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We study the behaviour of the solutions of the following difference equation with the max
operator: xn+1 =max{1/xn,Axn−1}, n∈N0, where parameter A∈R and initial values x−1

and x0 are nonzero real numbers. In the most of the cases we determine the behaviour of
the solutions in the terms of the initial values x−1 and x0 and the parameter A.
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1. Introduction

Let us consider the following difference equation with the max operator:

xn+1 =max
{

1
xn

,Axn−1

}
, n∈N0, (1.1)

where parameter A ∈ R, and initial values x−1 and x0 are nonzero real numbers. In this
paper we study the behaviour of the solutions of (1.1). The paper studies not only positive
solutions of the equation, but also all defined solutions.

Some closely related equations were investigated in [1–12] (see also the references cited
therein). For example, the investigation of the difference equation:

xn+1 =max
{
A0

xn
,
A1

xn−1
, . . . ,

Ak

xn−k

}
, n∈N0, (1.2)

where Ai, i= 0,1, . . . ,k, are real numbers, such that at least one of them is different from
zero and initial values x0,x−1, . . . ,x−k, are different from zero, was proposed in [13, 14].

A special case of the max operator in (1.2) arises naturally in certain models in auto-
matic control theory (see, e.g., [15, 16]).
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For some other recent results concerning, among other problems, the periodic na-
ture of scalar nonlinear difference equations see, for example, [17–32], and the references
therein.

Before we formulate and prove the main results, note that when A= 0, (1.1) becomes
xn+1 = 1/xn, from which it follows that every solution in this case is periodic with period
equal to two. Hence in the sequel we exclude the case A= 0.

2. The case A < 0

In this section we consider the behaviour of the solutions of (1.1) in the case A < 0. A
somewhat surprising fact is that in this case the behaviour of the solutions of (1.1) is
quite simple. The reason for this is in the fact that when A < 0, each solution of (1.1)
is eventually positive. The following theorem completely describes the behaviour of the
solutions of (1.1) in this case.

Theorem 2.1. Consider (1.1) where A < 0.
(a) If x−1 < 0, x0 > 0, and x1 = 1/x0, then

(
xn
)=

(
x−1, x0,

1
x0

, . . . , x0,
1
x0

, . . .
)
. (2.1)

(b) If x−1 < 0, x0 > 0, and x1 = Ax−1, then

(
xn
)=

(
x−1, x0, Ax−1,

1
Ax−1

, . . . , Ax−1,
1

Ax−1
, . . .
)
. (2.2)

(c) If x−1 > 0, x0 < 0, x1 = 1/x0, and A∈ (−∞,−1], then

(
xn
)=

(
x−1, x0,

1
x0

, Ax0,
A

x0
,
x0

A
, . . . ,

A

x0
,
x0

A
, . . .
)
. (2.3)

(d) If x−1 > 0, x0 < 0, x1 = 1/x0, and A∈ (−1,0), then

(
xn
)=

(
x−1, x0,

1
x0

, Ax0,
1

Ax0
, . . . , Ax0,

1
Ax0

, . . .
)
. (2.4)

(e) If x−1 > 0, x0 < 0, x1 =Ax−1, and 1/(Ax0)≥A2x−1, then

(
xn
)=

(
x−1, x0, Ax−1, Ax0,

1
Ax0

, . . . , Ax0,
1

Ax0
, . . .
)
. (2.5)

(f) If x−1 > 0, x0 < 0, x1 =Ax−1, and 1/(Ax0) < A2x−1, then

(
xn
)=

(
x−1, x0, Ax−1, Ax0, A2x−1,

1
A2x−1

, . . . , A2x−1,
1

A2x−1
, . . .
)
. (2.6)

(g) If x−1, x0 > 0, then

(
xn
)=

(
x−1, x0,

1
x0

, . . . ,x0,
1
x0

, . . .
)
. (2.7)
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(h) If x−1, x0 < 0, and 1/(Ax−1)≤ Ax0, then

(
xn
)=

(
x−1, x0, Ax−1, Ax0,

1
Ax0

, . . . , Ax0,
1

Ax0
, . . .
)
. (2.8)

(i) If x−1, x0 < 0, and 1/(Ax−1) > Ax0, then

(
xn
)=

(
x−1, x0, Ax−1,

1
Ax−1

, Ax−1, . . . ,
1

Ax−1
, Ax−1, . . .

