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1. Introduction

Recently, there has been an interest in the so-called dynamical diseases, which correspond
to physiological disorders for which a generally stable control system becomes unstable
[1–5]. Here, the study of the dynamical features of the corresponding model such as equi-
libria, their local stability characteristics and bifurcation behaviors is extremely useful re-
lated to the dynamics of mathematical models of various biological systems and other
applications. In this paper, we research an arterial CO2 control system [1], which may be
described by

ṗ(t)= γ− βvmp(t)pn(t− τ)
θn + pn(t− τ)

, t ≥ 0, (1.1)

where p is the arterial CO2 concentration, γ is the CO2 production rate, τ is the time be-
tween oxygenation of blood in the lungs and stimulation of chemoreceptors in the brain-
stem, vm is the maximum ventilation, θ and n are parameters adjusted to fit experimental
observations, and β is a constant. The equation reproduces certain qualitative features of
normal and abnormal respiration.
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Considering the need of scientific computation and real-time simulation, our interest
is focused on the behaviors of discrete dynamics system corresponding to (1.1). Most of
this time, it is desirable that a difference equation, which is derived from a differential
equation, preserves the dynamical features of the corresponding continuous-time model.
That is, the discrete-time model is “dynamically consistent” with the continuous-time
model.

In [6], Wulf and Ford show that, if applying Euler forward method to solve the de-
lay differential equation, then the discrete scheme is “dynamically consistent” with the
continuous-time model. It means that for all sufficiently small step sizes, the discrete
model undergoes a Hopf bifurcation of the same type with the corresponding contin-
uous-time model, and the bifurcation point λh of the discrete model is O(h) close to the
bifurcation point λ∗, which corresponds to the continuous-time model.

In this paper, we choose Midpoint rule [7–9] to make the discretization for system
(1.1), this method can be considered as perturbation of the Euler forward method. With
a similar analysis in [6], it is known that the discrete model is “dynamically consistent”
with the continuous-time model for all sufficiently small step sizes, and we can expect the
bifurcation point λh of the discrete model is O(h2) close to the bifurcation point λ∗ of the
corresponding continuous-time model due to the Midpoint rule have the convergence of
2-order [7, 9]. On the other hand, the Midpoint rule is a symplectic method [8, 9], it may
preserve some important properties of the solutions of the original dynamical system.

The paper is organized as follows. In Section 2, we use the Hopf bifurcation theory
of discrete system [10–12] to investigate the stability of equilibrium and the existence
of the local Hopf bifurcations at the equilibrium. In Section 3, direction and stability
of the Hopf bifurcation are established. In Section 4, some numerical simulations are
provided to illustrate the results found. At last, roughly, we apply our results to explain
the symptom of respiration.

2. Stability of the positive equilibrium and local Hopf bifurcations

In this section, we will see that, when Midpoint rule is applied to system (1.1), it gives
rise to a discrete dynamics system (2.8) and we study the stability of the positive equilib-
rium and the existence of local Hopf bifurcations of system (2.8), which inherits certain
dynamics of system (1.1) [13].

Under transformation p(t)= θx(t), (1.1) becomes

ẋ(t)= a− bx(t)xn(t− τ)
1 + xn(t− τ)

, (2.1)

where a= γ/θ, b= βvm. Let u(t)= x(τt). Then there is ẋ(t)= u̇(t/τ)(1/τ). Inserting them
into (2.1), we have

1
τ
u̇
(
t

τ

)
= a− bu(t/τ)un(t/τ − 1)

1 +un(t/τ − 1)
. (2.2)
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So (2.1) can be rewritten as

u̇(t)= aτ − bτ u(t)un(t− 1)
1 +un(t− 1)

. (2.3)

Thanks to the role of system (1.1) in practice, we only take an interest in the posi-
tive equilibrium point of (1.1). Without loss of generality, assume that ũ is the positive
equilibrium point of (2.3), that is,

aτ− bτ ũn+1

1 + ũn
= 0, (2.4)

which has a unique positive equilibrium point.
In fact, by defining function F(x) := bxn+1− axn− a, from

