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We analyze urban spatial segregation phenomenon in terms of the income distribution
over a population, and an inflationary parameter weighting the evolution of housing
prices. For this, we develop a discrete spatially extended model based on a multiagent ap-
proach. In our model, the mobility of socioeconomic agents is driven only by the housing
prices. Agents exchange location in order to fit their status to the cost of their housing.
On the other hand, the price of a particular house depends on the status of its tenant, and
on the neighborhood mean lodging cost weighted by a control parameter. The agent’s dy-
namics converges to a spatially organized configuration, whose regularity is measured by
using an entropy-like indicator. This simple model provides a dynamical process organiz-
ing the virtual city, in a way that the population inequality and the inflationary parameter
determine the degree of residential segregation in the final stage of the process, in agree-
ment with the segregation-inequality thesis put forward by Douglas Massey.

Copyright © 2007 A. Aguilera and E. Ugalde. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The spatial structure of a city is the result of a wide and complex set of factors. The
way in which different economic activities and social groups spread over the urban space
is the matter of different and complementary theories in sociology, geography, politics,
and economy [1–4]. Housing patterns can be understood as the result of the complex
interrelationship between individuals’ actions constrained by social, political, and eco-
nomical rules [2, 5]. Residential segregation is the degree to which two or more groups
live separately from one to another in different parts of the urban space [6, page 282].
This phenomenon is concurrent to several social problems as the concentration of low
opportunities to get a well-earned job, low scholar development in children of segregated
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Figure 1.1. Segregation-inequality curve according to Morrison et al. [28].

areas, premature parenthood between young people, and the emergence of criminality
[7, 8].

Residential segregation has been the subject of extensive research in social sciences
for many years. It is a multifactorial phenomenon mainly determined by socioeconomic
factors like race and income distribution, as well as factors associated to the structure of
the urban space [7–11].

There are two main quantitative approaches to segregation, the phenomenological one
which relies on segregation measures and indexes [6, 12, 13], and the theoretical one
based on computational or mathematical models [7, 8, 11, 14–27].

In this paper we propose a spatially extended model based on ideas of Portugali et
al. [23] and Schelling [24–26] to explore, in a mathematical and computational way, the
relationship between two social variables: the income inequality and the residential seg-
regation. Our interest in this relationship is motivated by a thesis formulated by Massey
et al. [7], which establishes that the degree of spatial segregation experienced by a society
increases with its level of inequality. This relationship has been formulated in a graphical
way by Morrison et al. [28] as the segregation-inequality curve (see Figure 1.1).

As many other phenomena studied by socioeconomic sciences (e.g., price formation
[29], opinion formation and voting [30–33], belief and rumor propagation [34–36], for-
mation of cultural domains [37, 38]), residential segregation has motivated the curiosity
of researchers in the area of dynamical systems [39, 40]. Our work should be primarily
understood as a contribution to the study of a discrete dynamical systems inspired by
socioeconomic phenomena. It can also be placed inside a tradition started by social sci-
entists as Schelling [24–26] and Sakoda [41], and followed by Clark [15], Fosset [16, 17],
Osullivan et al. [22], and Zhang [27], who used mathematical models to study the under-
lying mechanisms in social processes.

The organization of the paper is as follows. In the next section we briefly expose the
main theoretical studies concerning the residential segregation, emphasizing only the
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ideas and concepts that are relevant to our research. In Section 3 we present the math-
ematical model and the tools needed to analyze our numerical simulation, which we do
in Section 5. Previous to this, in Section 4 we study asymptotic behavior of the model,
and derive some theoretical estimates which we consider for the numerical study. Finally,
we conclude with a discussion about the potential of our model as vehicle for the explo-
ration of the role of income inequality in residential segregation phenomena.

2. The segregated city

Residential segregation is a complex phenomenon with several dimensions of analysis,
whose governing mechanisms are hard to identify. In a first approximation, we can how-
ever assume that the phenomenon is governed by a set of structural and behavioral rules
which determine the possibility of one individual to get a particular kind of house in a
specific location of the city. Since those rules are not evident, simplifying hypotheses are
required.

One point of view, based on human ecology, postulates that residential segregation
occurs because individuals in a city are in mutual competition for the space and its re-
sources. According to this approach, competition is the main force driving the residential
segregation [2, page 86]. The outcome of this competition is determined by the ability of
individuals to struggle for advantageous locations in the urban space, that is, their dom-
inant capacity, which is constrained by sociocultural and socioeconomic rules [2, pages
85–88].

