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This paper studies the stability of a class of neutral delay integrodifferential system. A
necessary and sufficient condition of stability for its analytic solutions is considered. The
improved θ-methods are developed. Some numerical stability properties are obtained
and numerical experiments are given.
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1. Introduction

Consider the neutral multidelay integrodifferential equations (NMDIDEs)

Au′(t) +Bu(t) +
M∑

j=1

[
Cju

′(t− τ j) +Dju(t− τ j) +Gj

∫ t

t−τ j
u(x)dx

]
= 0, (1.1)

where A,B,Cj ,Dj ,Gj ∈ Cd×d for j = 1, . . . ,M and 0 < τ1 ≤ τ2 ≤ ··· ≤ τM . The initial
condition is u(t)= φ(t) for −τM ≤ t ≤ 0. Particularly, when matrix A is singular, system
(1.1) becomes the differential algebraic system.

Delay differential equations can be found in a wide variety of scientific and engineering
fields such as biology, physics, ecology, and so on. Particularly, delay integrodifferential
algebraic system plays an important role in modeling many phenomena of circuit analysis
and chemical process simulation.

As for the linear delay integrodifferential system, there were some perfect results from
Koto (cf. [1]). Recently, as for the linear neutral delay integrodifferential equation, the
numerical stability of θ-methods and BDF methods can be referred to [2].
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Although stability of numerical methods seems important for practical computation,
there are few papers concerning this subject for NMDIDEs. Thus, this paper considers
the asymptotic stability of analytic solutions and numerical solutions for system (1.1).

2. Asymptotic stability of NMDIDEs

When matrix A is nonsingular, the solvability of system (1.1) is obvious.

Definition 2.1. Matrices polynomials f1(λ) and f2(λ) are simultaneously regular if there
exists λ0 ∈ C such that det[ f1(λ0)] �= 0 and det[ f2(λ0)] �= 0.

Theorem 2.2. System (1.1) with singular A is solvable if the matrices pencils λA+B and
λ2A+ λB+

∑M
j=1Gj are simultaneously regular.

Proof. It can be proved by [3, Theorem 2.1]. �

Definition 2.3. System (1.1) is said to be asymptotically stable if the exact solutions u(t)
satisfy lim t→∞u(t)= 0 for any continuous initial function.

To study the property of system (1.1), we consider characteristic polynomial

p(ζ)= ζ−d det[J(ζ) + e−τ1ζK(ζ)], (2.1)

where J(ζ)= Aζ2 +Bζ +
∑M

j=1Gj , K(ζ)=∑M
j=1(Cjζ

2 +Djζ −Gj)eζ(τ1−τ j ).

Lemma 2.4 (cf. [4]). If system (1.1) is asymptotically stable, then
(S1) all roots of the characteristic polynomial (2.1) have negative real parts.

Lemma 2.5 (cf. [4]). System (1.1) is asymptotically stable if
(S2) all roots of the characteristic polynomial (2.1) are uniformly bounded away from the

imaginary axis in the left-half plane.

For nonneutral delay differential equations, condition (S1) is also sufficient in
Lemma 2.4. However, it is not true for the neutral case.

Lemma 2.6. Let H(ζ)=−[J(ζ)]−1K(ζ), then ρ[H(ζ)] < 1 as |ζ|→∞ if
(C1) |〈ξ, Aξ〉| >∑M

j=1 |〈ξ, Cjξ〉| whenever |〈ξ, Aξ〉| �= 0,
(C2) det[J(ζ)] �= 0 for any Rζ ≥ 0 and ζ �= 0.

Lemma 2.7. If system (1.1) is asymptotically stable, then |μ| �= 1 for any μ∈ σ[H(ζ)] with
Rζ = 0 and ζ �= 0.

The above two conclusions are trivial, so we omit their proofs.

Lemma 2.8. If system (1.1) is asymptotically stable, then one has (C2).

Proof. If there exists ζ1 with Rζ1 > 0 such that det[J(ζ1)] = 0, then a positive oriented
circle Σ centered at ζ1 is found such that Rζ > 0 and det[J(ζ)] �= 0 when ζ ∈ Σ\{ζ1}.
Thus, ρ[e−τ1ζH(ζ)] < 1 for sufficiently large τ1.
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Define hα(ζ) = det[I − αe−ζτ1H(ζ)] for α ∈ [0,1]. Since hα(ζ) �= 0 for all ζ ∈ Σ\{ζ1},
then the change of argument along the curve [arghα(ζ)]Σ = 2πm with m∈ Z. Notice that
[arghα(ζ)]Σ is uniformly continuous of α on [0,1], then [argh1(ζ)]Σ = [argh0(ζ)]Σ = 0.

