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We give a complete picture regarding the behavior of positive solutions of the follow-
ing important difference equation: xn = 1 +

∑ k
i=1αixn−pi /

∑m
j=1βjxn−qj , n∈N0, where αi,

i∈ {1, . . . ,k}, and βj , j ∈ {1, . . . ,m}, are positive numbers such that
∑ k

i=1αi =
∑m

j=1βj = 1,
and pi, i ∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are natural numbers such that p1 < p2 <
··· < pk and q1 < q2 < ··· < qm. The case when gcd(p1, . . . , pk,q1, . . . ,qm)= 1 is the most
important. For the case we prove that if all pi, i ∈ {1, . . . ,k}, are even and all qj , j ∈
{1, . . . ,m}, are odd, then every positive solution of this equation converges to a periodic
solution of period two, otherwise, every positive solution of the equation converges to a
unique positive equilibrium.

Copyright © 2007 Stevo Stević. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction and preliminaries

In [1], we studied the behavior of positive solutions of the recursive equation

yn = 1 +
yn−k
yn−m

, n∈N0, (1.1)

with y−s, y−s+1, . . . , y−1 ∈ (0,∞) and k,m∈ {1,2,3,4, . . .}, where s=max{k,m}. We proved
that if 2i is the highest power of 2 which divides m, then if 2i+1 � k, yn tends to 2, exponen-
tially, and otherwise every solution tends to a period t solution, with t = 2gcd(k,m). The
method we used in [1] is a little bit complicated and its idea essentially stems from the
theory of nonexpansive metrics. Since the above result is formulated in number theoretic
language, we expect that the result is a particular case of a more general result, which
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motivates us to investigate the following somewhat natural generalization of (1.1):

xn = 1 +

∑k
i=1αixn−pi∑m
j=1βjxn−qj

, n∈N0, (1.2)

where αi, i ∈ {1, . . . ,k}, and βj , j ∈ {1, . . . ,m}, are positive numbers such that
∑k

i=1αi =∑m
j=1βj = 1, and pi, i ∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are natural numbers such that

p1 < p2 < ··· < pk and q1 < q2 < ··· < qm.
Here, we give a complete picture regarding the asymptotic behavior of positive so-

lutions of (1.2). For closely related results, see, for example, [1–16] and the references
therein.

In the proof of the main result of this paper, we need the following result by Karakostas
(see [8, 9]).

Theorem 1.1. Let J be some interval of real numbers, let f ∈ C[J2, J], and let (xn)∞n=−1 be
a bounded solution of the difference equation

xn+1 = f
(
xn,xn−1

)
, n∈N0, (1.3)

with I = liminfn→∞ In, S = limsupn→∞ xn and with I ,S ∈ J . Then there exist two solutions
(In)∞n=−∞ and (Sn)∞n=−∞ of the difference equation

xn+1 = f
(
xn,xn−1

)
(1.4)

which satisfy the equation for all n∈ Z, with I0 = I , S0 = S, In,Sn ∈ [I ,S] for all n∈ Z and
such that for every N ∈ Z, IN and SN are limit points of (xn)∞n=−1. Furthermore, for every
m ≤ −1, there exist two subsequences (xrn) and (xln) of the solution (xn)∞n=−1 such that the
following are true:

lim
n→∞xrn+N = IN , lim

n→∞xln+N = SN for every N ≥m. (1.5)

The solutions (In)∞n=−∞ and (Sn)∞n=−∞ of (1.4) are called full limiting solutions of (1.4)
associated with the solution (xn)∞n=−1 of (1.3).

2. Main results

First, we study the boundedness character of positive solutions of (1.2). For closely related
results, see, for example, [4, 6, 12–14].

Theorem 2.1. Every positive solution of (1.2) is bounded.

Proof. Assume that (xn) is a positive solution of (1.2). Note that xn > 1 for n≥ 0. Hence,
it is possible to choose positive numbers l and L greater than one such that lL= L+ l and
l ≤ xi ≤ L for i∈ {0,1, . . . ,s− 1}, where s=max{pk,qm}. Employing (1.2), we obtain

l = 1 +
l

L
≤ xs = 1 +

∑k
i=1αixs−pi∑m
j=1βjxs−qj

≤ 1 +
L

l
= L. (2.1)
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By the induction, we obtain that xn ∈ [l,L] for every n ∈ N0, finishing the proof of the
theorem. �

We are now in a position to formulate and prove the main result of this paper.

Theorem 2.2. Consider (1.2). Assume that

G := gcd
(
p1, . . . , pk,q1, . . . ,qm

)= 1. (2.2)

Then if all pi, i∈ {1, . . . ,k}, are even and all qj , j ∈ {1, . . . ,m}, are odd, every positive solu-
tion of (1.2) converges to a periodic solution of period two. Otherwise, every positive solution
of (1.2) converges to a unique positive equilibrium.