There are three main hypotheses about the sociocultural rules governing the residen-
tial segregation. The first one concerns the class-selective emigration from poor regions.
In a region where both poor and less poor people coexist, the latter tend to emigrate to
a more wealthy region. This mechanism tends to isolate and concentrate poor people,
increasing in this way the poverty rate of the region. The second hypothesis establishes
that neighborhood concentration of poor people reflects the general poverty of the urban
area. When the average shows a downward trend, neighborhood poverty rates increase.
Finally, the third is related to the racial segregation experienced by poor people. Racial
bias causes racial segmentation of the urban housing markets, which concurs with high
rates of poverty in specific ethnic groups to concentrate poverty geographically (see [8,
pages 426–428], and references therein). These hypotheses are complementary, and were
developed to explain segregation in North-American cities, where they have been tested.
Perhaps in the Latino-American case, racial and sociocultural factors have a less relevant
role, making it possible to build an explicative model over socioeconomic considerations
only.

Taking into account that “markets are not mere meetings between producers and con-
sumers, whose relations are ordered by the interpersonal laws of supply and demand”
[3, page 1], we can formulate socioeconomic rules as market mechanisms. The housing
market is formed by two kinds of agents: residents which are interested in the social and
individual value or use of the land commodity, and the entrepreneurs which are inter-
ested in the exchange value of the land. There is a natural conflict between these two of
valuations of land.
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There is a set of structural factors that are relevant to housing market dynamics: (a)
the housebuilding industry; (b) the government’s housing policy; (c) the structure of the
property of land; (d) the actual spatial structure of city, that is, location of labor area,
residential areas, and trade-commerce areas; and (e) the income structure of the society.
The last one has been considered as the most significant for the residential segregation
phenomenon. Indeed, urban economic theory explains the formation of segregated cities
through two main arguments. The first one establishes that a population of households
with heterogeneous income competing for the occupation of urban land traditionally
results in an income-based stratification of the urban space according to the distance to
the city center [42]. The second one links the concentration of low incomes households in
some areas to the existence of local externalities like ethnicity. As a consequence of this,
there is a households’ preference to live in relative homogeneous neighborhoods with
respect to either income or ethnic similarity [26, 43, 44].

Two levels of analyses may be considered in the study of residential segregation. At the
macro level, several structural transformations in the society (changes in income level,
tendency to racial exclusion, levels of social integration, etc.) are assumed to determine
the spatial concentration of poverty. This is the level of analysis in [8–10, 45]. At the
microlevel, specific discriminatory individual behaviors related individual characteristics
(sex, age, religion, ethnic group, nationality, etc.) influence the choice of a place to live.
This is the point of view in [15, 23–26, 46], and it is also the one we adopt here.

Our model was developed with the purpose of studying Massey et al.’s thesis [7, page
400], which relates the degree of spatial segregation experienced by a society to its in-
equality degree (income disparity). This thesis was reformulated as the segregation-
inequality curve (see Figure 1.1) by Morrison et al. [28]. More precisely, we intend to
determine the relationship between these two quantifiable phenomena, inequality, and
segregation, in a situation where the whole dynamics is governed by basic rules of socioe-
conomic nature.

3. Model structure

Our model is inspired in the works of Schelling [24, 25] and Portugali et al. [23]. Like
Portugali’s models, the physical infrastructure of our “simplified city” is modeled by a
two-dimensional lattice of finite size Λn = {1,2, . . . ,n}× {1,2, . . . ,n}. A two-dimensional
integer vector x = (x1,x2)∈Λn represent spatial coordinates. At each time step, the prices
of the house at location x is a positive real number, originally in the interval [0,1]. Each
house is occupied by a householder or agent, who can be distinguished only by his/her
socioeconomic status. We quantify this status with a real number taking one of three pos-
sible values p <m < r (which stands for poor, middle class, and rich, resp.) in the interval
[0,1]. Houses are identical in their characteristics but differentiable by their prices.

There are two main mechanism setting up the house’s prices dynamics: the neighbor-
hood influence and the householder’s economic status. On the other hand, the agents
change position subject to availability, under the pressure of their housing situation.
Agents can move inside the city to achieve an optimal match between their status and
the price of the house they inhabit. Agents try to live in houses with prices suiting their
economic status.