Hence, we have [argζd p(ζ)]Σ = [arg det J(ζ)]Σ. According to the principle of argument

(see [5]), there must exist ζ̃1 in the inferior of Σ\{ζ1} such that p(ζ̃1)= 0, which contra-
dicts condition (S1).

If there exists ζ2 with Rζ2 = 0 and ζ2 �= 0 such that det[J(ζ2)]= 0, then we can assume
that det[J(ζ)] �= 0 for any Rζ = 0 and Iζ > Iζ2 > 0. Thus, there exists a neighborhood U
of ζ2 such that det[J(ζ)] �= 0 in U\{ζ2}.

When the zeros μi(ζ) (1 ≤ i ≤ d) of q(μ,ζ) are bounded near ζ2, where q(μ,ζ) =
det[μJ(ζ) +K(ζ)], there must exist a neighborhood V\{ζ2} of ζ2 and a constant k > 0
such that |μi(ζ)| < k whenever ζ ∈V ⊂U .

Notice that det[J(ζ)] �= 0 for all ζ ∈V\{ζ2} and q(μ,ζ)=∑d
i=0 qi(ζ)μd−i, where q0(ζ)=

det[J(ζ)], qd(ζ) = det[K(ζ)], and qi(ζ) (1 ≤ i ≤ d− 1) are the polynomials of ζ . There-
fore, |qd(ζ)|·|q0(ζ)|−1 =∏d

i=1|μi(ζ)| < kd in V\{ζ2}. Let ζ→ζ2, then qd(ζ2) = ··· =
q1(ζ2) = 0 since q0(ζ2) = 0, that is, q(μ,ζ2) ≡ 0. Choosing μ = eζ2τ1 in q(μ,ζ2), we have
p(ζ2)= 0, which contradicts (S1).

When the zeros μi(ζ) (1≤ i≤ d) of q(μ,ζ) cannot be bounded in a neighborhood of ζ2,
then ρ(H(ζ))→∞ as ζ→ζ2. According to Lemma 2.6, ρ[H(ζ)] < 1 as |ζ|→∞ and Rζ = 0.
Moreover, ρ(H(ζ)) is continuous of ζ on {ζ ∈ C : Rζ = 0, Iζ > Iζ2}, so there must exist
ζ0 with Rζ0 = 0, Iζ0 > Iζ2 such that ρ(H(ζ0))= 1, which contradicts Lemma 2.7. �

Theorem 2.9. Under condition (C1), the system (1.1) is asymptotically stable if and only if
it satisfies (C2) and

(C3) ρ(H(ζ)) < 1 for any Rζ = 0 and ζ �= 0,
(C4) det[B+

∑M
j=1(Dj + τ jGj)] �= 0.

Proof. From (C2), if Rζ ≥ 0 and ζ �= 0, then p(ζ) = 0 ⇔ eτ1ζ ∈ σ[H(ζ)]. According to
Lemma 2.6 and the maximum modulus principle, ρ[H(ζ)] < 1. From (C4), we have
p(ζ) �= 0. Denote g(ζ)=ζ2Â + ζB̂ +

∑M
j=1[e−ζτ j (ζ2Ĉ j + ζD̂ j − Ĝ j) + Ĝ j], where Û=〈ξ,

Uξ〉 with |ξ| = 1.
Assuming (S2) does not hold, then there must exist a set {zn} ⊂ C− such that p(zn)= 0

and zn converges to a point in the imaginary axis. So, g(zn) = 0. Let wn be the imag-
inary part of zn, then limn→∞g(iwn) = limn→∞g(zn) = 0. On the other hand, for suffi-
ciently large n, we have |g(iwn)| > 0, which contradicts the above analysis. According to
Lemma 2.5, system (1.1) is asymptotically stable.

Conversely, if system (1.1) is asymptotically stable, then (C2), (C4), and (S1) hold
according to Lemmas 2.4 and 2.8. If there exists ζ3 with Rζ3 = 0 and ζ3 �= 0 such that
ρ(H(ζ3)) ≥ 1, then from (C2) and Lemma 2.6, there must exist ζ4 with Rζ4 = 0 and
Iζ4 ≥ Iζ3 such that ρ(H(ζ4)) = 1, which contradicts Lemma 2.7 Therefore, condition
(C3) holds. �

From convenience, for j = 1, . . . ,M, we denote
(C5) for any complex number ζ , the matrices (J(ζ))−1(Cjζ

2 +Djζ −Gj) can be simi-
larly transformed to upper-triangular matrices simultaneously;
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(C6) the matrices A−1Cj can be similarly transformed to upper-triangular matrices
simultaneously when A is invertible;

(C7)
∑M

j=1 ρ[(J(ζ))−1(Cjζ
2 +Djζ −Gj)] < 1 for any Rζ ≥ 0 with ζ �= 0;

(C8)
∑M

j=1 ρ[A−1Cj] < 1 when matrix A is invertible.