F′(x)= (n+ 1)bxn− anxn−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< 0, 0 < x <
an

b(n+ 1)
,

> 0, x >
an

b(n+ 1)
,

(2.5)

and F(0)=−a < 0, it follows that (2.3) has a unique positive equilibrium point.
If we apply the Midpoint rule to autonomous delay differential equations

u̇= f
(
u(t),u(t− 1)

)
, t ≥ 0; u(t)= φ(t), −1≤ t ≤ 0, (2.6)

we could get

uk+1 = uk +h f
(
uk +uk+1

2
,
uk−m +uk−m+1

2

)
, k ≥ 0,

uk = φ(kh), −m≤ k ≤ 0,

(2.7)

where h = (1/m)(m ∈N+) stands for stepsize, and uk denotes the approximate value to
u(kh). Hence, using Midpoint rule (2.7) to (2.3) yields difference equation

uk+1 = uk +h

[
aτ − bτ

(
1/2n+1

)(
uk +uk+1

)(
uk−m +uk−m+1

)n
1 +

(
1/2n

)(
uk−m +uk−m+1

)n
]
. (2.8)

Suppose u∗ is a fixed point of (2.8), then u∗ satisfies

a
(
1 +un∗

)= bun+1
∗ . (2.9)

By the same argument on the unique positive equilibrium point, we know that there exists
a unique positive fixed point u∗.
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Set yk = uk −u∗. Then yk satisfies

yk+1 = 2nahτ +
(
ahτ − bhτu∗

)(
yk−m + yk−m+1 + 2u∗

)n
2n + (1 + bhτ/2)

(
yk−m + yk−m+1 + 2u∗

)n

+
2n + (1− bhτ/2)

(
yk−m + yk−m+1 + 2u∗

)n
2n + (1 + bhτ/2)

(
yk−m + yk−m+1 + 2u∗

)n yk.
(2.10)

By introducing a new variable Yk = (yk, yk−1, . . . , yk−m)T , we can rewrite (2.10) as

Yk+1 = F
(
Yk,τ

)
, (2.11)

where F = (F0,F1, . . . ,Fm)T and

Fi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2nahτ +
(
ahτ− bhτu∗

)(
yk−m + yk−m+1 + 2u∗

)n
2n + (1 + bhτ/2)

(
yk−m + yk−m+1 + 2u∗

)n

+
2n + (1− bhτ/2)

(
yk−m + yk−m+1 + 2u∗

)n
2n + (1 + bhτ/2)

(
yk−m + yk−m+1 + 2u∗

)n yk, i= 0;

yk−i+1, 1≤ i≤m.

(2.12)

Clearly, the origin is a fixed point of map (2.11), and the linear part of map (2.11) is

Yk+1 =AYk, (2.13)

where

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u∗ − ahτ/2
u∗ + ahτ/2

0 ··· 0
−anhτ

2
(
1 +un∗

)(
u∗ + ahτ/2

) −anhτ
2
(
1 +un∗

)(
u∗ + ahτ/2

)
1 0 ··· 0 0 0
0 1 ··· 0 0 0
...

...
. . .

...
...

...
0 0 . . . 1 0 0
0 0 . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.14)

whose characteristic equation is

λm+1− u∗ − ahτ/2
u∗ + ahτ/2

λm +
nahτ

2
(
1 +un∗

)(
u∗ + ahτ/2

)λ+
nahτ

2
(
1 +un∗

)(
u∗ + ahτ/2

) = 0.

(2.15)

Lemma 2.1. All roots of (2.15) have modulus less than one for sufficiently small positive
τ > 0.

Proof. For τ = 0, (2.15) is equated with

λm+1− λm = 0. (2.16)

The equation has an m-fold root and a simple root λ= 1.
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Consider the root λ(τ) of (2.15) such that λ(0) = 1. This root depends continuously
on τ and (2.15) is a differential function of τ, from which we have

dλ

dτ
= −ah(λ+ 1)

(
λm
(
1 +un∗

)
+n

)
2(m+ 1)λm

(
1 +un∗

)(
u∗ + ahτ/2

)− 2mλm−1
(
1 +un∗

)(
u∗ − ahτ/2

)
+nahτ

,

dλ

dτ
= −ah(λ+ 1)

(
λ
m(

1 +un∗
)

+n
)

2(m+ 1)λ
m(

1 +un∗
)(
u∗ + ahτ/2

)− 2mλ
m−1(

1 +un∗
)(
u∗ − ahτ/2

)
+nahτ

.