A. Aguilera and E. Ugalde 5

At time t, the prices of houses are encoded in an n×n matrix Vt := (Vt(x))x∈Λn , while
the spatial distribution of agents is stored in a numerical n× n matrix At := (At(x))x∈Λn

with values in {p,m,r} ⊂ [0,1]. This means that at time t, the value of the house at loca-
tion x isVt(x), and the status of the agent living in that location is quantified by the num-
ber At(x), which in our numerical experiments takes values r = 1, m= 1/2, or p = 1/10.
The price of the house at location x evolves, from time t to t+ 1, according to

Vt+1(x)=At+1(x) + λ

∑
y∈�(x)V

t(y)

#�(x)
, (3.1)

where �(x) := {y ∈Λn : |x1− y1|+ |x2− y2| ≤ 2} is the square neighborhood of radius 2
centered at x. If x is located far from the boundaries of the lattice, #�(x)= 25. This cardi-
nality diminishes as x approaches the boundaries. The parameter λ weights the influence
of the mean price on the neighborhood over the house price, and can be thought as an
inflationary parameter: the larger λ is the higher the asymptotic mean value of the houses
in the city is.

After updating the values of houses, the agents are relocated according to the following
rule. We randomly select two locations x,y ∈ Λn and try to exchange the agents at these
locations. This would correspond to replace At(x) by At(y) and vice versa. In order to
decide whether this relocation is retained or not, we compare the new distribution of
agents with the spatial distribution of house prices. For this, we define

δ(x,y) := (At(x)−Vt(x)
)2− (At(y)−Vt(x)

)2
+
(
At(y)−Vt(y)

)2− (At(x)−Vt(y)
)2
.

(3.2)

This quantifies the economic improvement due to the attempted house exchange between
agents at locations x and y. Notice that each time, only two agents are considered for a
house exchange. This relocation takes place only if δ(x,y) > 0, that is, if the exchange gives
place to an economic improvement for the agents involved. Summarizing, at time t we
select two locations x,y ∈ Λn, and update At as follows: At+1(z) = At(z) for z �∈ {x,y},
and

if δ(x,y) > 0 then At+1(x)=At(y), At+1(y)=At(x),

else At+1(x)=At(x), At+1(y)=At(y).
(3.3)

The economic improvement due to a house exchange leads to the reduction on the eco-
nomic tension

T(A,V)= |A−V | :=
√ ∑

x∈Λn

(
A(x)−V(x)

)2
. (3.4)

Agents try to minimize the economic tension generated by difference between housing
price and status. In our model, this difference plays the same role as the dissatisfaction
or the unhappiness in Schelling’s model [24–26]. Notice that the evolution of agents’ dis-
tribution in space satisfies an exclusion principle, according to which two agents cannot
occupy the same location.
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3.1. Analytical tools. The segregation-inequality curve gives the relation between two
characteristics of the system: inequality and segregation. The income distribution can be
interpreted as a probability vector. The proportions of the population in each income
group would be the probability for an individual to belong to that income group. With
this idea, income inequality can be measure by using Theil’s inequality index [47, pages
91–96]. Adapting this index to our situation, we define inequality of an n× n agents’
distribution A as follows:

I(A)= log(3) +
∑

i=p,m,r

qi log
(
qi
)
, (3.5)

where for i = p,m,r, qi = #{x ∈ Λn : A(x) = i}/n2 is the proportion of agents in each
income group. The inequality so defined is an entropy-like indicator taking values in the
interval [0, log(3)]. The minimum I corresponds to the case where the total population
is equally distributed among all the income groups, and maximum to the limit case of
a single income group concentrating in the whole population. This last limit would be
obtained from distributions where a given income group includes most of the population.

The other characteristic we need to determine the segregation curve is the spatial seg-
regation itself. Though measures of segregation have been the subject of several works in
sociology (see [19, page 283] and references therein), it is more suitable to our approach
to quantify this characteristic by using the degree of order of a given spatial distribution.
The idea is to associate the maximum degree of order to a spatial distribution which can
be easily described, like a single cluster or a periodic distribution. On the other hand, a
random distribution would have a low degree of order. We use an image segmentation
technique, the biorthogonal decomposition to associate a degree of disorder (the entropy
of the biorthogonal decomposition), to a given spatial distribution which we treat as an
image [48, page 131]. Thus, to quantify the segregation (ordering) of the city, we com-
pare the entropy of the biorthogonal decomposition of the ordered distribution with that
corresponding to a random distribution.

The biorthogonal decomposition is the bidimensional generalization of the Karhunen-
Loève transform, but with the advantage that it is sensible to changes in the spatial struc-
ture of one image. To a biorthogonal decomposition an entropy is associate, which mea-
sures the amount of information of the image [48, page 133]. A spatial pattern corre-
sponds to an inhomogeneous distribution of pixels and this kind of images has low en-
tropy, while absence of a spatial pattern corresponds to a random distribution of pixels,
which has the highest entropy.