Ω= {(A,B,Cj ,Dj ,Gj) : (C1),(C2),(C4),(C5), and (C7) are satisfied},

Ω̃= {(A,B,Cj ,Dj ,Gj) : (C1),(C2), and (C4)−(C8) are satisfied}.
(2.2)

Corollary 2.10. System (1.1) is asymptotically stable if it satisfies conditions (C1), (C2),
(C4), (C5), and (C7).

3. Stability of θ-methods

For u′(t)= f (t,u(t)), the linear θ-method gives out the recurrence relation

un+1 = un +h[θ f (tn+1,un+1) + (1− θ) f (tn,un)], (3.1)

where θ ∈ [0,1], tn = nh with n∈ Z+ and un are approximations to u(tn).
Applying the linear θ-method (3.1) to system (1.1), we have

L1un+1 +L2un +L3

mj−3∑

i=1

un−i +L4un+2−mj +L5un+1−mj +L6un−mj = 0, (3.2)

where

L1 = A+hθB+ θ2L3, L2 =−A+h(1− θ)B+ θ(2− θ)L3, L3 = h2
M∑

j=1

Gj ,

L5 =
M∑

j=1

[(
1− 2δ j

)
Cj +h

(
θ + δ j − 2θδ j

)
Dj +h2(1− θ2− δ2

j − θδ j + 2θδ2
j

)
Gj
]
,

L6 =
M∑

j=1

[− (1− δ j
)
Cj +h(1− θ)

(
1− δ j

)
Dj +h2(1− θ)(1− θ− δ j + δ2

j )Gj
]
,

L4 =
M∑

j=1

[δ jCj +hθδ jDj +h2(1− θδ2
j )Gj].

(3.3)

For system (1.1) with a single delay, the linear θ-method is no longer GP stable in [1].
So we focus on the step-size-dependent stability of (3.2).

On the other hand, let v(t)= ∫ t−mMh u(x)dx, then system (1.1) is written as

Au′(t) +Bu(t) +
M∑

j=1

[
Cju

′(t− τ j
)

+Dju
(
t− τ j

)
+Gj

(
v(t)− v(t− τ j

))]= 0. (3.4)
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Applying method (3.1) to system (3.4), we obtain the improved linear θ-method

L1un+1 +L2un +L3

mj−3∑

i=1

un−i + L̂4un+2−mj + L̂5un+1−mj +L6un−mj = 0, (3.5)

where

L̂5 =
M∑

j=1

[(1− 2δ j)Cj +h(θ(1− δ j) + (1− θ)δ j)Dj] +L3(1− θ)(1 + θ− 2θδ j),

L̂4 =
M∑

j=1

[δ jCj +hθδ jDj +h2(1− θ2δ j)Gj].

(3.6)

Theorem 3.1. The order of local truncation error for the improved linear θ-method (3.5) is
O(h2). Especially, the order becomes O(h3) if θ = 1/2.

Proof. For method (3.5), the local truncation error T̃n+1 = (θ − 1/2)h2[Bu′(tn) +∑M
j=1Dju′(tn−mj )] +O(h3). �

Theorem 3.2. For θ ∈ [0,1], the improved linear θ-method (3.5) is convergent of order 1.
Especially, the convergent order is 2 if θ = 1/2.

Proof. The proof is similar to that of [6, Theorem 1.2]. �

Since (3.5) and (3.2) are the same for δ j = 0 or δ j = θ, then it only needs to consider
the characteristic polynomial

D(z)=
[
h2(θz+ 1− θ)2

z− 1

]d
det

[
P(z)zmM +Q(z)

]
for θz+ 1− θ �= 0, z �= 1,

P(z)=
(

z− 1
h(θz+ 1− θ)

)2

A+

(
z− 1

h(θz+ 1− θ)

)
B+

M∑

j=1

Gj ,

Q(z)=
M∑

j=1

[(
z− 1

h(θz+ 1− θ)

)2

Cj +

(
z− 1

h(θz+ 1− θ)

)
Dj −Gj

]
zmM−mj (δ jz+ 1− δ j).

(3.7)

Let S(δ1,...,δM)
θ,m1,...,mM

= {(A,B,Cj ,Dj ,Gj) : all roots of D(z) satisfy |z| < 1}, S(δ1,...,δM)
θ =

⋂
δ1,...,δM∈[0,1)S

(δ1,...,δM)
θ,m1,...,mM

for j = 1, . . . ,M.

