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We present some methods for finding asymptotics of some classes of nonlinear higher-
order difference equations. Among others, we confirm a conjecture posed by S. Stević
(2005). Monotonous solutions of the equation yn = A + (yn−k/

∑m
j=1βj yn−qj )

p
, n ∈ N0,

where p,A∈ (0,∞), k,m∈N, qj , j ∈ {1, . . . ,m}, are natural numbers such that q1 < q2 <
··· < qm, βj ∈ (0,+∞), j ∈ {1, . . . ,m},∑m

j=1βj = 1, and y−s, y−s+1, . . . , y−1 ∈ (0,∞), where
s=max{k,qm}, are found. A new inclusion theorem is proved. Also, some open problems
and conjectures are posed.

Copyright © 2007 Stevo Stević. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recently, there has been a great interest in studying properties of rational and nonlin-
ear difference equations (c.f. [1–40] and the references therein). Those equations which
model some real-life situations in population biology and ecology are of a particular in-
terest.

This paper, which has some elements of a survey, presents some methods for finding
asymptotics of some classes of nonlinear higher-order difference equations and applies
them in solving several problems. Some basics on asymptotics for first-order difference
equations can be found in the classical book [18, Chapter 5] (we strongly encourage the
reader to read the chapter). If we are able to find asymptotics of a solution (or family of
solutions) of a difference equation, we are in a good position to determine some other
properties of the solution, for example, monotonicity, nontriviality, and so forth.

The paper is organized as follows. In Section 2, we quote an inclusion theorem due
to Berg (Theorem 2.1) and give an application of the result (Example 2.2). Section 3
is devoted to finding an asymptotic series of some solutions of the difference equation
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xn+1 = xn−1/(p+ xn−1 + xn), while in Section 4 we extend some results regarding positive
solutions of the equation to a generalization of this one. Existence of some nonoscillatory
solutions of a class of difference equations is given in Section 5. A new inclusion theorem
(Theorem 6.1) is presented in Section 6. An interesting open problem on finding asymp-
totics of some unbounded solutions of a difference equation is given in Section 7. A brief
account of results regarding existence of nontrivial solutions of the so-called Putnam-
type difference equations as well as a conjecture are found in the last section.

We also leave some other open problems and conjectures which are of some interest
to the experts in this research field.

2. Berg’s inclusion theorem and its application

Consider a general real nonlinear difference equation of order m∈N of the form

F
(
xn, . . . ,xn+m

)= 0, (2.1)

where F : Rm+1 → R, n ∈N0. Also, let ϕn and ψn be two sequences such that ψn > 0 and
ψn = o(ϕn) as n→∞. Then (under certain additional conditions) for arbitrary ε > 0, there
exist a solution xn of (2.1) and an n0(ε)∈N, such that

ϕn− εψn ≤ xn ≤ ϕn + εψn, (2.2)

for n ≥ n0(ε). The set of all sequences xn satisfying (2.2) is called an asymptotic stripe
X(ε), that is, yn ∈ X(ε) implies the existence of a real sequence Cn with yn = ϕn +Cnψn
and |Cn| ≤ ε for n≥ n0(ε). Hints for the construction of the pairs ϕn, ψn can be found in
[5–7, 9].

The next theorem is the main result in [7]. (See also [9] for a correction of the proof.)

Theorem 2.1 (see [7, Theorem 2.1]). Let F(w0,w1, . . . ,wm) be continuously differentiable
when wi = yn+i, for i= 0,1, . . . ,m, and yn ∈ X(1). Let the partial derivatives of F satisfy

Fwi
(
yn, . . . , yn+m

)
∼ Fwi

(
ϕn, . . . ,ϕn+m

)
(2.3)

as n→∞ uniformly in Cj for |Cj| ≤ 1, n≤ j ≤ n+m, so far as Fwi �≡ 0. Assume that there
exist a sequence fn > 0 and constants A0,A1, . . . ,Am such that

F
(
ϕn, . . . ,ϕn+m

)= o( fn
)
, (2.4)

ψn+iFwi
(
ϕn, . . . ,ϕn+m

)
∼ Ai fn, (2.5)

for i= 0,1, . . . ,m as n→∞, and suppose there exists an integer k, with 0≤ k ≤m, such that

∣
∣A0

∣
∣+ ···+

∣
∣Ak−1

∣
∣+

∣
∣Ak+1

∣
∣+ ···+

∣
∣Am

∣
∣ <

∣
∣Ak

∣
∣. (2.6)

Then, for sufficiently large n, there exists a solution (xn) of (2.1) satisfying (2.2).

In the following example, which is motivated by [15, Open Problem 6.2.1], we demon-
strate how Theorem 2.1 can be applied in showing the existence of solutions of difference
equations converging to zero.
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Example 2.2. Consider the equation

xn+1 = bxrn
1 + xrn−1

, n∈N0, (2.7)

with b > 0 and r > 1. Equation (2.7) can be written in the following form:

F
(
xn−1,xn,xn+1

)
:= xn+1

(
1 + xrn−1

)− bxrn = 0. (2.8)

We look for a solution of (2.7) such that xn = o(1) as n→∞. Therefore, as n→∞ we have
that

xn+1 ∼ bxrn. (2.9)

If we consider the equation

xn+1 = bxrn, (2.10)

instead of the asymptotic relation in (2.9), then we find that the solution of (2.10) is

xn = 1
b1/(r−1)

e−r
n

(2.11)

up to a constant factor nearby rn (the general solution of (2.10) is xn=b−1/(r−1)er
n ln(b1/(r−1)x0)).