Consider an n× n positive matrix U , which is supposed to codify an image or a two-
dimensional distribution. The associate covariance matrix Q := U†U is symmetric, and
hence its eigenvalues {λi : i = 1, . . . ,n} are real, and the corresponding eigenvectors {φi :
i = 1, . . . ,n} define an orthonormal basis. The biorthogonal decomposition allows us to
rewrite the matrix U as

U =
m∑

i=1

ψiφ
†
i , (3.6)
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where ψi = Uφi for i = 1,2, . . . ,n. The contribution of the submatrix ψiφ
†
i to the sum

is of the order of the corresponding eigenvalue |λi|. The information of the matrix U is
concentrated in the submatrices associated to eigenvalues with the highest absolute value.
For positive U , we neglect the largest eigenvalue λ1, which can be associated to a spatially
homogeneous mode. Using the eigenvalue structure of the biorthogonal decomposition,
we define the information contents of U by

HBO(U)=−
n∑

i=2

pi ln pi, (3.7)

where

pi =
∣
∣λi
∣
∣

∑n
k=2

∣
∣λi
∣
∣ . (3.8)

For an agent distribution A, the segregation index is

SBO(A)= E(HBO
)−HBO(A), (3.9)

where E(HBO) is the expected value of HBO with respect to a random distribution of
agents in the (n× n)-dimensional lattice. We have numerically found that E(HBO) ≈
log(3/5×n) for n≤ 1000.

4. Asymptotic behavior of the model

In order to understand the asymptotic behavior of the model, let us rewrite (3.1) and
(3.3) in matrix form as follows:

Vt+1 = At + λDVt,

At+1 = PtAt, (4.1)

where bothVt andAt have to be considered as (m×n)-dimensional vectors,D is the aver-
aging matrix whose action is defined by (3.1), and Pt is a permutation matrix which per-
mutes at most two coordinates. If for the chosen coordinates x,y ∈Λn we have δ(x,y) > 0,
then Pt is the matrix permuting those coordinates, otherwise Pt is the identity matrix.

After a sufficiently large number of iterations, named T , the agents achieve a spatial
distributionA∗ which cannot be improved. From that point on, the distribution of hous-
ing prices follows the affine evolution VT+t =A∗ + λDVT+t−1, so that

VT+t = (λD)tVT +

( t−1∑

s=0

(λD)s
)

A∗ = (λD)tVT +
(

Id−(λD)t
)
(Id−λD)−1A∗. (4.2)

The long-term distribution of housing prices is therefore V∗ := (Id−λD)−1A∗, so that
the economic tension associated to the asymptotic distribution of agents is

T∗
(
A∗
)

:= T(A∗,V∗)= ∣∣A∗ − (Id−λD)−1A∗
∣
∣= λ×∣∣(Id−λD)−1(DA∗

)∣
∣. (4.3)
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Because of the nondeterministic nature of the evolution of our system, the asymptotic
distribution A∗ is not uniquely determined by initial conditions. Nevertheless, it has to
satisfy the following “variational principle”:

T∗
(
A∗
)=min

P

∣
∣
(
P− (Id−λD)−1)A∗

∣
∣, (4.4)

where the minimum is taken over the set of all two-sites permutations. This is equivalent
to say that asymptotically no location exchange can diminish the economic tension.

4.1. Critical λ. For λ small, a spatially disordered initial distribution of agentsA0 remains
unchanged, and the system evolves following an affine law, converging to A∗ = A0, V∗ =
(Id−λD)−1A0. For each spatially disordered initial distribution A0, there exists a critical
value λc for which A0 evolves towards a spatially organized state A∗. This distribution is
composed by relatively small number of clusters, each one of them consisting of a nucleus
of rich agents surrounded by middle class ones, while the lower-class agents occupy the
space left by the clusters. In our numerical experiments, which we describe below, we
have found that λc essentially depends on the proportion of r, m, and p in A0.