Proof. Let

�= {pi | i= 1, . . . ,k
}

, � = {qj | j = 1, . . . ,m
}
. (2.3)

Assume first that �∩� �= ∅. In view of Theorem 2.1, every positive solution (xn) of (1.2)
is bounded which implies that there are finite liminfn→∞ xn = I and limsupn→∞ xn = S.
Letting n→∞ in (1.2), we obtain

1 +
I

S
≤ I ≤ S≤ 1 +

S

I
, (2.4)

from which it follows that

SI = I + S. (2.5)

Let (L−i)i∈Z be a full limiting sequence of a solution (xn) of (1.2), such that L0 = S.
Since (L−i)i∈Z is a solution of (1.2) belonging to the interval [I ,S], we have that

S= L0 = 1 +

∑k
i=1αiL−pi∑m
j=1βjL−qj

≤ 1 +
S

I
= S. (2.6)

From (2.6), it follows that L−pi = S for every i ∈ {1, . . . ,k} and L−qj = I for every j ∈
{1, . . . ,m}. Employing assumption �∩� �= ∅, we obtain I = S, from which the result
follows in this case.

Now we assume that �∩� =∅. Further, assume that there is pi0 ∈� which is odd.
Let pi0 = 2s+ 1 and let qj0 be an arbitrary element of �. Then, (1.2) can be written in the
form

xn = 1 +
αi0xn−(2s+1) +

∑k
i=1, i �=i0 αixn−pi

βj0xn−qj0
+
∑m

j=1, j �= j0 βjxn−qj

. (2.7)

Let (L−i)i∈Z be a full limiting sequence of a solution (xn) of (1.2), such that L0 = S =
limsupn→∞ xn. From

S= L0 = 1 +
αi0L−(2s+1) +

∑k
i=1, i �=i0 αiL−pi

βj0L−qj0
+
∑m

j=1, j �= j0 βjL−qj

, (2.8)



4 Discrete Dynamics in Nature and Society

similar to (2.6), we obtain

L−(2s+1) = S, L−qj0
= I. (2.9)

From (2.9) and since (L−i)i∈Z is a solution of (2.7), it follows that

L−2(2s+1) = S, L−2qj0
= S. (2.10)

Indeed, since

S= L−(2s+1) = 1 +
αi0L−2(2s+1) +

∑k
i=1, i �=i0 αiL−pi−(2s+1)

βj0L−qj0−(2s+1) +
∑m

j=1, j �= j0 βjL−qj−(2s+1)
≤ 1 +

S

I
= S, (2.11)

we obtain the first equality in (2.10). On the other hand, from

I = L−qj0
= 1 +

αi0L−qj0−(2s+1) +
∑k

i=1, i �=i0 αiL−qj0−pi
βj0L−2qj0

+
∑m

j=1, j �= j0 βjL−qj0−qj

≥ 1 +
I

S
= I , (2.12)

the second equality in (2.10) follows.
By induction we obtain

L−(2s+1)i = S, i∈N, (2.13)

L−qj0 j =
⎧
⎪⎨

⎪⎩

I , j odd,

S, j even.
(2.14)

If we take i= qj0 in (2.13) and j = 2s+ 1 in (2.14), we obtain I = L−(2s+1)qj0
= S, as desired.

Now, assume that all pi ∈� are even, and � has odd as well as even elements. Then,
(1.2) can be written in the form

xn = 1 +

∑k
i=1αixn−pi

βj0xn−qj0
+βj1xn−qj1

+
∑m

j=1, j �= j0, j1 βjxn−qj

, (2.15)

where qj0 = 2s and qj1 = 2t+ 1.
From a result in number theory [11], we know that the conditionG= 1 implies that for

each sufficiently large n, say, n≥ n0, there are nonnegative numbers di ∈N0, i∈ {1, . . . ,k+
m}, such that

k∑

i=1

pidi +
m∑

j=1

qjdk+ j = n. (2.16)

From condition G = 1, by using (2.15) and (2.16), and employing the procedure de-
scribed above for getting formulae (2.13) and (2.14), we obtain that the subsequence
(L−i)i≥n0 of the full limiting sequence (Li)i∈Z with L0 = S takes values I and S.
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Now we prove that the sequence (L−i)i∈N is eventually periodic with periods p1, p2, . . . ,
pk and also with periods 2q1, . . . ,2qm. Indeed, if we replace n in (2.15) by −n0 − l, l ∈
{0,1, . . . , p1− 1}, we obtain that L−n0−l = L−n0−l−p1i for every i∈N and each l ∈ {0,1, . . . ,
p1− 1}, that is, (L−i)i∈N is eventually periodic with period p1. Similarly it can be proven
that (L−i)i∈N is eventually periodic with periods p2, . . . , pk. The periodicity with periods
2q1, . . . ,2qm can be proven similar to (2.9) and (2.10) and by using induction.