)
. (2.9)

Proof. (a), (b) Let first x−1 < 0 and x0 > 0, then x1 =max{1/x0, Ax−1} > 0. Using induc-
tion it is easy to see that xn > 0 for every n≥ 0, and consequently

xn+1 =max
{

1
xn

,Axn−1

}
= 1

xn
, n≥ 1. (2.10)

Hence, if x1 = 1/x0 ≥ Ax−1, then every solution is eventually two-periodic, moreover (xn)
can be written as follows:

(
xn
)=

(
x−1, x0,

1
x0

, . . . , x0,
1
x0

, . . .
)
. (2.11)

If x1 =Ax−1, then

(
xn
)=

(
x−1, x0, Ax−1,

1
Ax−1

, . . . , Ax−1,
1

Ax−1
, . . .
)
. (2.12)

(c)–(f) If x−1 > 0 and x0 < 0, then x1 =max{1/x0, Ax−1} < 0, x2 =max{1/x1, Ax0} =
Ax0 > 0, and

x3 =max
{

1
x2

, Ax1

}
=max

{
1

Ax0
, min

{
A

x0
, A2x−1

}}
> 0. (2.13)

By induction we obtain xn > 0, for all n ≥ 2. Hence xn+1 = 1/xn, for all n ≥ 3.
Consequently, in this case, every solution is eventually two-periodic.

If x1 = 1/x0 and A ∈ (−∞,−1], then Ax−1 ≤ 1/x0 which implies A2x−1 ≥ A/x0 and,
consequently, x3 =max{1/(Ax0), A/x0} = A/x0. Hence

(
xn
)=

(
x−1, x0,

1
x0

, Ax0,
A

x0
,
x0

A
, . . . ,

A

x0
,
x0

A
, . . .
)
. (2.14)

If x1 = 1/x0 and A ∈ (−1,0), then x2 = Ax0 and x3 = max{1/Ax0, A/x0} = 1/(Ax0).
Thus

(
xn
)=

(
x−1, x0,

1
x0

, Ax0,
1

Ax0
, . . . , Ax0,

1
Ax0

, . . .
)
. (2.15)

If x1 = Ax−1 ≥ 1/x0, then A2x−1 ≤ A/x0; and if 1/(Ax0) ≥ A2x−1, then
x3 =max{1/(Ax0), A2x−1}, so that

(
xn
)=

(
x−1, x0, Ax−1, Ax0,

1
Ax0

, . . . , Ax0,
1

Ax0
, . . .
)
. (2.16)
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If x1 =Ax−1 and 1/(Ax0) < A2x−1, then x3 = A2x−1 and

(
xn
)=

(
x−1, x0, Ax−1, Ax0, A2x−1,

1
A2x−1

, . . . , A2x−1,
1

A2x−1
, . . .
)
. (2.17)

(g) If x−1,x0 > 0, then x1 = 1/x0 > 0. By induction we have xn > 0, for alln ≥ −1 and,
consequently, xn+1 = 1/xn, for all n≥ 0. Thus, in this case

(
xn
)=

(
x−1, x0,

1
x0

, . . . , x0,
1
x0

, . . .
)
. (2.18)

(h), (i) If x−1,x0 < 0, then x1 =Ax−1 > 0, and

x2 =max
{

1
x1

, Ax0

}
=max

{
1

Ax−1
, Ax0

}
> 0. (2.19)

Using induction we have xn > 0, for alln ≥ 1, which implies xn+1 = 1/xn, for alln ≥ 2.
Therefore, if 1/(Ax−1)≤Ax0, we have

(
xn
)=

(
x−1, x0, Ax−1, Ax0,

1
Ax0

, . . . , Ax0,
1

Ax0
, . . .
)
. (2.20)

On the other hand, if 1/(Ax−1) > Ax0, we have

(
xn
)=

(
x−1, x0, Ax−1,

1
Ax−1

, Ax−1, . . . ,
1

Ax−1
, Ax−1, . . .

)
. (2.21)

�

Remark 2.2. As we have already mentioned, a reason for the facility in finding an ex-
plicit solution of (1.1) in the case A < 0 is in the fact that each solution of the equation
is eventually positive. Using this fact, we can multiply (1.1) by xn and use the change of
variable yn = xnxn−1. We obtain the equation yn+1 =max{Ayn,1},n ≥ n0, with yn0 > 0.
Hence, yn0+1 = 1. By induction we obtain yn = 1, for all n≥ n0 + 1, which is equivalent to
xn+1 = 1/xn, for all n≥ n0. This implies that each solution of (1.1), in this case, is eventu-
ally two-periodic.