A two-sites permutation A∗ �→ PA∗ produces a change in the economic tension,

T∗
(
A∗
) �−→ ∣∣λ(Id−λD)−1(DA∗

)
+
(
A∗ −PA∗)∣∣. (4.5)

According to (4.4), this change does not make the economic tension decrease. In order
for this to be so, it is necessary that

∣
∣PA∗ −A∗∣∣2 ≥ 2λ

(
(Id−λD)−1(DA),PA∗ −A∗), (4.6)

for each two-sites permutation A∗ �→ PA∗. We may decompose DA∗ = A∗1 + f as the
sum of a constant vector and a fluctuating one. Since

(Id−λD)−11= 1
1− λ (4.7)

and (1,PA∗ −A∗)= 0, then (4.6) can be written as

∣
∣PA∗ −A∗∣∣2 ≥ 2λ

(
(Id−λD)−1 f ,PA∗ −A∗). (4.8)

Taking this into account, we may define λc as

λc =min

{

λ > 0 :
1
2
<max

P

λ
(
(Id−λD)−1 f ,PA∗ −A∗)

∣
∣PA∗ −A∗∣∣2

}

, (4.9)

where the maximum is taken over the two-sites permutations. For P interchange coordi-
nates x, y, we have

λ
(
(Id−λD)−1 f ,PA∗ −A∗)

∣
∣PA∗ −A∗∣∣2 ≡

(
(Id−λD)−1 f

)
x−
(
(Id−λD)−1 f

)
y

2
(
A∗y −A∗x

) . (4.10)
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4.2. An a priori estimate for λc. A reasonably good estimate for λc can be obtained as
follows. Considering A∗ as a random field, the central limit theorem ensures that with
very high probability, DA∗x ∈ [A∗ − 2σ̃ ,A∗ + 2σ̃], where

σ̃ = 1√
N

√

E
((
A∗x −A∗

)2
)
. (4.11)

Here N is the number of sites in the computation of the local mean DA∗x , which in our
case is 25. Hence, with very high probability,

max
x,y

∣
∣ fx− fy

∣
∣= 4σ̃ = 4

5

√

ρr
(
r−A∗)2

+ ρm
(
m−A∗)2

+ ρp
(
p−A∗)2

, (4.12)

where ρr , ρm, ρp are the proportions of r, m and p in A∗, respectively. By using the upper
bound

max
x,y

∣
∣
(
(Id−λD)−1 f

)
x−
(
(Id−λD)−1 f

)
y

∣
∣� maxx,y

∣
∣ fx− fy

∣
∣

1− λ , (4.13)

we obtain

max
P

λ
(
(Id−λD)−1 f ,PA∗ −A∗)

∣
∣PA∗ −A∗∣∣2

� λ

1− λ ×
2
√
ρr
(
r−A∗)2

+ ρm
(
m−A∗)2

+ ρp
(
p−A∗)2

5(m− p)
.

(4.14)

According to (4.9), for λ≥ λc, we have

1
2
<

λ

1− λ ×
2
√
ρr
(
r−A∗)2

+ ρm
(
m−A∗)2

+ ρp
(
p−A∗)2

5(m− p)
. (4.15)

Taking this into account, we propose

λ∗ := 5(m− p)

4
√
ρr
(
r−A∗)2

+ ρm
(
m−A∗)2

+ ρp
(
p−A∗)2

+ 5(m− p)
(4.16)

as an estimate for λc.

4.3. An a priori estimate for SBO(A∗) at λc. Suppose that A∗ is composed by Nc clusters
of comparable size, and suppose also that all of them are symmetric with respect to the
coordinate axes. In this case, A∗ has a cluster decomposition

A∗ :=
Nc∑

i=1

QiP
†
i , (4.17)

where QiP
†
i corresponds to the ith cluster. The vectors Pi and Qi have a belled form with

maximal value at coordinates where the cluster is located. The vectors {Pi}Nc
i=1 span a
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vector space of dimension nc ≤ Nc, for which {pk}nck=1 is an orthonormal basis obtained
from {Pi}Nc

i=1 by the Gram-Schmidt process. Using this orthonormal base, we can rewrite
A∗ :=∑nc

k=1 qk p
†
ki

, where the vectors qk are obtained form Qi after the change of basis.
With respect to this new basis, A∗ can be considered a random nc-dimensional matrix,
therefore HBO(A∗)≈ log(2∗nc/3), and hence

SBO
(
A∗
)≈ log

(
n

nc

)

. (4.18)

Let Nmin be the cardinality of the less numerous class of agents, that is,

Nmin = min
i=p,m,r

#
{

x ∈Λn : A∗(x)= i}. (4.19)

For small values of the inequality index, that is, for largeNmin, we have numerically found
that nc ≈

√
Nmin. This is consistent with an agents’ distribution A∗ formed by Nc ∝Nmin

clusters, each cluster containing nearly the same number of agents of the less numer-
ous class. The corresponding cluster decomposition would be obtained from a collection
{Qi}n1

i=1 of n1 ∝
√
Nmin bell-shaped vectors, and another collection {Pj}n2

j=1 of n2 ≈
√
Nmin

nearly orthonormal bell-shaped vectors as

A∗ =
n1∑

i=1

n2∑

j=1

QiP
†
j . (4.20)

In this case, we have Nc = n1×n2 ∝Nmin, and nc = n2 ≈
√
Nmin. Hence, for low values of

the inequality index I , we may expect

SBO
(
A∗
)≈ S∗ := log

(
n

√
Nmin

)

. (4.21)

Note that Nmin does not determine the value of I . If this value is large enough, the
variability of Nmin inside the collection of agents’ distributions with the same I value
produces a large dispersion in S∗. For this reason, it is not possible to define S∗ as a
function of I , therefore an only inequality-segregation curve does not exist.