(2.17)

Since d|λ|2/dτ = λ(dλ/dτ) + λ(dλ/dτ), so

d|λ|2
dτ

∣∣∣∣
τ=0, λ=1

=−2ah
(
1 +n+un∗

)
u∗
(
1 +un∗

) < 0. (2.18)

Consequently, all roots of (2.15) lie in the unit circle for sufficiently small positive
τ > 0. �

A Hopf bifurcation occurs when two roots of the characteristic equation (2.15) cross
the unit circle. We have to find values of τ such that there are roots on the unit circle. The
roots on the unit circle are given by eiω, ω ∈ (−π,π]. Since we are dealing with complex
roots of a real polynomial which occur in complex conjugate pairs, we only need to look
for ω ∈ (0,π]. For ω ∈ (0,π], eiω is a root of (2.15) if and only if

2
(
1 +un∗

)(
u∗ +

ahτ

2

)
ei(m+1)ω− 2

(
1 +un∗

)(
u∗ − ahτ

2

)
eimω +nahτeiω +nahτ = 0.

(2.19)

So the values of τ are

τ = 2u∗
(
1 +un∗

)(
1− eiω)eimω

ah
(
eiω + 1

)((
1 +un∗

)
eimω +n

) , ω ∈ (0,π]. (2.20)

Because τ is assumed to be real, we get the following relations for ω(∈ (0,π]) and τ:

cosmω =−1 +un∗
n

, (2.21)

cosω = 4
(
1 +un∗

)2(
u2∗ + a2h2τ2/4

)− (nahτ)2

4
(
1 +un∗

)2(
u2∗ − a2h2τ2/4

)
+ (nahτ)2

. (2.22)

Suppose (1 + un∗)/n > 1, then cosmω < −1, which yields a contradiction. So we have
the following result.

Lemma 2.2. Assume that 1 +un∗ > n. Then (2.15) has no root with modulus one for all τ > 0.
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For 1 +un∗ < n, since cosmω < 0 and τ is positive real, from (2.20) we know that

τ = 2nu∗
(
1 +un∗

)
tan(ω/2)sinmω

ah
(
n2− (1 +un∗

)2) . (2.23)

Let λi(τ)=ri(τ)eiωi(τ) be a root of (2.15) near τ=τi satisfying ri(τi)= 1 andωi(τi)= ωi.
Then there are

ωi = 1
m

[
cos−1

(
− 1 +u∗

n

)
+ 2iπ

]
, i= 0,1,2, . . . ,

[
m− 1

2

]
, (2.24)

τi = τ
(
ωi
)
, (2.25)

where [·] denotes the greatest integer function, and we have the following result.

Lemma 2.3. If 1 +un∗ < n, then

dr2
i (τ)
dτ

∣∣∣∣
τ=τi, ω=ωi

> 0, (2.26)

where τi and ωi satisfy (2.24) and (2.25).

Proof. From (2.15), we notice that

λm = nahτ(λ+ 1)(
1 +un∗

)(
2u∗(1− λ)− ahτ(1 + λ)

) . (2.27)

Substituting this equation into (2.17), we have

dr2
i (τ)
dτ

= λdλ
dτ

+ λ
dλ

dτ
= 8mnτu∗∣∣a1λ2 + b1λ+ c1

∣∣2

[
2u∗(n+ 1) + ahτ(n− 1)− 4u∗ cos2ω

]
.

(2.28)

However,

2u∗(n+ 1) + ahτ(n− 1)− 4u∗ cos2ω

= 2u∗(n+ 1) + ahτ(n− 1)− 4u∗

[
4
(
1 +un∗

)2(
u2∗ + a2h2τ2/4

)− (nahτ)2

4
(
1 +un∗

)2(
u2∗ − a2h2τ2/4

)
+ (nahτ)2

]2

= 1
�
{(

2u∗ + ahτ
)
(n− 1)

[(
4u2

∗
(
1 +un∗

)2)2
+
(
(ahτ)2(n2− (1 +un∗

)2))2]

+ 4u2
∗(ahτ)2(1 +un∗

)2[
n2− (1 +un∗

)2][
4u∗(n+ 3) + 2ahτ(n− 1)

]}
,
(2.29)
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where

�=
∣∣∣∣4
(
1 +un∗

)2
(
u2
∗ −

a2h2τ2

4

)
+ (nahτ)2

∣∣∣∣
2

. (2.30)

In view of 1 +un∗ < n, we see that

dr2
i (τ)
dτ

∣∣∣∣
τ=τi, ω=ωi

> 0. (2.31)

Thus, the proof is complete. �

Lemma 2.4. (i) If 1 +un∗ > n, then all roots of the characteristic equation (2.15) have mod-
ulus less than one.