3. The case A > 0

In this section we consider the behaviour of the solutions of (1.1) in the case A > 0. Prior
to investigating the behaviour of the solutions of (1.1) in this case, we prove two auxiliary
results, which are also of independent interest.

Lemma 3.1. Consider the difference equation

yn+1 =max
{
Ayn,1

}
, (3.1)

where y0 > 0. Then the following statements are true.
(a) Let A ∈ (0,1], then each solution (yn) of (3.1) is eventually constant. Moreover, if

A∈ (0,1), orA= 1 and y0 ∈ (0,1], then yn = 1 eventually, and ifA= 1 and y0 > 1,
then yn = y0 eventually.
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(b) Let A > 1, then each solution (yn) of (3.1) eventually satisfies the difference equation
yn+1 = Ayn.

Proof. (a) Let first A ∈ (0,1). If y0 ∈ (0,1/A], then y1 = 1, since y0A ≤ 1. It follows that
y1A < 1, which implies y2 = 1. By induction we have yn = 1, for all n≥ 1.

If y0 > 1/A, then y1 = Ay0. If A2y0 ≤ 1, then y2 = 1 and consequently yn = 1, for all
n≥ 2. Otherwise, y2 = A2y0. Since A∈ (0,1), we have that An→ 0 as n→∞, hence there
is an index n0 ∈N such that An0 y0 ≤ 1 and An0−1y0 > 1. It is easy to see that yn = 1 for all
n≥ n0, as desired.

If A= 1, then for y0 ∈ (0,1] we have y1 = 1 and, consequently, yn = 1 for all n≥ n0. If
y0 > 1, then y1 = y0 > 1 and by induction yn = y0, for all n≥ 0, and the result is proven.

(b) If y0 ∈ (0,1/A], then y1 = 1. Further y2 = max{Ay1,1} = Ay1 = A > 1 = y1. By
induction we obtain that yn+1 ≥ yn, for all n≥ 1, which implies yn+1 =Ayn, for all n≥ 1.

If y0 > 1/A, then y1 = Ay0 > 1. From this it easily follows that yn+1 =Ayn, for all n≥ 0,
finishing the proof. �

The following lemma can be considered as a dual result of Lemma 3.1.

Lemma 3.2. Consider the difference equation

yn+1 =min
{
Ayn,1

}
, (3.2)

where y0 > 0. Then the following statements are true.
(a) Let A ∈ (0,1), then each solution (yn) of (3.2) eventually satisfies the difference

equation yn+1 = Ayn.
(b) Let A≥ 1, then each solution (yn) of (3.2) is eventually constant. Moreover, if A > 1,

or A = 1 and y0 > 1, then yn = 1 eventually, and if A = 1 and y0 ∈ (0,1], then
yn = y0 eventually.

Proof. (a) If y0 ∈ (0,1/A], then y1 = Ay0 ≤ 1. Hence, by induction we have yn+1 = Ayn,
for all n ≥ 0. If y0 > 1/A, then y1 = 1 and y2 = A < 1. Thus by induction yn+1 = Ayn,
for all n≥ 1.

(b) If A= 1, then if y0 ∈ (0,1] it follows that y1 = y0 and thus yn = y0, for all n≥ 0. If
y0 > 1, then y1 = 1, from which it follows that yn = 1, for all n≥ 1, as desired.

If A > 1 and y0 > 1/A, then y1 = 1, which implies yn = 1, for all n≥ 1. If y0 ∈ (0,1/A],
then y1 = Ay0. If A2y0 > 1, then y2 = 1 and, consequently, yn = 1, for all n ≥ 2. Other-
wise, y2 = Ay1 = A2y0 ≤ 1. Since An →∞ as n→∞, there is a number m0 ∈N such that
Am0 y0 > 1 and Am0−1y0 ≤ 1. For such chosen index m0 we have ym0 = 1, which implies
yn = 1, for all n≥m0, finishing the proof. �

We are now in a position to formulate and prove the main result in this section.

Theorem 3.3. Consider (1.1), where A > 0.
(a) If x−1 < 0, x0 > 0, and A∈ (0,1], then

(
xn
)=

(
x−1, x0,

1
x0

, . . . , x0,
1
x0

, . . .
)
. (3.3)
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(b) If x−1 < 0, x0 > 0, and A > 1, then

(
xn
)=

(
x−1, x0,

1
x0

, Ax0,
A

x0
, . . . ,Anx0,

An

x0
, . . .
)
. (3.4)

(c) If x−1 > 0, x0 < 0, and A∈ (0,1], then

(
xn
)=

(
x−1, x0, Ax−1,

1
Ax−1

, . . . , Ax−1,
1

Ax−1
, . . .
)
. (3.5)

(d) If x−1 > 0, x0 < 0, and A > 1, then

(
xn
)=

(
x−1, x0, Ax−1,

1
Ax−1

, A2x−1,
1
x−1

, . . . ,
An−2

x−1
, An+1x−1, . . .

