∥
∥
H

≤ τ

3
C12

k−2∑

s=1

∥
∥ fk−s−1

∥
∥
H.

(3.52)

Let m= 7. We have

Q7k =Ak2−1
k−2∑

s=1

[
E+
s (k)

(
− τ2

2
+ iτA−1/2

k−s

)
+E−s (k)

(
− τ2

2
− iτA−1/2

k−s

)]
fk−s. (3.53)

Using similar manner in Q6k, we get

∥
∥Q7k

∥
∥
H ≤

k−2∑

s=1

τ

4

∥
∥AkE

+
s (k)A−1/2

k−s τ
∥
∥
∥
∥(A1/2

k−s
)′
A−1/2
k−s−1/2

∥
∥
∥
∥ fk−s−1

∥
∥
H

≤ 1
2

[
∥
∥ fk
∥
∥
H + eM1P1

∥
∥ f1
∥
∥
H + eM1P1

k∑

s=2

∥
∥ fs− fs−1

∥
∥
H

]

.

(3.54)
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Using formula (3.22), the triangle inequality, and the last seven estimates, we obtain

∥
∥Y4k

∥
∥
H ≤ τ

k−1∑

s=2

[
2
3
C6
(∥∥A1/2

s−1/2τ
−1(us−us−1

)∥∥
H +

∥
∥A1/2

s−3/2τ
−1(us−1−us−2

)∥∥
H

)

+
1
3
C12
(
3
∥
∥Asus

∥
∥
H +

∥
∥As−1us−1

∥
∥
H + 3

∥
∥ fs
∥
∥
H +

∥
∥ fs−1

∥
∥
H

)
]

+
1
2

[
∥
∥ fk
∥
∥
H + eM1P1

∥
∥ f1
∥
∥
H + eM1P1

k∑

s=2

∥
∥ fs− fs−1

∥
∥
H

]

.

(3.55)

Using formula (3.14), the triangle inequality, and the estimates ‖Ymk‖H , m = 1,4, we
obtain
∥
∥Akuk

∥
∥
H ≤ C9

∥
∥A0u0

∥
∥
H +C10

∥
∥A1/2

0 u′0
∥
∥
H +C11

[∥∥ f1
∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H

]

+ τ
k−1∑

s=2

[
2
3
C6
(∥∥A1/2

s−1/2τ
−1(us−us−1

)∥∥
H +

∥
∥A1/2

s−3/2τ
−1(us−1−us−2

)∥∥
H

)

+C12

(∥
∥Asus

∥
∥
H +

1
3

∥
∥As−1us−1

∥
∥
H +

∥
∥ fs
∥
∥
H +

2
3

∥
∥ fs−1

∥
∥
H

)]

+
1
2

[
∥
∥ fk
∥
∥
H + eM1P1

∥
∥ f1
∥
∥
H + eM1P1

k∑

s=2

∥
∥ fs− fs−1

∥
∥
H

]

.

(3.56)

From the above result, it follows that

∥
∥Akuk

∥
∥
H ≤ C13

[
∥
∥A0u0

∥
∥
H +

∥
∥A1/2

0 u′0
∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H + max

1≤s≤k
∥
∥ fs
∥
∥
H

+ τ
k∑

s=1

(∥∥A1/2
s−1/2τ

−1(us−us−1
)∥∥

H +
∥
∥Asus

∥
∥
H

)
+

k∑

s=2

∥
∥ fs− fs−1

∥
∥
H

]

,

(3.57)

where

C13 =max
{
C9,C10,C11 + eM1P1 ,

4
3
C6,2C12

}
. (3.58)

Combining estimates (3.37) and (3.57), we get
∥
∥
∥
∥A

1/2
k−1/2

uk −uk−1

τ

∥
∥
∥
∥
H

+
∥
∥Akuk

∥
∥
H

≤ c14

[
∥
∥A0u0

∥
∥
H +

∥
∥A1/2

0 u′0
∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H

+ max
1≤s≤k

∥
∥ fs
∥
∥
H +

k∑

s=1

(∥∥A1/2
s−1/2τ

−1(us−us−1
)∥∥

H +
∥
∥Asus

∥
∥
H

)
+

k∑

s=2

∥
∥ fs− fs−1

∥
∥
H

]

(3.59)
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for any k,1≤ k ≤N. Here,

C14 = 1
1− τ(C13 +C8

) . (3.60)