5. Numerical results

We performed a set of numerical experiments in the n× n lattice, for n = 64 and 128.
Each lattice node represents a house location in our virtual city, where agents and values
of houses are distributed. At time t, these distributions are codified by n× n real-valued
matrices. The agent’s matrix At takes only three values, r = 1,m= 1/2, and p = 1/10, rep-
resenting the income of rich, middle class, and poor agents, respectively. The distribution
of house prices Vt is a positive matrix, which at time t = 0 takes values in the interval
[0,1]. Both spatial distributions Vt and At evolve interrelatedly according to (3.1) and
(3.3). The unevenness of an agent’s distribution A is measured by using Theil’s index
I(A) defined in (3.5). Since this indicator depends only on the proportions of rich, mid-
dle class, and poor agents, then I(At)= I(A0) for all t ≥ 0.
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Modeling the demographic composition of a city in a developing country, we have
considered “demographic scenarios,” each demographic scenario consisting of a given
number Np of poor agents, Nm of middle class agents, and Nr of rich agents, such that
Nr < Nm < Np. In order to obtain an inequality-segregation curve, we have chosen two
distinct one-parameter families of demographic scenarios. For the first family, Np in-
creases from half to the total population, while the ratio α=Nr/Nm < 1 is kept constant.
In this way, we obtain the family

�α :=
{
(
Np,Nm,Nr

)� (ηn2, (1−α)(1−η)n2,α(1−η)n2) :
1
2
< η
}

, (5.1)

which we call “regular.” The second family of demographic scenarios is obtained as fol-
lows. We provide the set of all possible demographic scenarios with a probability distri-
bution P such that

P
(
Nr ,Nm,Np

)∝ #
{
(
n1,n2,n3

)
, 1≤ ni < n2 :

Nr

n1
= Nm

N2
= Np

n3

}

. (5.2)

This is the probability for three random numbers in {1,2, . . . ,n2} to be proportional to
the three given populations Nr , Nm and Np. For each value of I ∈ [0, log(3)], we choose
the demographic scenario maximizing P among all the demographic scenarios with in-
equality index I . In this way, we obtain a family �mp of demographic scenarios which we
call “most probable.”

For both, the regular family and the family of most probable scenarios, we have con-
sidered equally spaced values of λ and I inside an appropriated region of the param-
eter space. In the case of the regular family �α, the minimum inequality index Iα :=
log(3) + 1/2log(1/2) +α/2log(α/2) + (1−α)/2log((1−α)/2) depends on α, while for the
family of most probable scenarios, all inequality indices in [0, log(3)] are possible. For the
regular family, we consider 10 demographic scenarios with inequality indices

I = Iα,Iα +
log(3)− Iα

9
,Iα +

2
(

log(3)− Iα
)

9
, . . . ,Iα +

9
(

log(3)− Iα
)

9
, (5.3)

and for each one of those values we take λ = λ∗ − 0.1,λ∗ − 0.05,λ∗,λ∗ + 0.05,λ∗ + 0.1.
In the case of the family of most probable scenarios, we consider 9 demographic scenar-
ios with inequality indices I = 0, log(3)/8, log(3)/4, . . . , log(3), and again for each one of
those values, we take λ= λ∗ − 0.1,λ∗ − 0.05,λ∗,λ∗ + 0.05,λ∗ + 0.1. Since our theoretical
estimation λ∗ depends on I , the region of parameters we studied is not rectangular. For
each I and λ in the chosen region, we performed 20 experiments for both the 64× 64
and the 128× 128 lattices. The purpose of these experiments was (1) to determine λc and
compare it to our estimate; (2) to compute the value of the segregation index at λ = λc.
This allowed us to draw the segregation-inequality curve.