In order to prove that (2.7) has a solution with the asymptotic behavior as in (2.11), we
make the following ansatz:

ϕn = 1
b1/(r−1)

(
e−r

n
+ ce−ar

n)
, (2.12)

where a > 1 and c > 0 are two parameters which will be determined below. If we put (2.12)
into (2.8), use the well-known asymptotic formula for the function (1 + x)α, and by some
simple calculation, we have that

b1/(r−1)F
(
ϕn−1,ϕn,ϕn+1

)

= (e−rn+1
+ ce−ar

n+1)
(

1 +
1

br/(r−1)
e−r

n(
1 + ce−r

n−1(a−1))r
)

− e−rn+1(
1 + ce−r

n(a−1))r

= e−rn+1
+ ce−ar

n+1
+

1
br/(r−1)

e−r
n(r+1) +

rc

br/(r−1)
e−r

n−1(r2+r+a−1)

+ o
(
e−r

n−1(r2+r+a−1))+
c

br/(r−1)
e−r

n−1(r(ar+1)) + o
(
e−r

n−1(r(ar+1)))

− e−rn+1 − rce−rn(r+a−1)− r(r− 1)
2

c2e−r
n(r+2(a−1)) + o

(
e−r

n(r+2(a−1))).

(2.13)
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Now note that the first terms in the first and third rows cancel, and that the factors in the
exponents standing by −rn−1 are the following:

ar2, r2 + r, r2 + r + a− 1, ar2 + r,

r(r + a− 1), r
(
r + 2(a− 1)

)
,

(2.14)

also

min
{
ar2,r2 + r,r2 + r + a− 1,ar2 + r

}=min
{
ar2,r2 + r

}
,

min
{
r(r + a− 1),r

(
r + 2(a− 1)

)}= r(r + a− 1).
(2.15)

Choose a such that

min
{
ar2,r2 + r

}= r(r + a− 1). (2.16)

Assume that

min
{
ar2,r2 + r

}= r2 + r. (2.17)

Note that in this case, a≥ 1 + 1/r. Then we have r2 + r = r(r + a− 1), which implies that
a = 2. For such chosen a, we have that a > 1 + 1/r for every r > 1, so that (2.17) indeed
holds.

Since the corresponding terms in (2.13) must cancel, it follows that c = 1/(rbr/(r−1)).
The next smallest term is r2 + r + a− 1= r2 + r + 1 or ar2 = 2r2, depending on whether r
is less or greater than (1 +

√
5)/2.

Hence

F
(
ϕn−1,ϕn,ϕn+1

)=O(e−rn−1(r2+r+1)) if r >
1 +
√

5
2

, (2.18)

or

F
(
ϕn−1,ϕn,ϕn+1

)=O(e−rn−1(2r2)) if 1 < r ≤ 1 +
√

5
2

. (2.19)

Let ϕn be the sequence in (2.12), ψn = e−2rn , and yn ∈ X(1), that is, yn = ϕn +Cnψn
where |Cn| ≤ 1. Then, we have that

Fw1

(
yn−1, yn, yn+1

)
∼ Fw1

(
ϕn−1,ϕn,ϕn+1

)= 1 +ϕrn−1 ∼ 1,

Fw0

(
yn−1, yn, yn+1

)
∼ Fw0

(
ϕn−1,ϕn,ϕn+1

)=−rbϕr−1
n ∼−re−rn(r−1),

Fw−1

(
yn−1, yn, yn+1

)
∼ Fw−1

(
ϕn−1,ϕn,ϕn+1

)= rϕn+1ϕ
r−1
n−1 ∼

r

br/(r−1)
e−r

n−1(r2+r−1),

(2.20)

from which it follows that condition (2.3) in Theorem 2.1 is satisfied. Further, from (2.20)
it follows that

ψn+1Fw1

(
ϕn−1,ϕn,ϕn+1

)
∼ e−2rn+1

,

ψnFw0

(
ϕn−1,ϕn,ϕn+1

)
∼−re−rn(r+1),

ψn−1Fw−1

(
ϕn−1,ϕn,ϕn+1

)
∼ rb−/r(r−1)e−r

n−1(r2+r+1).

(2.21)
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Now we choose fn = e−rn(r+1), for which condition (2.4) in Theorem 2.1 is satisfied, as
well as condition (2.5) with A1 = A−1 = 0 and A0 =−r (i.e., k = 1 in the notations of the
theorem).

Remark 2.3. Ansatz (2.12) can also be obtained in the following fashion. Solving (2.7)
with respect to xn, we have that

xn = r

√
1
b
xn+1

(
1 + xrn−1

)
. (2.22)

Putting (2.11) into the right-hand side of the last equation, it follows that

xn = 1
b1/(r−1)

r

√

e−rn+1

(

1 +
1

br/(r−1)
e−rn

)

= 1
b1/(r−1)

e−r
n
(

1 +
1

rbr/(r−1)
e−r

n
)

(2.23)

up to the smaller terms. Therefore, we obtain (2.12) with the foregoing a and c.