Applying difference analogy of the integral inequality, we obtain

∥
∥
∥
∥

{
A1/2
k−1/2

uk −uk−1

τ

}N

k=1

∥
∥
∥
∥
Cτ

+
∥
∥{Akuk

}N
k=1

∥
∥
Cτ

≤ C15

[
∥
∥A0u0

∥
∥
H +

∥
∥A1/2

0 u′0
∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H + max

1≤s≤N
∥
∥ fs
∥
∥
H +

n∑

s=1

∥
∥ fs− fs−1

∥
∥
H

]

,

(3.61)

where

C15 = C14e
kτC14 . (3.62)

Theorem 3.1 is proved. �

Theorem 3.2. Let u(0) ∈ D(A(0)), u′(0) ∈ D(A1/2(0)), and fk+1 ∈ D. Then for the solu-
tion of the difference scheme (2.9), the stability estimate

∥
∥{τ−2(uk+1− 2uk +uk−1

)}N−1
1

∥
∥
Cτ
≤M

[
∥
∥A(0)u0

∥
∥
H +

∥
∥A1/2(0)u′0

∥
∥
H + max

1≤k≤N
∥
∥ fk
∥
∥
H

+ max
1≤k≤N

∥
∥τ2Ak+1 fk+1

∥
∥
H +

N∑

s=1

∥
∥ fs− fs−1

∥
∥
H

]

(3.63)

holds, where M does not depend on u0,u′0, fs (1≤ s≤N), and τ.

Proof. Using (2.9), we get

∥
∥
∥
∥
uk+1− 2uk +uk−1

τ2

∥
∥
∥
∥
H

≤
[

1
4

+
τ

8

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥
]∥
∥A3/2

k+1A
−3/2
k+3/2

∥
∥
∥
∥Ak+3/2A

−1
k+1

∥
∥
∥
∥τ2A2

k+1uk+1
∥
∥
H

+
[

1
2

+
τ

4

∥
∥(A1/2

k+1

)′
A−1/2
k+3/2

∥
∥+

τ

2

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥

+
τ2

8

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥
∥
∥(A1/2

k+1

)′
A−1/2
k+3/2

∥
∥
]∥
∥Ak+1uk+1

∥
∥
H

+
[

1
2

+
τ

2

∥
∥(A1/2

k+1

)′
A−1/2
k+3/2

∥
∥+

τ2

4

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥
∥
∥(A1/2

k+1

)′
A−1/2
k+1/2

∥
∥

+
1
2

∥
∥(A1/2

k+1−A1/2
k

)
A−1/2
k+1

∥
∥+

τ

2

∥
∥[(A1/2

k+1

)′ − (A1/2
k

)′]
A−1/2
k+1/2

∥
∥
]∥
∥Akuk

∥
∥
H
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+
[

1
2

∥
∥A3/2

k+1A
−3/2
k+3/2

∥
∥
∥
∥Ak+3/2A

−1
k+1

∥
∥+

τ

4

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥

×∥∥A3/2
k+1A

−3/2
k+3/2

∥
∥
∥
∥Ak+3/2A

−1
k+1

∥
∥
]∥∥
∥
∥τAk+1

uk+1−uk
τ

∥
∥
∥
∥
H

+
[

1
2

∥
∥(A1/2

k+1

)′
A−1/2
k+3/2

∥
∥+

τ

4

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥
∥
∥(A1/2

k+1

)′
A−1/2
k+3/2

∥
∥
]

×∥∥A−1/2
k+1/2

∥
∥
∥
∥
∥
∥A

1/2
k+1/2

uk+1−uk
τ

∥
∥
∥
∥
H

+
[∥
∥(A1/2

k+1

)′
A−1/2
k+1/2

∥
∥+

τ

2

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥
∥
∥(A1/2

k+1

)′
A−1/2
k+1/2

∥
∥

+
1
τ

∥
∥(A1/2

k+1−A1/2
k

)
A−1/2
k+1/2

∥
∥1

2

∥
∥[(A1/2

k+1

)′ − (A1/2
k

)′]
A−1/2
k+1/2

∥
∥
]