)
. (3.6)

(e) If x−1, x0 > 0, x1 = 1/x0, and A∈ (0,1], then

(
xn
)=

(
x−1, x0,

1
x0

, . . . , x0,
1
x0

, . . .
)
. (3.7)

(f) If x−1, x0 > 0, x1 = 1/x0, and A > 1, then

(
xn
)=

(
x−1, x0,

1
x0

, Ax0,
A

x0
, . . . , Anx0,

An

x0
, . . .
)
. (3.8)

(g) If x−1, x0 > 0, x1 = Ax−1, and A≥ 1, then

(
xn
)= (x−1, x0, Ax−1, Ax0, A2x−1,A2x0, . . . , Anx−1, Anx0, . . .

)
. (3.9)

(h) If x−1, x0 > 0, x1 = Ax−1, and A∈ (0,1), then (xn) is eventually two-periodic.
(i) If x−1, x0 < 0, x1 = 1/x0, and A∈ (0,1], then

(
xn
)=

(
x−1, x0,

1
x0

, Ax0,
A

x0
, . . . , Anx0,

An

x0
, . . .
)
. (3.10)

(j) If x−1, x0 < 0, x1 = 1/x0, and A > 1, then

(
xn
)=

(
x−1, x0,

1
x0

, . . . , x0,
1
x0

, . . .
)
. (3.11)

(k) If x−1,x0 < 0, x1 =Ax−1, and A∈ (0,1], then

(
xn
)= (x−1, x0, Ax−1, Ax0, A2x−1, . . . , Anx0, An+1x−1, . . .

)
. (3.12)

(l) If x−1, x0 < 0, x1 = Ax−1, and A > 1, then (xn) is eventually two-periodic.

Proof. (a), (b) Let x−1 < 0,x0 > 0, then x1 = 1/x0 > 0 and

x2 =max
{
x0, Ax0

}= x0 max
{

1,A
}
> 0. (3.13)
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Hence if A∈ (0,1], then x2 = x0, and x3 =max{1/x0, A/x0} = 1/x0. By induction we ob-
tain x2n =max{x0,Ax0} = x0 and x2n−1 =max{1/x0, A/x0} = 1/x0, for all n≥ 2, that is,

(
xn
)=

(
x−1, x0,

1
x0

,Ax0,
A

x0
, . . . ,An x0,

An

x0
, . . .
)
. (3.14)

If A > 1, then x2 = Ax0 and

x3 =max
{

1
x2

, Ax1

}
=max

{
1

Ax0
,
A

x0

}
= A

x0
> 0. (3.15)

By induction we obtain x2n−1 =An−1/x0, x2n = Anx0, for all n≥ 1, that is,

(
xn
)=

(
x−1, x0,

1
x0

, Ax0,
A

x0
, . . . , Anx0,

An

x0
, . . .
)
. (3.16)

(c)-(d) If x−1 > 0 and x0 < 0, then x1 =Ax−1 > 0, x2 = 1/(Ax−1) > 0, and

x3 =max
{

1
x2

, Ax1

}
= Ax−1 max

{
1, A

}
. (3.17)

Clearly xn > 0, for all n≥ 1.
If A ∈ (0,1], then x3 = Ax−1 and x4 = 1/(Ax−1). By induction we obtain that x2n−1 =

Ax−1, x2n = 1/(Ax−1) , for all n≥ 1, that is,

(
xn
)=

(
x−1, x0, Ax−1,

1
Ax−1

, . . . , Ax−1,
1

Ax−1
, . . .
)
. (3.18)

If A > 1, then x3 = A2x−1 and x4 = 1/x−1. By induction we obtain x2n = An−2/x−1,
x2n−1 = Anx−1, for alln≥ 2. Hence

(
xn
)=

(
x−1, x0, Ax−1,

1
Ax−1

, A2x−1,
1
x−1

, . . . ,
An−2

x−1
, An+1x−1, . . .