(ii) If 1 + un∗ < n, then (2.15) has a pair of simple roots e±iωi on the unit circle when
τ = τi, i = 0,1,2, . . . , [(m− 1)/2]. Furthermore, if τ ∈ [0,τ0), then all the roots of (2.15)
have modulus less than one; if τ = τ0, then all roots of (2.15) except e±iω0 have modulus less
than one. But if τ ∈ (τi,τi+1], for i = 0,1,2, . . . , [(m− 1)/2], (2.15) has 2(i+ 1) roots have
modulus more than one.

Proof. By Lemmas 2.1 and 2.2, and applying a similar result of Ruan and Wei (see [13,
Corollary 2.4]), we arrive at the conclusion (i).

If 1 +un∗ < n, let τi be as in (2.25). From (2.21) and (2.23), we have that (2.15) has roots
e±iωi if and only if τ = τi and ω = ωi given in (2.24) and (2.25).

Since tan(ω/2) is monotonically increasing for ω ∈ (0,π] and (2.24), we know that
the smallest positive τi with roots on unit circle is τ0. By Lemmas 2.1 and 2.3, we know
that if τ ∈ [0,τ0), then all the roots of (2.15) have modulus less than one; if τ = τ0, then
all roots of (2.15) except e±iω0 have modulus less than one; furthermore, by Rouché’s
theorem (Dieudonné [14, Theorem 9.17.4]), the statement on the number of eigenvalues
with modulus more than one as follows. �

Spectral properties in Lemma 2.4 immediately lead to stability properties of the zero
solution of (2.10), and equivalently, of the positive fixed point u= u∗ of (2.8).

Theorem 2.5. (i) If 1 +un∗ > n, then u= u∗ is asymptotically stable for any τ ≥ 0.
(ii) If 1 + un∗ < n, then u = u∗ is asymptotically stable for τ ∈ [0,τ0), and unstable for

τ > τ0.
(iii) For 1 + un∗ < n, (2.8) undergoes a Hopf bifurcation at u∗ when τ = τi, for i = 0,1,

2, . . . , [(m− 1)/2].

3. Direction and stability of the Hopf bifurcation in discrete model

In the previous section, we obtained conditions of Hopf bifurcation occurring when τ =
τi, i= 0,1,2, . . . , [(m− 1)/2]. In this section, we study the direction of the Hopf bifurcation
and the stability of the bifurcating periodic solutions when τ = τ0, using techniques from
normal form and center manifold theory (see, e.g., Kuznetsov [12]). To prove the main
result, we need some preliminary lemmas.
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Set τ = τ0 +μ, μ∈ R. Then μ= 0 is a Hopf bifurcation value for (2.10). Rewrite (2.10)
as

yk+1

= u∗−ah
(
τ0 +μ

)
/2

u∗+ah
(
τ0 +μ

)
/2
yk − anhτ

2
(
1+un∗

)(
u∗+ah

(
τ0 +μ

)
/2
)(yk−m+yk−m+1

)

+
han

(
τ0 +μ

)[−n+1+(n+1)
(
1+hb

(
τ0 +μ

)
/2
)
un∗
]

(
1+un∗

)2(
2u∗+ha

(
τ0 +μ

))2

(
y2
k−m+y2

k−m+1

)

+
han

(
τ0 +μ

)[−((n+1)/(n+2)
)(

(n+2)un∗
(
1+hb

(
τ0 +μ

)
/2
)−2(n−1)

)2
+3n2(n−1)/(n+2)

]
(
1 +un∗

)3(
2u∗ +ha

(
τ0 +μ

))3

× (y3
k−m+y3

k−m+1

)
+O

(∣∣y4
∣∣).