3. Asymptotics of some solutions of the difference
equation xn+1 = xn−1/(p+ xn−1 + xn)

In [27], we proved that every positive solution of the difference equation

xn+1 = xn−1

p+ xn−1 + xn
, n∈N0, (3.1)

where p ∈ [0,∞) and the initial conditions x−1, x0 are positive real numbers, converges
to a, not necessarily prime, periodic-two solution. Moreover, we showed that positive
solutions of (3.1) converge to the corresponding periodic-two solutions geometrically.
One of the conjectures we posed in [27] is the following.

Conjecture 3.1. Let p ∈ (0,1) and let (xn) be a nonnegative solution of (3.1) such that
(x2n−1,x2n)→ (ρ,1− ρ− p), as n→∞. Then

(a) x2n−1 = ρ+ ρctn + �(t2n);
(b) x2n = 1− ρ− p+ (1− ρ)(1− ρ− p)ctn + �(t2n);

where t = (1− ρ)(ρ+ p) and the constant c depends on initial values x−1 and x0.

It is easy to see that the linearized equation about the positive equilibrium x = (1−
p)/2, associated to (3.1), is

yn+1 + xyn + (x− 1)yn−1 = 0. (3.2)

The characteristic roots of the characteristic polynomial P(λ) of (3.2) are λ1 = −1 and
λ2 = 1− x = (1 + p)/2 := s, that is, P(λ)= (λ+ 1)(λ− s).
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In this section, we confirm the conjecture for the case ρ = (1− p)/2, by proving the
following theorem.

Theorem 3.2. Assume that p ∈ (0,1). Then (3.1) has solutions with the following asymp-
totics:

xn = x+
∞∑

k=1

qkc
ksnk, (3.3)

where c is a positive parameter.

Proof. Since p ∈ (0,1), then s ∈ (1/2,1). Replacing (3.3) into (3.1) and equating the co-
efficients nearby ck, it follows that

q1s
n−1(s2 + xs+ x− 1

)= 0. (3.4)

Since P(s) = 0, it follows that q1 is an arbitrary number. Without loss of generality, we
may take q1 = x.

For k = 2, we have that

q2s
2(n+1) + q2

1s
n+1(sn−1 + sn

)
+ q2x

(
s2(n−1) + s2n

)= q2s
2(n−1), (3.5)

which implies that

∣
∣q2

∣
∣= q2

1s
2(1 + s)

∣
∣P(s2)

∣
∣ ≤ ∣∣q1

∣
∣ s(1 + s)
(
s2 + 1

) <
∣
∣q1

∣
∣, (3.6)

where we have used the fact that x = q1 = (1− p)/2= 1− s.
For k ≥ 3, we have that

qks
k(n+1) +

k−2∑

i=0

qk−1−iqi+1s
(k−1−i)(n+1)(s(i+1)(n−1) + s(i+1)n)+ xqk

(
sk(n−1) + skn

)= qksk(n−1),

(3.7)

from which it follows that

qk =− 1
P
(
sk
)
k−2∑

i=0

qk−1−iqi+1s
2(k−1−i)(1 + si+1), (3.8)

and consequently

∣
∣qk

∣
∣= 1

∣
∣P
(
sk
)∣
∣ max
i=0,k−2

qk−1−iqi+1

k−2∑

i=0

s2(k−1−i)(1 + si+1). (3.9)

Now we prove by the induction that 0 < qk < q1 for every k ≥ 2. Since we have already
proved that 0 < q2 < q1, the statement holds true for k = 2. Assume that the statement
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holds true for i≤ k− 1. Then by (3.9) and the induction hypothesis, it follows that

qk ≤ q1
q1∣

∣P
(
sk
)∣
∣

(
s2 + ···+ s2(k−1) + sk+1 + ···+ s2k−1)

= q1
s2 + ···+ s2(k−1) + sk+1 + ···+ s2k−1

s
(
sk + 1

)(
1 + s+ ···+ sk−2

) < q1,
(3.10)

finishing the inductive proof. �

From this, it follows that the series in (3.3) converges if |csn| < 1. Since for each c ∈R
there is an n0 ∈ N such that |csn0| < 1, we have that the series are not only asymptotic
ones as n→∞, but they even converge for every c ∈R and sufficiently large n, as desired.

4. Periodic character of positive solutions of a generalization of (3.1)

In this section, we investigate the periodic character of positive solutions of the following
extension of (3.1):

xn+1 = xn−k
p+ xn−k + ···+ xn

, n∈N0, (4.1)

where p ∈ [0,∞) and the initial conditions x−k, . . . ,x−1,x0 are positive real numbers. The
case p ∈ (0,1) is more interesting, since when p ≥ 1 it is easy to see that the zero equilib-
rium of (4.1) is global attractor of all positive solutions. Our results extend those ones in
[27].

Theorem 4.1. Consider (4.1) where p ∈ (0,1). Then every positive solution of (4.1) con-
verges to a, not necessarily prime, period-(k + 1) solution ρ1, . . . ,ρk+1, such that p + ρ1 +
···+ ρk+1 = 1. If p + x0 + x−1 + ···+ x−k > 1 the sequences x(k+1)n+i, (i = 0,1,2, . . . ,k) are
decreasing, if p + x0 + x−1 + ···+ x−k < 1, the sequences x(k+1)n+i (i = 0,1,2, . . . ,k) are in-
creasing, and if p + x0 + x−1 + ···+ x−k = 1 the sequence xn is a period-(k + 1) solution of
(4.1).