×∥∥A−1/2
k−1/2

∥
∥
∥
∥
∥
∥A

1/2
k−1/2

uk −uk−1

τ

∥
∥
∥
∥
H

+
[

1
4

∥
∥A3/2

k+1A
−3/2
k+3/2

∥
∥
∥
∥Ak+3/2A

−1
k+1

∥
∥

+
τ

8

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥
∥
∥A3/2

k+1A
−3/2
k+3/2

∥
∥
∥
∥Ak+3/2A

−1
k+1

∥
∥
]∥
∥τ2Ak+1 fk+1

∥
∥
H

+
[

1 +
τ

4

∥
∥(A1/2

k+1

)′
A−1/2
k+3/2

∥
∥+

τ2

4

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥
∥
∥(A1/2

k+1

)′
A−1/2
k+3/2

∥
∥

+
τ

2

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥
]∥
∥ fk+1

∥
∥
H

+
[
τ

2

∥
∥(A1/2

k+1

)′
A−1/2
k+1/2

∥
∥+

τ2

4

∥
∥(A1/2

k+1

)′
A−1/2
k+1

∥
∥
∥
∥(A1/2

k+1

)′
A−1/2
k+1/2

∥
∥

+
1
2

∥
∥(A1/2

k+1−A1/2
k

)
A−1/2
k+1/2

∥
∥+

τ

4

∥
∥[(A1/2

k+1

)′ − (A1/2
k

)′]
A−1/2
k+1/2

∥
∥
]∥
∥ fk
∥
∥
H

(3.64)

for any k,1≤ k ≤ N. In a similar manner as the proof of estimates (3.37) and (3.57), we
get

∥
∥
∥
∥τAk+1

uk −uk−1

τ

∥
∥
∥
∥
H

≤ 2C8

[
∥
∥A0u0

∥
∥
H +

∥
∥A1/2

0 u′0
∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H + max

1≤s≤k
∥
∥ fs
∥
∥
H

+ τ
k∑

s=1

(∥∥A1/2
s−1/2τ

−1(us−us−1
)∥∥

H +
∥
∥Asus

∥
∥
H

)
+

k∑

s=2

∥
∥ fs− fs−1

∥
∥
H

]

,
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∥
∥τ2A2

k+1uk
∥
∥
H

≤ 2C13

[
∥
∥A0u0

∥
∥
H +

∥
∥A1/2

0 u′0
∥
∥
H +

∥
∥τ2(A1/2

1

)′
f1
∥
∥
H + max

1≤s≤k
∥
∥ fs
∥
∥
H

+ τ
k∑

s=1

(∥∥A1/2
s−1/2τ

−1(us−us−1
)∥∥

H +
∥
∥Asus

∥
∥
H

)
+

k∑

s=2

∥
∥ fs− fs−1

∥
∥
H

]

,

(3.65)

respectively. Now, putting them in (3.64) and applying estimates (3.4), (3.5), and (3.7),
we get

∥
∥
∥
∥
uk+1− 2uk +uk−1

τ2

∥
∥
∥
∥
H
≤ C16

[∥
∥τ2A2

k+1uk+1
∥
∥
H +

∥
∥
∥
∥τAk+1

uk+1−uk
τ

∥
∥
∥
∥
H

+
∥
∥Ak+1uk+1

∥
∥
H

+
∥
∥
∥
∥A

1/2
k+1/2

uk+1−uk
τ

∥
∥
∥
∥
H

+
∥
∥Akuk

∥
∥
H +

∥
∥
∥
∥A

1/2
k−1/2

uk −uk−1

τ

∥
∥
∥
∥
H

+
∥
∥τ2Ak+1 fk+1

∥
∥
H +

∥
∥ fk+1

∥
∥
H +

∥
∥ fk
∥
∥
H

]
,

(3.66)

where

C16 =max
{

1
4

+
τ

2
M3,

1
2

+
3τ
4
M3 +

τ2

8
M2

3 ,
1
2

+
τ

2
M3 +

τ2

4
M2

3 + τM1/2,

1
2

(
M3/2 + 1

)
M1 +

τ

4
M3
(
M3/2 + 1

)
M1,

1√
δ

(
M3 +

τ

2
M2

3 +
3
2

(
M1/2 + 1

)
)

,

1√
δ

(
1
2
M3 +

τ

4
M2

3

)
, 1 +

3τ
4
M3 +

τ2

4
M2

3 ,
τ

2

(
M3 +M1/2

)
+
τ2

4

(
M2

3 +M1/2
)
}
.

(3.67)

Using estimate (3.37), we get

max
1≤k≤N−1

∥
∥
∥
∥
uk+1− 2uk +uk−1

τ2

∥
∥
∥
∥
H

≤ C17

[
∥
∥A0u0

∥
∥
H +

∥
∥A1/2

0 u′0
∥
∥
H + max

1≤k≤N
∥
∥τ2Ak+1 fk+1

∥
∥
H + max

1≤s≤N
∥
∥ fs
∥
∥
H +

N∑

s=1

∥
∥ fs− fs−1

∥
∥
H

]

,

(3.68)

where

C17 = 5C15C16. (3.69)

Theorem 3.2 is proved. �
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