(3.1)

So system (2.11) is turned into

Yk+1 = AYk +
1
2
B
(
Yk,Yk

)
+

1
6
C
(
Yk,Yk,Yk

)
+O

(∥∥Yk∥∥4
)

, (3.2)

where

B
(
Yk,Yk

)= (b0
(
Yk,Yk

)
,0, . . . ,0

)
,

C
(
Yk,Yk,Yk

)= (c0
(
Yk,Yk,Yk

)
,0, . . . ,0

)
,

(3.3)

b0(φ,ψ)= b̃ · (φm−1ψm−1 +φmψm
)
,

c0(φ,ψ,η)= c̃ · (φm−1ψm−1ηm−1 +φmψmηm
)
,

(3.4)

where

b̃= nah
(
τ0 +μ

)(−(n−1)+(n+1)
(
1+bh

(
τ0 +μ

)
/2
)
un∗
)

(
1+un∗

)2(
2u∗+ah

(
τ0 +μ

))2 ,

c̃=nah
(
τ0 +μ

)[−((n+1)/(n+2)
)(

(n+2)un∗
(
1+bh

(
τ0 +μ

)
/2
)−2(n−1)

)2
+3n2(n−1)/(n+2)

]
(
1+un∗

)3(
2u∗+ah

(
τ0 +μ

))3 .

(3.5)

Let q = q(τ0)∈ Cm+1 be an eigenvector of A corresponding to eiω0 , then

Aq = eiω0q, Aq = e−iω0q. (3.6)

We also introduce an adjoint eigenvector q∗ = q∗(τ)∈ Cm+1 having the properties

ATq∗ = e−iω0q∗, ATq∗ = eiω0q∗, (3.7)

and satisfying the normalization 〈q∗,q〉 = 1, where 〈q∗,q〉 =∑m
i=0 q

∗
i qi.
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Lemma 3.1 [15]. Define a vector-valued function q : C→ Cm+1 by

p(ξ)= (ξm,ξm−1, . . . ,1
)T
. (3.8)

If ξ is an eigenvalue of A, then Ap(ξ)= ξ p(ξ).

In view of Lemma 3.1, we have

q = p
(
eiω0

)= (eimω0 ,ei(m−1)ω0 , . . . ,eiω0 ,1
)T
. (3.9)

Lemma 3.2. Suppose q∗ = (q∗0 ,q∗1 , . . . ,q∗m)T is the eigenvector of AT corresponding to
eigenvalue e−iω0 , and 〈q∗,q〉 = 1. Then

q∗ = K
(
ei(m−1)ω0

e−iω0 − am ,ei(m−1)ω0 ,ei(m−2)ω0 , . . . ,ei2ω0 ,eiω0 ,
a0eimω0

e−iω0 − am
)T

, (3.10)

where am = (2u∗ − τ0ah)/(2u∗ + τ0ah), and a0 = a1 =−anhτ/(1 +un∗)(2u∗ + ahτ) are the
coefficients of λ in characteristic equation (2.15), and

K =
[
eiω0 + a0e−imω0

eiω0 − am + (m− 1)
]−1

. (3.11)

Proof. Assign q∗ satisfies ATq∗ = zq∗ with z = e−iω0 , then the following identities hold:

amq
∗
0 + q∗1 = e−iω0q∗0 ,

q∗k = e−iω0q∗k−1, k = 2, . . . ,m− 1,

a1q
∗
0 + q∗m = e−iω0q∗m−1,

a0q
∗
0 = e−iω0q∗m.

(3.12)

Let q∗m−1 = eiω0K , then

q∗ = K
(
ei(m−1)ω

e−iω− am ,ei(m−1)ω, . . . ,eiω,
a0eimω

e−iω− am
)T
. (3.13)

From normalization 〈q∗,q〉 = 1 and direct computation, the lemma follows. �

Let a(λ) be characteristic polynomial of A and λ0 = eiω0 , following the algorithms in
[12] and using a computation process similar to that in [15], we can compute an expres-
sion for the critical coefficient c1(τ0),

c1
(
τ0
)= g20g11

(
1− 2λ0

)
2
(
λ2

0− λ0
) +

∣∣g11
∣∣2

1− λ0
+

∣∣g02
∣∣2

2
(
λ2

0− λ0
) +

g21

2
, (3.14)
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where

g20 =
〈
q∗,B(q,q)