Proof. Using the change of variable xn = 1/zn, we obtain

zn+1 =
p
∏k

i=0 zn−i +
∑k

j=0

∏k
i=0,i �= j zn−i

∏k−1
i=0 zn−i

, (4.2)

and consequently

un+1 = zn+1zn ···zn−k+1 = p
k∏

i=0

zn−i +
k∑

j=0

k∏

i=0,i �= j
zn−i. (4.3)

Using (4.3) and calculating un+1−un, it follows that

zn+1− zn−k =
(
zn− zn−(k+1)

)
(
p
∏k

i=1 zn−i +
∑k

j=1

∏k
i=1,i �= j zn−i

)

∏k−1
i=0 zn−i

, (4.4)
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which implies that

zn+1− zn−k =
(
z1− z−k

) n∏

l=1

(
p
∏k

i=1 zl−i +
∑k

j=1

∏k
i=1,i �= j zl−i

)

∏k−1
i=0 zl−i

. (4.5)

From (4.5), we obtain that the signum of zn+1− zn−k remains invariant for n∈N0 and
that the sequences (z(k+1)n+i), i = 0,1, . . . ,k, are nondecreasing or nonincreasing at the
same time which implies that the sequences (x(k+1)n+i), i = 0,1, . . . ,k, are nonincreasing
or nondecreasing at the same time.

Since

z1− z−k = p+ x0 + x−1 + ···+ x−k − 1
x−k

, (4.6)

we see from (4.5) that if p + x0 + x−1 + ···+ x−k < 1, then the sequences (x(k+1)n+i), i =
0,1, . . . ,k, are increasing, if p + x0 + x−1 + ··· + x−k > 1, the sequences (x(k+1)n+i), i =
0,1, . . . ,k, are decreasing, and if p+ x0 + x−1 + ···+ x−k = 1, then (x−k, . . . ,x−1,x0,x−k, . . . ,
x−1,x0, . . .) is a period-(k+ 1) solution of (4.1).

Assume that the sequences (x(k+1)n+i), i = 0,1, . . . ,k, are decreasing, that is, p + x0 +
x−1 + ···+ x−k > 1. Then there are finite limits

lim
n→∞x(k+1)n+i = ρi, i= 0,1, . . . ,k. (4.7)

It is clear that

(
ρ0,ρ1, . . . ,ρk,ρ0,ρ1, . . . ,ρk, . . .

)
(4.8)

is a period-(k+ 1) solution of (4.1). Suppose that all ρi are equal to zero. Since (x(k+1)n+i),
i= 0,1, . . . ,k, are decreasing from (4.1), we obtain

p+ xn−k + ···+ xn > 1, n∈N0. (4.9)

Letting n→∞ in (4.9), we obtain p≥1, which is a contradiction. Hence (ρ0,ρ1, . . . ,ρk) �=
(0, . . . ,0), that is, (4.8) is a nontrivial period-(k+ 1) solution of (4.1).

Without loss of generality, we may assume that ρ0 �= 0. Then letting n→∞ in the
equation

x(k+1)n = x(k+1)(n−1)

p+ x(k+1)(n−1) + ···+ x(k+1)n−1
, (4.10)

we obtain the equality p+ ρ0 + ρ1 + ···+ ρk = 1.
Now suppose that the sequences (x(k+1)n+i), i = 0,1, . . . ,k, are increasing, that is, p +

x0 + x−1 + ···+ x−k < 1. Then there are finite or infinite limits

lim
n→∞x(k+1)n+i = ρi, i= 0,1, . . . ,k. (4.11)
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From (4.1), we see that 0 < xn+1 < 1, that is, all solutions of (4.1) are bounded. Hence
ρi <∞, i = 0,1, . . . ,k. On the other hand, since (x(k+1)n+i), i = 0,1, . . . ,k, are increasing,
ρi > xi > 0, i = −k, . . . ,−1,0. Similarly as above, we obtain that (4.8) is a period-(k + 1)
solution of (4.1) and p+ ρ0 + ρ1 + ···+ ρk = 1. �

Remark 4.2. For the initial conditions x−k = ··· = x−1 = x0 = (1− p)/(k+ 1), we have
xn = (1− p)/(k+ 1), when n≥−k, which shows that there is a solution which converges
to a not prime period-(k+ 1) solution.

Remark 4.3. From (4.5), we see that condition (4.9) for n = 0, that is, p + x0 + x−1 +
··· + x−k > 1, implies (4.9) for all greater n, that is, for n ≥ 1, moreover the sequence
un = p+ xn−k + ···+ xn is also decreasing.

Also, the condition p + x0 + x−1 + ··· + x−k < 1 implies that the sequence un = p +
xn−k + ···+ xn is increasing and

p+ xn−k + ···+ xn < 1, n∈N0. (4.12)

From this and by Theorem 4.1, it follows that the distance from the point (xn−k, . . . ,xn)
to the limit hyperplane p+ y1 + y2 + ···+ yk+1 = 1, that is,

dn = p+ xn + ···+ xn−k − 1√
k+ 1

, (4.13)

also converges monotonously to zero.
Note also that from this and the fact that the sequences (x(k+1)n+i), i = 0,1, . . . ,k, are

nonincreasing and positive or nondecreasing and bounded from above by 1, we obtain
another proof of Theorem 3.2.

Remark 4.4. The fact that there is no solutions of (4.1) converging to zero follows also
from the main result in [26].