Each experiment started with spatial distributionsV 0 andA0 randomly generated. The
entries of V 0 were always taken independently and uniformly distributed in the interval
[0,1], while for A0 the agents determining a given demographic scenario were randomly
distributed in the lattice. The experiment consisted in the iteration of the evolution rule,
(3.1) and (3.3), until a stationary distribution A∗ was reached. In Figure 5.1, we show
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λ= 0.6 λ= 0.7

λ= 0.8 λ= 0.9

Figure 5.1. Asymptotic agent’s distribution for different values of λ in the 64 × 64 lattice. Here
I(A∗)≈ 0.25 and λc ≈ 0.6.

the asymptotic distributions of agents A∗, obtained from the same initial condition A0

by using 4 different values of λ. Note how the asymptotic distribution acquires a more
regular structure as we increase λ.

In order to determine λc, for a given initial agents’ distribution A0, we compute the
evolution of the biorthogonal decomposition entropy HBO(At), considering increasing
values of λ. If λ is small, HBO(At) remains practically constant along the evolution, while
for sufficiently large values of λ, this entropy undergoes a monotonous decreasing until
a definite time that we call segregation time, at which it attains its limiting value. We il-
lustrate this in Figure 5.2, where we show that HBO(At) for λ < λc and λ > λc. Hence, the
segregation time may be considered infinite for small values of λ, and taking finite values
for λ≥ λc. We determine λc corresponding to an initial agents’ distribution A0, by com-
putingHBO(At) for λ= λ∗ − 0.05,λ∗, . . . ,λ∗ + 0.15, and taking the smallest of these values
for which segregation time is smaller than the empirically determined convergence time.
The time T , that an initial configuration n A0 needs to attain the asymptotic distribution
A∗, is increased with both I(A0) and λ. Nevertheless, for the 64× 64 lattice and λ < 1,
this time never exceeded 1200 iterations in our simulations. For the 128× 128 lattice, this
convergence time at λc was always smaller than 2000, and never exceeded 3200 for the
other values of λ. The convergence time T appears to increase in proportion to n log(n),
where n is the lattice size.

In Figure 5.3, we show the behavior of λc as the inequality index changes, for the regu-
lar family in the 64× 64 lattice, and we compare it to the behavior of our a priori estimate
λ∗. All the computations presented here correspond to α= 0.4, but the behavior we ob-
served for other values of α is qualitatively the same. In Figure 5.4, we display the same
comparison for to the 128× 128 lattice. Since λ∗ depends only on the proportions of
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Figure 5.2. Evolution of the segregation index HBO(At). We show two experiments in the 64× 64
lattice, for an agents’ distribution with inequality index I = 0.5 and λ∗ ≈ 0.68. The green horizontal
line corresponds to λ = 0.65, the blue line was computed with λ = 0.75, and the red was obtained
using λ= 0.8.
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Figure 5.3. λc with its error bars shown in red as function of Theil’s inequality index, and λ∗ shown in
blue as a function I . Both curves correspond to the regular family, with α= 0.4, in the 64× 64 lattice.

rich, middle class and poor agents, it is lattice size independent. According to our numer-
ical results, our a priori estimate is a reasonably tight lower bound for λc. Let us remark
that the numerical value of λc slightly depends on the initial condition of the experiment,
hence we plot the mean value of λc and the corresponding error bars.

For the family �mp, we show in Figures 5.5 and 5.6 the behavior of λc as a function
of the inequality index, in the 64× 64 and 128× 128 lattices, respectively. We compare
this to the behavior of our a priori estimate λ∗. Since λc slightly depends on the initial
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Figure 5.4. λc is shown in red, with its error bars, as function of Theil’s index I . λ∗ is shown in blue
also as a function of I . Both curves correspond to the regular family, with α = 0.4, in the 128× 128
lattice.
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Figure 5.5. λc is shown in red, with its error bars, as a function of I . λ∗ is shown in blue also as a
function of Theil’s inequality index I . Both curves correspond to the family �mp in the 64× 64 lattice.

condition, we show λc with the corresponding error bars. Once again, λ∗ is a reasonably
tight lower bound for the actual value of λc.

In Figures 5.7 and 5.8, we plot the segregation index SBO as function of the inequality
index, for the regular family in the 64× 64 and 128× 128 lattices, respectively. These are
the inequality-segregation curves our model produces. We compare those curves to our
a priori upper bound estimate S∗ := log(n/

√
Nr) with n= 64 and 128, which we derived

at the end of Section 4. In Figures 5.9 and 5.10, we plot the same data, corresponding to
the family of most probable demographic scenarios. Our numerical results show that in
the case of the regular family, our prediction holds for inequality indices in the interval
0≤ I ≤ 0.5. For the family of the most probable demographic scenarios, the a priori upper
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Figure 5.6. λc is shown in red, with its error bars, as a function of Theil’s inequality index I . λ∗ is
shown in blue also as a function of I . Both curves correspond to the family �mp in the 128× 128
lattice.
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Figure 5.7. The segregation index SBO is shown in red, with its error bars, as function of I . S∗ =
log(64/

√
Nr) is shown in blue also as a function of I . These inequality-segregation curves correspond

to the �α family, with α= 0.40, in the 64× 64 lattice.

bound holds up to I = 0.7. The exact value of SBO(A∗) depends on the initial condition
A0, therefore, we show its mean value with the corresponding error bars.