Since all pi ∈� are even and G= 1, we have that

2≤ gcd
(
p1, p2, . . . , pk,2q1, . . . ,2qm

)= 2gcd
(
p1

2
,
p2

2
, . . . ,

pk
2

,q1, . . . ,qm

)

≤ 2G= 2,

(2.17)

that is,

gcd
(
p1, p2, . . . , pk,2q1, . . . ,2qm

)= 2. (2.18)

Hence, the sequence (L−i)i∈N is eventually periodic with period two. Since (Li)i∈Z is a
solution of (1.2), we obtain that (Li)i∈Z is also periodic with period two.

Assume now that

. . .,x, y,x, y,x, y, . . ., (2.19)

is a two-periodic solution of (2.15). Then we have

x = 1 +
x

cx+ (1− c)y
, y = 1 +

y

cy + (1− c)x
, (2.20)

for some c ∈ (0,1). Hence,

(c− 1)xy = cx2− (c+ 1)x− (1− c)y = cy2− (c+ 1)y− (1− c)x, (2.21)

from which it follows that c(x− y)(x + y− 2) = 0. If x + y = 2 and x �= y, then we have
that x and y are different positive solutions of the equation

x = 1 +
x

cx+ (1− c)(2− x)
, (2.22)

which implies that (2c− 1)(x− 1)2 = 1. Hence, if c ≤ 1/2, then this equation does not
have real roots. If c > 1/2, then x = 1± (1/(2c− 1))1/2 are solutions. However, since c ∈
(1/2,1), the number 1− (1/(2c− 1))1/2 is negative. Therefore, it follows that x = y as
desired.

Assume now that the set � contains only even elements while � contains only odd
elements. Then, it is easy to see that (1.2) in this case has infinite prime two-periodic
solutions of the form x, y,x, y, . . . , such that xy = x+ y. Similar to (2.18), it can be proven
that, in this case, the full limiting sequence (Li)i∈Z, L0 = S is periodic with period two and
that

L2i = S, L2i−1 = I , i∈ Z. (2.23)
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Assume that ε,δ ∈ (0,S) are such that

(S− ε)(I + δ)= (S− ε) + (I + δ). (2.24)

Then, for such chosen ε and δ, there is a k0 ∈ Z such that

xk0+2 j > S− ε, xk0+2 j−1 < I + δ, (2.25)

for j ∈ {1,2, . . . , [s/2] + 1}, where s=max{pk,qm}.
From (1.2) and (2.25), we have that

xk0+2[s/2]+3 < 1 +
I + δ

S− ε
= I + δ,

xk0+2[s/2]+4 > 1 +
S− ε

I + δ
= S− ε.

(2.26)

By induction, we obtain

xk0+2i+1 < I + δ, xk0+2i > S− ε, (2.27)

for every i∈N. From (2.27) and the fact that ε→ 0 implies δ→ 0, it follows that limn→∞ x2n

= S and limn→∞ x2n−1 = I , or limn→∞ x2n = I and limn→∞ x2n−1 = S, finishing the proof of
the theorem. �

Remark 2.3. Note that the case when all pi, i∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are even
is excluded from the consideration in Theorem 2.1 since we assume that G= 1. However,
this case is reduced to the cases considered in Theorem 2.1. Indeed, let 2s be the highest
power of 2 which divides G, then (1.2) can be separated into 2s different equations of the
form

x(t)
n = 1 +

∑k
i=1αix

(t)
n−pi/2s

∑m
j=1βjx

(t)
n−qj /2s

, n∈N0, (2.28)

where t ∈ {0,1, . . . ,2s − 1}. Note that by the definition of 2s, it follows that at least one
of the numbers pi/2s, i∈ {1, . . . ,k}, and qj/2s, j ∈ {1, . . . ,m}, is odd. Hence, Theorem 2.1
can be applied to the equations in (2.28).
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[1] K. Berenhaut, J. Foley, and S. Stević, “The global attractivity of the rational difference equation
yn = 1 + yn−k/yn−m,” Proceedings of the American Mathematical Society, vol. 135, no. 4, pp. 1133–
1140, 2007.

[2] R. M. Abu-Saris and K. Y. Al-Hami, “A global convergence criterion for higher order nonlinear
difference equations with applications,” Journal of Difference Equations and Applications, vol. 12,
no. 9, pp. 901–907, 2006.



Stevo Stević 7
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