Remark 4.5. For k = 0, (4.1) is a Riccati equation with the general solution

x(1)
n = 1− p

1 + cpn
. (4.14)

Hence, (4.1) with arbitrary k has the particular solution x(k+1)n = x(1)
n , and xi = 0 if i �=

0(mod)k+ 1.

The following open problem will be interesting to the experts in the field.

Open problem 4.6. Let

. . . ,ρ0,ρ1, . . . ,ρk,ρ0,ρ1, . . . ,ρk, . . . (4.15)

be a positive period-(k+ 1) solution of (4.1). Find the basin of attraction of this solution.

Now we give an estimation of the convergence rate of the positive solutions of (4.1).
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Theorem 4.7. Every positive solution of (4.1) converges to the corresponding period-(k+ 1)
solution (ρ0,ρ1, . . . ,ρk) geometrically, that is, there are an M > 0 and q ∈ (0,1) such that

∣
∣x(k+1)n− ρ0

∣
∣+ ···+

∣
∣x(k+1)n+k − ρk

∣
∣≤Mq(k+1)n, n≥ 0. (4.16)

Proof. If we turn back to the sequence xn in (4.4), we have that

p+ xn + xn−1 + ···+xn−k−1
xn−k

= p+ xn−k + ···+ xn−1

xn−k
xn
p+ xn−1 + xn−2 + ···+ xn−k−1− 1

xn−k−1
,

(4.17)

that is,

dn = p+ xn−k + ···+ xn−1

xn−k−1
xn dn−1 =

(
1− xn

)
dn−1, (4.18)

where dn = p+ xn−k + ···+ xn− 1, and consequently

dn =
( k∏

i=0

(
1− xn−i

)
)

dn−(k+1). (4.19)

On the other hand, by Theorem 4.1, we have that

lim
n→∞

k∏

i=0

(
1− xn−i

)=
k∏

i=0

(
1− ρi

)
. (4.20)

In the proof of Theorem 4.1, we have seen that all ρi ∈ [0,1), i ∈ {0,1, . . . ,k}, cannot be
equal to zero, hence

L=
k∏

i=0

(
1− ρi

)
< 1. (4.21)

From (4.18)–(4.21), we have that for every ε ∈ (0,1−L), there is an n0 ∈N such that

k∏

i=0

(
1− xn−i

)
< L+ ε, (4.22)

for all n≥ n0.
From this and (4.19), it follows that

∣
∣dn

∣
∣≤ (L+ ε)

∣
∣dn−k−1

∣
∣, (4.23)

for every n≥ n0.
Now from (4.23) and the equality

∣
∣d(k+1)n+k

∣
∣= ∣∣x(k+1)n+k − ρk + ···+ x(k+1)n− ρ0

∣
∣

= ∣∣x(k+1)n+k − ρk
∣
∣+ ···+

∣
∣x(k+1)n− ρ0

∣
∣,

(4.24)



Stevo Stević 11

which follows by monotonicity of the sequences (x(k+1)n+i), i= 0,1, . . . ,k, we see that the
result follows for

q = k+1
√
L+ ε. (4.25)

�

Corollary 4.8. The distance dn from the point (xn−k, . . . ,xn) to the limit hyperplane p +
y1 + y2 + ···+ yk+1 = 1 converges to zero monotonously and moreover geometrically.

5. Existence of nonoscillatory solutions of equation
yn =A+ (yn−k/

∑m
j=1βj yn−qj )p

This section studies the asymptotics of some positive solutions of the recursive equation

yn =A+
(

yn−k
∑m

j=1βj yn−qj

)p
, n∈N0, (5.1)

where p,A∈ (0,∞), k,m∈N, qj , j ∈ {1, . . . ,m}, are natural numbers such that q1 < q2 <
··· < qm, βj ∈ (0,+∞), j ∈ {1, . . . ,m},∑m

j=1βj = 1, and y−s, y−s+1, . . . , y−1 ∈ (0,∞), where
s=max{k,qm}.

In [28], the present author posed the problem of investigating the existence of none-
quilibrium nonoscillatory solutions of (5.1) for the case p > 0, k = 2, βj = 0, j ∈ {0,1, . . . ,
m− 1}, and qm =m. The case p = 1, k ∈N and βj = 0, j ∈ {0,1, . . . ,m− 1}, was consid-
ered independently in [11] by DeVault et al., where among other results it was proven
that all nonoscillatory solutions of (5.1) for the case converge to the positive equilib-
rium y = A+ 1, and where they posed the above problem for the case p = 1, k ∈N, and
m= qm = 1. The problem was solved by the present author in [31]. Here we extend one
of the results from [31], for the case of (5.1). For some other results on (5.1) and some
closely related equations, see, for example, [1–3, 12, 14, 16, 26, 29, 37, 38, 40] and the
references therein.

Note that the linearized equation for (5.1) about the positive equilibrium y = A+ 1 is

(A+ 1)zn + p
m∑

j=1

βjzn−qj − pzn−k = 0. (5.2)

The characteristic polynomial associated with (5.2) depends on the sign of k− qm. Thus,
we have two different cases, namely, if k > qm, then

P1(t)= (A+ 1)tk + p
m∑

j=1

βjt
k−qj − p = 0, (5.3)

and if k < qm, then

P2(t)= (A+ 1)tqm − ptqm−k + p
m∑

j=1

βjt
qm−qj = 0. (5.4)
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We will consider only the first case. Since P1(0)=−p < 0, P1(1)=A+ 1, and

P′1(t)= (A+ 1)ktk−1 + p
m∑

j=1

βj
(
k− qj

)
tk−qj−1 > 0, (5.5)

when t ∈ (0,1], it follows that for each A > −1, there is a unique positive root t0 of the
polynomial P1 belonging to the interval (0,1).