〉
,

g11 =
〈
q∗,B(q,q)

〉
,

g02 =
〈
q∗,B(q,q)

〉
,

g21 =
〈
q∗,B

(
q,ω20

)〉
+ 2
〈
q∗,B

(
q,ω11

)〉
+
〈
q∗,C(q,q,q)

〉
,

ω20 = b0(q,q)
a
(
λ2

0

) p
(
λ2

0

)−
〈
q∗,B(q,q)

〉
λ2

0− λ0
q−

〈
q∗,B(q,q)

〉
λ2

0− λ0
q,

ω11 = b0(q,q)
a(1)

p(1)−
〈
q∗,B(q,q)

〉
1− λ0

q−
〈
q∗,B(q,q)

〉
1− λ0

q.

(3.15)

By (3.4), (3.9), and Lemma 3.2, we get

b0
(
q, p

(
ei2ω0

))= b̃(eiω0 + 1
)
,

b0(q,q)= b̃(ei2ω0 + 1
)
,

b0(q,q)= 2b̃,

c0(q,q,q)= c̃(eiω0 + 1
)
,

a
(
ei2ω0

)= ei2(m+1)ω0 − amei2mω0 − a1e
i2ω0 − a0,

a(1)= 1− am− a1− a0,

b0
(
q, p(1)

)= b̃(eiω0 + 1
)
.

(3.16)

Substituting these into (3.14), we have

c1
(
τ0
)= me−imω− (m− 1)ame−i(m−1)ω + a0e−i(2m−1)ω

2Σ

×
[
b̃2
(
1 + eiω+i2ω + ei3ω

)(
e−i2(m+1)ω− ame−i2mω− a1e−i2ω− a0

)
δ

+
4b̃2

(
1 + eiω

)
1− am− a1− a0

+ c̃
(
1 + eiω

)]
,

(3.17)

where

Σ= ∣∣(m− 1)
(
eiω−am

)
+ eiω + e−imωa0

∣∣2
,

δ = ∣∣ei2(m+1)ω− amei2mω− a1e
i2ω− a0

∣∣2
.

(3.18)

Lemma 3.3 [15]. Given the map (2.11) and assume
(1) λ(τ)= r(τ)eiω(τ), where r(τ∗)= 1, r′(τ∗) �= 0, and ω(τ∗)= ω∗;
(2) eikω

∗ �= 1 for k = 1,2,3,4;
(3) Re[e−iω∗c1(τ∗)] �= 0,
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Table 4.1. The values of τk .

τ0 τ1 τ2 τ3 τ4 τ5 ···

h= 1
2

4.63837 — — — — — —

h= 1
10

4.13355 16.3729 32.8878 63.4695 391.224 — —

h= 1
100

4.11548 15.3644 26.6438 37.9761 110.292 136.042 ···

Table 4.2. The values of c1(τ0) and Re[e−iω0c1(τ0)].

c1
(
τ0
)

Re
[
e−iω0c1

(
τ0
)]

h= 1
2

0.0107231–0.128588i −0.113006

h= 1
10

−0.0344386–0.0198785i −0.0380641

h= 1
100

−0.00396203–0.0010418i −0.00398495

then an invariant closed curve, topologically equivalent to a circle, for map (2.11) exists for τ
in a one side neighborhood of τ∗. The radius of the invariant curve grows like O(

√|τ − τ∗|).
One of the four cases below applies:

(1) r′(τ∗) > 0, Re[e−iω∗c1(τ∗)] < 0. The origin is asymptotically stable for τ < τ∗ and
unstable for τ > τ∗. An attracting invariant closed curve exists for τ > τ∗.

(2) r′(τ∗) > 0, Re[e−iω∗c1(τ∗)] > 0. The origin is asymptotically stable for τ < τ∗ and
unstable for τ > τ∗. A repelling invariant closed curve exists for τ < τ∗.

(3) r′(τ∗) < 0, Re[e−iω∗c1(τ∗)] < 0. The origin is asymptotically stable for τ > τ∗ and
unstable for τ < τ∗. An attracting invariant closed curve exists for τ < τ∗.