)
. (3.19)

(e)–(h) If x−1, x0 > 0, then x1 =max{1/x0, Ax−1}. If x1 = 1/x0 then x2 =max{x0, Ax0}.
Hence, if A∈ (0,1], then x3 = 1/x0. Using induction we obtain x2n−1 = 1/x0 and x2n=

x0, for alln≥1, that is,

(
xn
)=

(
x−1, x0,

1
x0

, . . . , x0,
1
x0

, . . .
)
. (3.20)

If A∈ (1,∞), we get x2 = Ax0, x3 = A/x0, and by induction it follows that x2n = Anx0

and x2n−1 =An−1/x0, for alln≥ 1, that is,

(
xn
)=

(
x−1, x0,

1
x0

, Ax0,
A

x0
, . . . , Anx0,

An

x0
, . . .
)
. (3.21)

If x1 = Ax−1 ≥ 1/x0 and A ∈ [1,∞), then x2 = max{1/(Ax−1), Ax0} = Ax0 and
x3 = max{1/(Ax0), A2x−1} = A2x−1. By induction we get x2n−1 = Anx−1, x2n = Anx0,
for all n≥ 1. Thus

(
xn
)= (x−1, x0, Ax−1, Ax0, A2x−1, A2x0, . . . , Anx−1, Anx0, . . .

)
. (3.22)
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The case when x1 = Ax−1 ≥ 1/x0 and A ∈ (0,1) is more complicated. Because xn > 0,
for all n≥−1, we can multiply (1.1) by xn and use the change of variable yn = xnxn−1 to
obtain (3.1). Since all the conditions of Lemma 3.1 are satisfied, we obtain that in this
case the sequence (yn) is eventually constant. This means that each solution (xn) of (1.1)
in the case is eventually two-periodic.

(i)–(l) If x−1, x0 < 0, then xn < 0, for all n ≥ −1. If x1 =max{1/x0, Ax−1} = 1/x0 and
A ∈ (0,1], we have x2 = max{x0,Ax0} = Ax0 and x3 = max{1/(Ax0), A/x0} = A/x0. By
induction we have x2n = Anx0, x2n−1 = An−1/x0, for all n≥ 1, that is,

(
xn
)=

(
x−1, x0,

1
x0

, Ax0,
A

x0
, . . . , Anx0,

An

x0
, . . .
)
. (3.23)

If x−1, x0 < 0, x1 = 1/x0, and A > 1, then x2 = x0 and x3 =max{1/x0, A/x0} = 1/x0. By
induction we have that x2n = x0, x2n−1 = 1/x0, for alln≥ 1. Hence

(
xn
)=

(
x−1, x0,

1
x0

, . . . , x0,
1
x0

, . . .
)
. (3.24)

If x−1, x0 < 0, x1 = Ax−1, and A ∈ (0,1], then x2 = max{1/(Ax−1), Ax0} = Ax0 and
x3 =max{1/(Ax0), A2x−1} = A2x−1. Using induction we get x2n = Anx0,x2n−1 = Anx−1,
for all n≥ 1. Thus

(
xn
)= (x−1, x0, Ax−1, Ax0, A2x−1, . . . , Anx0, An+1x−1, . . .

)
. (3.25)

Finally, if x−1, x0 < 0, x1 = Ax−1, and A > 1, then since xn < 0, for all n≥−1, multiply-
ing (1.1) by xn and using the change of variable zn = xnxn−1, we obtain that the sequence
(zn) satisfies (3.2) and zn > 0, for alln≥ 0. Since A > 1, by Lemma 3.2, we obtain that (zn)
is eventually constant which implies that the sequence (xn) is eventually two-periodic, as
desired. �

Note. A slightly different version of the paper (mostly without recent references), circu-
lated among some experts in the research field since 2005, was accepted for publication
in the International Journal of Pure and Applied Mathematics in April 2005. However, it
was withdrawn since it had not been published in a reasonable long period of time.
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[21] S. Stević, “The recursive sequence xn+1 = g(xn,xn−1)/(A + xn),” Applied Mathematics Letters,
vol. 15, no. 3, pp. 305–308, 2002.
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[30] S. Stević, “On the recursive sequence xn = (α+
∑ k

i=1αixn−pi )/(1 +
∑m

j=1βjxn−qj ),” Journal of Dif-
ference Equations and Applications, vol. 13, no. 1, pp. 41–46, 2007.
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42090 Konya, Turkey
Email address: ccinar25@yahoo.com

mailto:iyalcinkaya1708@yahoo.com
mailto:iricanin@etf.bg.ac.yu
mailto:ccinar25@yahoo.com

	1. Introduction
	2. The case A<0 
	3. The case A>0 
	Acknowledgment
	References