These facts motivated us to believe that in the case k > qm, there are solutions of (5.1)
which have the following asymptotics:

yn = A+ 1 + atn0 + o
(
tn0
)
, (5.6)

where a∈R and t0 is the above-mentioned root of the polynomial in (5.3).
Now we show that a nonoscillatory solution of (5.1) for the case k > qm exists by de-

veloping Berg’s ideas in [6] which are based on asymptotics. Asymptotics for solutions
of difference equations have been investigated by Berg and Stević, see, for example, [4–
10, 22, 24, 30–32] and the reference therein. The problem is solved by constructing two
appropriate sequences yn and zn with

yn ≤ xn ≤ zn (5.7)

for sufficiently large n. As we have already mentioned, some methods for the construction
of these bounds can be found in [5, 6], also see [7, 9].

From (5.6) and results in Berg’s paper [6], we expect that for k ≥ 2, such solutions have
the first three members in their asymptotics in the following form:

ϕn = A+ 1 + atn + bt2n. (5.8)

In order to solve the open problem for the case k > qm, we use an inclusion theorem
which can be proved as in [32].

Theorem 5.1. Let f : Ik+2 → I be a continuous and nondecreasing function in each argu-
ment on the interval I ⊂R, and let (yn) and (zn) be sequences with yn < zn for n≥ n0 and
such that

yn−k ≤ f
(
n, yn−k+1, . . . , yn+1

)
, f

(
n,zn−k+1, . . . ,zn+1

)≤ zn−k, (5.9)

for n > n0 + k− 1.
Then there is a solution of the following difference equation:

xn−k = f
(
n,xn−k+1, . . . ,xn+1

)
, (5.10)

with property (5.7) for n≥ n0.

The following is the main result of this section.
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Theorem 5.2. Suppose that k > qm, A > −1, and p > 0. Then, there is a nonoscillatory
solution of (5.1) converging to the positive equilibrium y = A+ 1, as n→∞, moreover this
solution has the asymptotics

yn = A+ 1 + atn + bt2n + o
(
t2n
)
, (5.11)

for some t ∈ (0,1) and some a,b �= 0.

Proof. Equation (5.1) can be written in the following equivalent form:

F
(
yn−k, yn−qm , . . . , yn−q1 , yn

)= (yn−A
)1/p

( m∑

j=1

βj yn−qj

)

− yn−k = 0. (5.12)

We expect that solutions of (5.1) have the asymptotic approximation (5.8). Thus, we cal-
culate

F
(
ϕn−k,ϕn−qm , . . . ,ϕn−q1 ,ϕn

)
. (5.13)

We have

F = (1 + atn + bt2n
)1/p

(

A+ 1 +
m∑

j=1

βj
(
atn−qj + bt2(n−qj ))

)

− (A+ 1 + atn−k + bt2(n−k))

= a

p
tn
(

(A+ 1) + p
m∑

j=1

βj
tqj
− p

tk

)

+
1
p
t2n
(

b(A+ 1) + bp
m∑

j=1

βj
t2qj

− bp

t2k
+ a2

m∑

j=1

βj
tqj

+
(1− p)a2(A+ 1)

2p

)

+ o
(
t2n
)
.

(5.14)

Let

D(t)= (A+ 1) + p
m∑

j=1

βjt
−qj − pt−k. (5.15)

Now, choose t ∈ (0,1) such that D(t) = 0, and a,b ∈ R, a �= 0, such that the coefficients
in (5.14) are equal to zero. Since D(t) = 0 implies that t = t0 (see above discussion), by
(5.14) we have that

b =−a
2
∑m

j=1βjt
−qj
0 + (1− p)a2(A+ 1)/2p

(A+ 1) + p
∑m

j=1βjt
−2qj − pt−2k

0

=−a
2
∑m

j=1βjt
−qj
0 + (1− p)a2(A+ 1)/2p

D
(
t20
) .

(5.16)

Observe that since k > qm ≥m, we have that

D′(t)= kp

tk+1
− p

m∑

j=1

qjβj
tqj+1 >

p

tk+1

(

k−
m∑

j=1

qjβj

)

> 0 (5.17)

when t ∈ (0,1]. Thus we have that D(t20) < D(t0)= 0.
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If

ϕ̂n = A+ 1 + atn0 + qt2n0 , (5.18)

we obtain

F
(
ϕ̂n−k, . . . , ϕ̂n

)
∼

1
p

(

qD
(
t20
)

+ a2
m∑

j=1

βjt
−qj
0 +

(1− p)a2(A+ 1)
2p

)

t2n0 . (5.19)

Let

Ht0 (q)= qD(t20
)

+ a2
m∑

j=1

βjt
−qj
0 +

(1− p)a2(A+ 1)
2p

. (5.20)

Since H′
t0 (q)=D(t20) < 0, we obtain that there are q1 < b and q2 > b such that

Ht0

(
q1
)
> 0, Ht0 (q2) < 0. (5.21)

With the notations

un = A+ 1 + atn0 + q1t
2n
0 , zn = A+ 1 + atn0 + q2t

2n
0 , (5.22)

we get

F
(
un−k, . . . ,un

)
∼

1
p

(

q1D
(
t20
)

+ a2
m∑

j=1

βjt
−qj
0 +

(1− p)a2(A+ 1)
2p

)

t2n0 > 0,

F
(
zn−k, . . . ,zn

)
∼

1
p

(

q2D
(
t20
)

+ a2
m∑

j=1

βjt
−qj
0 +

(1− p)a2(A+ 1)
2p

)

t2n0 < 0.