(4) r′(τ∗) < 0, Re[e−iω∗c1(τ∗)] > 0. The origin is asymptotically stable for τ > τ∗ and
unstable for τ < τ∗. An attracting invariant closed curve exists for τ > τ∗.

From the discussion in Section 2, we know that r′(τ∗) > 0, therefore, by Lemma 3.3
we have the following result.

Theorem 3.4. If 1 +un∗ < n, then u= u∗ is asymptotically stable for τ ∈ [0,τ0), and unsta-
ble for τ >τ0. An attracting (repelling) invariant closed curve exists for τ >τ0 if Re[e−iω0c1(τ0)]
< 0(> 0).

4. Numerical test

Firstly, we choose system (2.1) with b = 1, a= 16/9, n= 3, and initial value u= 2 + sin(t),
then u∗ = 2 and satisfy 1 +un∗ > n. According to Lemma 2.1, we deduce that for this case
u∗ = 2 is asymptotically stable for any τ ≥ 0 (Figure 4.1). Secondly, we consider system
(2.1) with b = 1, a = 0.5, n = 3, and initial value u = 2 + sin(t), then u∗ = 1 and satisfy
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2
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1
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h= 1/100,τ = 40

(c)

Figure 4.1. b = 1, a= 16/9, n= 3, h= 1/100.
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Figure 4.2. τ0 = 4.63837, Re[e−iω0c1(τ0)]=−0.113006 < 0.
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Figure 4.3. τ0 = 4.13355, Re[e−iω0c1(τ0)]=−0.0380641 < 0.
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Figure 4.4. τ0 = 4.11548, Re[e−iω0c1(τ0)]=−0.00398495 < 0.
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Figure 4.5. The solution of system (1.1) applied by Euler method with b = 1, a = 0.5, n = 3, and
h= 1/10 is invalid for τ = 50.
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Figure 4.6. The solution of system (1.1) applied by Euler method with b = 1, a = 0.5, n = 3, and
h= 1/100.
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1 +un∗ < n. From Table 4.1, we see that there exists a sequence of τi, and with the increas-
ing of m τ0 asymptotically convergence to τ0 ≈ 4.1153, which is the true value. Further-
more, noting Lemma 2.1 we judge that u∗ = 1 is asymptotically stable for τ ∈ [0,τ0) and
unstable for τ > τ0, and system (2.1) undergoes a Hopf bifurcation at u∗ when τ = τi, for
i= 0,1,2, . . . , [(m− 1)/2]. Combining Table 4.1 with Table 4.2, and by Lemma 3.1, we can
derive that an attracting invariant closed curve exists for τ > τ0 for Re[e−iω0c1(τ0)] < 0.
Justly, Figures 4.2, 4.3, and 4.4 coincide with those results.

In this section, we take two systems to verify Theorems 2.5 and 3.4. What we get shows
that our theoretical analysis is correct.

At last, in order to illustrate the merits of Midpoint Rule we try to use another methods
to get discrete systems of (1.1), such as explicit Euler method. Compare Figures 4.3 and
4.5, we can find that for τ = 50, using the same step size h= 1/10, the Euler discrete model
cannot get the bifurcation solution, if we will show the realities, we must reduce the step
size (see Figure 4.6). But the Midpoint discrete can get it. These show that, τ0 in discrete
system (2.8) converges the Hopf bifurcation of the original system more fast than ones in
another discrete system, with the same step size.

5. Conclusions

From the above analysis, we can find that the delay does not influence the system’s stabil-
ity when the coefficients of system satisfy condition 1 +un∗ > n. But when the coefficients
of system satisfy condition 1 +un∗ < n, for small delay the positive fixed point of system is
stable. With the increasing of delay, the positive fixed point loses its stability and a family
of periodic solutions occurs. We could compute the bifurcation for a given system (1.1).
Therefore, we infer that when the time between oxygenation of blood in the lungs and
stimulation of chemoreceptors in the brainstem is less than τ0, the arterial CO2 concen-
tration in the patient will attain stability; but when the time is more than τ0, the arterial
CO2 concentration in the person will be unstable, that is, the patient has an abnormal
respiration (Cheyne-Stokes respiration).
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