Theorem 3.3. For (1.1) with singular A, if θ ∈ (1/2,1], then Ω⊂ S(δ1,...,δM)
θ .

Proof. It is sufficient to prove thatD(z) is a Schur polynomial if θ ∈ (1/2,1]. A polynomial
is said to be of Schur type if all of its roots are less than 1 in modulus (see [7]). From (C4),
we know that z = 1 is not the root of D(z). So it only needs to prove that D(z) �= 0 when
|z| ≥ 1 and z �= 1.
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If θ ∈ (1/2,1], then from (C2), P(z) is invertible. Hence, we have

D(z)=
[
h2(θz+ 1− θ)2

z− 1

]d
det[P(z)zmM ]det[Id +P−1(z)Q(z)z−mM ]. (3.8)

Under (C5) and (C7), we obtain ρ[P−1(z)Q(z)z−mM ] < 1 for |z| ≥ 1 and z �= 1. �

Theorem 3.4. For (1.1) with nonsingular A, if θ ∈ [1/2,1], then Ω̃⊂ S(δ1,...,δM)
θ .

Proof. To prove D(z) is a Schur polynomial, similar to Theorem 3.3, we have that z = 1 is
not the root of D(z) and D(z) �= 0 for |z| ≥ 1 when θz+ 1− θ �= 0.

If θz+1−θ=0, then det[I+
∑M

j=1 (−1)−mjA−1Cj(1−2δ j)]=0, provided that D(z)= 0.

From (C6) and (C8), ρ[
∑M

j=1 (−1)−mjA−1Cj(1− 2δ j)] < 1. So det[I +
∑M

j=1 (−1)−mjA−1

Cj(1− 2δ j)] �= 0, which makes a contradiction. �

Corollary 3.5. For system (1.1) with singular A, if θ ∈ (1/2,1], then Ω⊂ S(0,...,0)
θ or Ω⊂

S(θ,...,θ)
θ .

Corollary 3.6. For (1.1) with nonsingular A, if θ ∈ [1/2,1], then Ω̃ ⊂ S(0,...,0)
θ or Ω̃ ⊂

S(θ,...,θ)
θ .

Remark 3.7. Improved linear θ-method (3.5) with θ ∈ (1/2,1] (or θ ∈ [1/2,1] ) can pos-
sess a similar stability property to GP stability with respect to NMDIDEs with singular
(or nonsingular) A.

4. Numerical experiments

Example 4.1. Consider (1.1) with M = 2, τ1 = 1, τ2 = 2, and φ(t) = (cos(t), sin(t),
cos(t))T for t ∈ [−2,0], where C1 =−0.3A, C2 =−0.5A, and

A=

⎡
⎢⎣

1 0 0
0 0 0
0 1 0

⎤
⎥⎦ , B =

⎡
⎢⎣

1.5 0 0
0 0 −0.4
0 0.8 0.5

⎤
⎥⎦ ,

D1 =

⎡
⎢⎣

0.2 0.4 0
0 0 0.1
0 0.2 −0.2

⎤
⎥⎦ , D2 =

⎡
⎢⎣

0.1 0 0
0 0 0.1
0 0.15 0.8

⎤
⎥⎦ ,

G1 =

⎡
⎢⎣

0.2 0 0
0 0 −0.2
0 0.1 0.25

⎤
⎥⎦ , G2 =

⎡
⎢⎣

0.1 0 0
0 0 −0.2
0 0.05 0.25

⎤
⎥⎦ .

(4.1)

Figure 4.1 is in agreement with the conclusions in the paper. To compare the improved
linear θ-method (3.5) with the linear θ-method presented in [1], we only consider the
case of θ ∈ [1/2,1]. We know that these two methods can both possess a similar stability
property to P stability if θ ∈ [1/2,1].
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Figure 4.1. Improved linear θ-methods (3.5) for Example 4.1 with singular A.
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Figure 4.2. Linear θ-method in [1] for Example 4.2.

Example 4.2. Consider u′(t) = −10.1u(t) + u(t− 10.5)− 50
∫ t
t−10.5u(σ)dσ , where u(t) =

exp(t) for −10.5≤ t ≤ 0.
Note that the linear θ-method in [1] cannot possess a similar property to GP sta-

bility in Figure 4.2, but the improved linear θ-method (3.5) preserves this property in
Figure 4.3. It is shown that both Theorem 3.4 in this paper and [1, Theorem 3] are valid
from the above numerical experiment.
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Figure 4.3. Improved linear θ-method (3.5) for Example 4.2.
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