(5.23)

These relations show that inequalities in (5.9), where instead of yn appears un, are satisfied
for sufficiently large n, and where f = F + yn−k and F is given by (5.12). Since for suffi-
ciently large n, yn > A, we can apply Theorem 5.1 with I = (A,∞), and see that there are
an n0 ≥ 0 and a solution of (5.1) with the asymptotics yn = ϕ̂n + o(t2n0 ), for n≥ n0, where
q = b in ϕ̂n; in particular, the solution converges monotonically to the positive equilib-
rium y = A+ 1 of (5.1), for n ≥ n0. Hence, the solution yn+n0+k is also such a solution
when n≥−k. �

Remark 5.3. Since a∈R \ {0} is an arbitrary parameter, by Theorem 5.2 we find a set of
nonoscillatory solutions of (5.1) converging to the positive equilibrium. A natural ques-
tion is in what extent these one-parameter family of solutions covers solutions of (5.1).

Remark 5.4. From the proof of Theorem 5.2, we see that the parameter A can be re-
placed by a nonincreasing sequence with the asymptotics An = A + o(t2n0 ), and that in
this case there is a positive solution of the corresponding equation which is eventually
nonoscillatory. This means that the method is quite powerful since it proves the existence
of eventually nonoscillatory solutions also for some nonautonomous nonlinear difference
equations.



Stevo Stević 15

6. A new inclusion theorem

Motivated by Theorem 5.1, here we present a new inclusion theorem which could be use-
ful in the investigation of the nonlinear difference equations and finding the asymptotics
of some of their solutions.

Theorem 6.1. Let the function f (u1, . . . ,uk) be continuous, nondecreasing in variables ui,
i∈ I ⊂ {1, . . . ,k}, and nonincreasing in variables uj , j ∈ {1, . . . ,k} \ I , and let (yn) and (zn)
be sequences with yn < zn for n≥ n0 as well as

yn+1 ≤ f
(
vn, . . . ,vn−k+1

)
, f

(
wn, . . . ,wn−k+1

)≤ zn+1, (6.1)

where

vl =
⎧
⎨

⎩

zl if vl appears at a variable which index belongs to {1, . . . ,k} \ I ,
yl if vl appears at a variable which index belongs to I ,

wl =
⎧
⎨

⎩

yl if vl appears at a variable which index belongs to {1, . . . ,k} \ I ,
zl if vl appears at a variable which index belongs to I.

(6.2)

Then there exists a solution of the difference equation

xn+1 = f
(
xn, . . . ,xn−k+1

)
(6.3)

such that

yn ≤ xn ≤ zn. (6.4)

Proof. We will prove the theorem for the case k = 2, and where f (u1,u2) is nonincreasing
in u1 and nondecreasing in u2. The proof in general case is only technically complicated.

Assume that (6.4) holds when n∈ {n0,n0 + 1}. Then, from (6.1) and the monotonicity
of the function f in each variable, we have that

yn0+2 ≤ f
(
zn0+1, yn0

)≤ f
(
xn0+1,xn0

)≤ f
(
yn0+1,zn0

)≤ zn0+2. (6.5)

Hence,

yn0+2 ≤ xn0+2 ≤ zn0+2, (6.6)

that is, inequality (6.4) holds when n= n0 + 2. By induction, the result easily follows. �

7. On the difference equation xn+1 = 1 + x1+r
n /xrn−1

In [34], we investigated behavior of positive solutions of the difference equation

xn+1 = 1 +
x
p
n

xrn−1
, (7.1)

where p,q ∈ (0,∞).
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Among other results, we showed that in the case p = r + 1, r ∈ (0,1), (7.1), that is, the
equation

xn+1 = 1 +
x1+r
n

xrn−1
, (7.2)

has unbounded solutions.
The following open problem regarding (7.2) is of some interest.

Open problem 7.1. Assume that r ∈ (0,1). Find asymptotics of some unbounded solu-
tions of (7.2).

Our idea is to find some solutions of (7.2) with the following asymptotics:

ϕn = an+ b lnn+ c+d
lnn
n

+
e

n
, (7.3)

for some positive constants a, b, c, d, and e.
Since Open problem 7.1 cannot be solved by Theorems 2.1 or 5.1, we need another

theorem which could be appropriate for treating the problem. This was the starting point
for getting Theorem 6.1.

Although we are not able to solve the problem also by Theorem 6.1, we present here
an interesting property of natural candidate (7.3) for the asymptotics for some solutions
of (7.2). In order to avoid too much complicated calculations, we confine ourself to the
case r = 1/2.