6. Discussion and conclusions

The model presented here provides a pattern formation mechanism which can be inter-
preted in terms of Massey’s thesis. This mechanism takes into account two socioeconomic
variables, namely the income inequality and the spatial distribution of individuals. The
model yields a correlation between those two variables in a way which is consistent with
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Figure 5.8. The inequality-segregation curve, SBO is shown in red as function of I . Here the segrega-
tion index SBO is plotted with its error bars. S∗ = log(128/

√
Nr) is shown in blue also as a function of

I . Both curves correspond to the �α family, with α= 0.40, in the 128× 128 lattice.
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Figure 5.9. The segregation index SBO is shown in red, with the respective error bars, as function of I .
S∗ = log(64/

√
Nr) is shown in blue as a function of Theil’s inequality index I . Both curves correspond

to the �mp family in the 64× 64 lattice.

the segregation-inequality curve proposed by Morrison. Following Schelling, we built our
model upon simple rules governing householders’ exchange location in a virtual city. We
include a control parameter which we relate to the adjustments of the house prices during
the evolution, in a way that segregation occurs only for large enough values of this pa-
rameter. With these simple features, we are able to produce spatial patterns whose degree
of order grows with the income inequality of the virtual city.

From the point of view of social and economical theories, the mechanism behind the
migration of agents and the price function may appear unrealistic, however, they were not
arbitrarily designed. The agents exchange mechanism is inspired by Schelling’s happiness
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Figure 5.10. The segregation index SBO is shown in red, with the respective error bars, as function
of Theil’s inequality index I . S∗ = log(128/

√
Nr) is shown in blue also as a function I . Both curves

correspond to the �mp family in the 128× 128 lattice.

function, while the house prices dynamics is similar to the one proposed by Portugali
and Benenson. Instead of a sophisticated housing prices theory, we use simple interaction
rules that we believe to constitute an acceptable first approximation to the actual housing
prices dynamics.

Though the mechanism driving the migration of agents retains many of Schelling’s
ideas, it differs in the nature of the location exchange decision. In Schelling’s original
model, this decision is taken based on a satisfaction function that takes into account the
number of neighbors of the same kind around a given agent. In our case, an agent decides
to exchange its location according to the difference between its income and the price of its
house. This mechanism is better suited for a model of a society where ethnic differences
are less determinant than differences imposed by the income.

Concerning the indicators we use, Theil’s index is a widely accepted inequality index,
with the advantage that it is easy to compute and has a direct interpretation. Our segrega-
tion index, on the other hand, has never been used in this context. Besides this indicator,
we previously tried other entropy-like measures of the degree of order in a spatial distri-
bution, as well as some direct clustering measures. We chose the entropy of the biorthog-
onal decomposition because it is almost as easy to compute as Theil’s index, and it has
a natural interpretation as the information contents of a picture. We are convinced that
other segregation measures commonly used in the sociological literature are not suited
for our purposes, mainly because they suppose a previous knowledge of the spatial struc-
ture of the city. In our case, the organization of the urban space is a result only of the
location exchange dynamics.

From the theoretical point of view, the model is interesting by its own. It exhibits an
order-disorder phase transition via clustering from a very simple exchange mechanism.
It also appears to present some finite-size scaling behavior which would be pertinent to
further explore.
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Summarizing, our model is built from a very simple location exchange rule, based
on interaction between agents through an economic tension produced by the difference
between the agents’ economic capacity and the prices of the houses they occupy. It con-
stitutes an alternative to Schelling’s exchange mechanism including an extra degree of
freedom, our parameter λ, which could have an economic interpretation. In this way, we
obtain a mathematically tractable model which could be further modified in order to in-
clude more realistic features. In its current form, our model provides simple mechanism
sufficient to produce spatial segregation in accordance to Massey’s thesis: segregation is an
increasing function of the inequality. More realistic reformulations of this model, which
would include vacancies and agents queueing for a vacant locations, will be considered
for further study.
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