Hence, assume that r = 1/2 and write (7.2) in the following form:

Fn = F =
√(
yn
)3
/zn−1− yn+1 + 1. (7.4)

Set

yn = 2n+ b lnn+ c+d
ln n
n

+
e

n
, zn = 2n+ p lnn+ q+ r

ln n
n

+
s

n
. (7.5)

We have

Fn =
[ (

2n+ b lnn+ c+d(ln n/n) + e/n
)3

2n+ p ln(n− 1) + q− 2 + r
(
ln(n− 1)/(n− 1)

)
+ s/(n− 1)

]1/2

+ 1− 2(n+ 1)− b ln(n+ 1)− c−d ln(n+ 1)
n+ 1

− e

n+ 1

= 2n
(

1 + b
ln n
2n

+
c

2n
+d

ln n
2n2

+
e

2n2

)3/2

×
(

1 + p
ln(n− 1)

2n
+
q− 2

2n
+ r

ln(n− 1)
2n(n− 1)

+
s

2n(n− 1)

)−1/2

− 2n− b ln(n+ 1)− c− 1−d ln(n+ 1)
n+ 1

− e

n+ 1
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= b− p

2
ln n+

c− q
2

+
(

3
(
b2 + p2− 2bp

)

16

)
ln2n

n

+
(
d− r

2
+

3
8

(
bc+ p(q− 2)− b(q− 2)− cp)

)
ln n
n

×
(
e− s

2
+

3
16

(
c2 + (q− 2)2− 2c(q− 2)

)
+
p

2
− b

)
1
n

+ o
(

1
n

)

.

(7.6)

From this and since it must be b ≤ p, we must choose b = p, which implies that b2 + p2−
2bp = 0. Similarly, since it must be c ≤ q, we must choose c = q. Hence

d− r
2

+
3
8

(
bc+ p(q− 2)− b(q− 2)− cp)= d− r

2
,

e− s
2

+
3

16

(
c2 + (q− 2)2− 2c(q− 2)

)
+
p

2
− b = e− s− b

2
+

3
4
.

(7.7)

Since d ≤ r, we take that d = r. It is possible to find b, e, and s such that b+ s− e < 3/2, so
that the first inequality in (6.1) holds. On the other hand, by symmetry, we obtain that
for the above chosen parameters, we have that

√
√
√
√
(
zn
)3

yn−1
− zn+1 + 1 ∼

(
s− e− b

2
+

3
4

)
1
n
. (7.8)

Since it must be 3/2 < b− (s− e), we arrive at a contradiction with b + s− e < 3/2 and
s≥ e. Hence, it is natural to choose b = 3/2 and try with more members in the asymptotics
of yn and zn.

This fact motivated us to choose

yn = 2n+
3
2

lnn+ ak
ln αn

nβ
, zn = 2n+

3
2

lnn+ bk
ln αn

nβ
, (7.9)

α,β ∈ N, with ak ≤ bk. Interestingly, by similar calculations as above, we obtain that it
must be

F
(
yn−1, yn+1,zn

)
∼

(
ak − bk

) lnα1 n

nβ1
≥ 0 (7.10)

for some natural α1 and β1, which implies that ak = bk.

Remark 7.2. Although we have not managed to prove that (7.3) is a solution of (7.2), the
asymptotic relation in (7.6) (or (7.10)) means that (7.3) is an asymptotic solution of (7.2)
in sense of [5].
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8. Nontrivial solutions of Putnam-type difference equations

By using the part metric technique and a theorem from [17], Yang [39] recently proved
that every positive solution of the generalization of the so-called Putnam difference equa-
tion [20]

xn+1 = xn + xn−1 + ···+ xn−(k−1) + xn−kxn−(k+1)

xnxn−1 + xn−2 + ···+ xn−(k+1)
, n∈N0, (8.1)

where k ∈N, converges to the positive equilibrium x = 1, confirming a conjecture posed
by Kruse and Nesemann in [17]. The asymptotic stability of (8.1), for the case k = 2, was
studied previously in [17].

A somewhat challenging problem is to show that there is a positive solution of (8.1)
which is not eventually equal to unity (for the case k = 2, the problem was posed in [19]
and was solved in [33]).

The problem for the case k ≥ 3 has been recently solved by the present author in [35]
by proving the following theorem, where in the proof we used Theorem 2.1.

Theorem 8.1. For every k ∈ N and ε > 0, (8.1) has a solution with the following asymp-
totics:

xn = 1 + (k+ 1)ϕn + (k+ 1)εnψn, (8.2)

where

ϕn = e−λn + e−cλ
n
, ψn = e−cλn , (8.3)

for some c > 1 depending on k, λ is the positive root of the polynomial P(λ) = λk+2 − λ− 1
belonging to the interval (1,2), and |εn| ≤ ε.

It was proved in [39] that every positive solution of the generalization of Putnam-type
difference equation

xn+1 =
∑

i∈Zk+1\{ j,l} xn−i + xn− jxn−l +A∑
i∈Zk+1\{s,t} xn−i + xn−sxn−t +A

, n∈N0, (8.4)

where k ∈ N0, j, l,s, t ∈ Zk+2 = {0,1, . . . ,k + 1} with 0 ≤ j < l ≤ k + 1, 0 ≤ s < t ≤ k + 1,
s+ t < j + l, and A∈ [0,∞), converges to the positive equilibrium x = 1.

It is expected that (8.4) also has nontrivial solutions but the calculations connected
with the application of Theorem 2.1 are in some cases more involved, hence we leave the
following conjecture to the interested readers.

Conjecture 8.2. Equation (8.4) has a solution which is not eventually equal to unity.
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