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This paper studies the boundedness, global attractivity, and periodicity of the positive
solutions of the difference equation xn+1 = A+ x
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main results give a complete picture regarding the boundedness character of the positive
solutions of the equation.
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1. Introduction

Recently, there has been great interest in studying nonlinear and rational difference equa-
tions (cf. [1–23] and the references therein). One of the reasons for this is a necessity for
some techniques which can be used in investigating equations arising in mathematical
models describing real-life situations in population biology, economics, probability the-
ory, genetics, psychology, sociology, and so forth. Such equations also appear naturally as
discrete analogs of differential equations which model various biological and economic
systems (see, e.g., [6, 8–11, 16, 22] and the references therein).

In [5], the authors investigated the positive solutions of the difference equation

xn+1 = A+
xn
xn−1

, n∈N0, (1.1)

in order to prove that every positive solution of the equation

xn+1 = A

xn
+

1
xn−2

, n∈N0, (1.2)

with A∈ (0,∞), converges to a period-two solution. They proved that the positive equi-
librium x =A+ 1 is a global attractor of (1.1) relative to the set (0,∞)2.
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In this paper, we investigate the positive solutions of the following extension of (1.1):

xn+1 = A+
x
p
n

x
p
n−1

, n∈N0, (1.3)

where A and p are positive numbers.
The linearized equation associated with (1.3) is

(A+ 1)yn+1− pyn + pyn−1 = 0. (1.4)

The characteristic roots of (1.4) are

λ1,2 =
p±

√
p2− 4p(A+ 1)

2(A+ 1)
. (1.5)

It is easy to see that both roots have modulus strictly less than one, if and only if p < A+ 1.
Based on this fact, one can conjecture that (1.3) is globally stable when p < A + 1.

However, we will prove that this is not true by proving that there are values of p such that
p < A+ 1 and that there are unbounded positive solutions of (1.3) in the case.

Our aim here is to give a complete picture regarding the boundedness character of the
positive solutions of (1.3). We also present a global stability result for the case p ∈ (0,1], as
well as a result regarding the periodicity of the positive solutions of (1.3). Closely related
equations to (1.3) are investigated, for example, in [1–3, 7, 9, 17–21, 23].

2. Boundedness character for (1.3)

In this section, we investigate the boundedness character of the positive solutions of (1.3).

2.1. Case p ≥ 4. Here, we investigate (1.3) for the case p ≥ 4.

Theorem 2.1. Assume that p ≥ 4. Then (1.3) has positive unbounded solutions.

Proof. First, note that for every solution of (1.3), the following inequality holds:

xn+1 >
(

xn
xn−1

)p

, n∈N0. (2.1)

Let yn = lnxn. Taking the logarithm of (2.1), it follows that

yn+1− pyn + pyn−1 > 0, n∈N0. (2.2)

Note that the roots of the polynomial

P(λ)= λ2− pλ+ p (2.3)

are

λ1,2 =
p±

√
p2− 4p

2
. (2.4)
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It is clear that if p ≥ 4, then λ1 ≥ 2. On the other hand, we have that

λ2 = 2p

p+
√
p2− 4p

> 1. (2.5)

Hence, if p ≥ 4, both roots of P(λ) are greater than one.
Now note that inequality (2.2) can be written in the following form:

yn+1− λ1yn− λ2
(
yn− λ1yn−1

)
> 0, n∈N0. (2.6)

Returning to the sequence xn, we obtain

xn+1

xλ1
n

>

(
xn

xλ1
n−1

)λ2

, n∈N0. (2.7)

From (2.7), it follows that

xn

xλ1
n−1

>

(
x0

xλ1
−1

)λn2

. (2.8)

Choose x−1 and x0 so that

x0 > 1, x0 > xλ1
−1. (2.9)

From (2.8) and such chosen initial values, it follows that

xn >

(
x0

xλ1
−1

)λn2

xλ1
n−1 > xλ1

n−1 > ··· > x
λn1
0 , (2.10)

and consequently

xn > x
λn1
0 , n∈N. (2.11)

Letting n→∞ in (2.11), it follows that

lim
n→∞xn = +∞, (2.12)

from which the result follows. �

2.2. Case p ∈ (0,4). Here, we investigate the boundedness character of the positive solu-
tions of (1.3) for the case p ∈ (0,4).

Theorem 2.2. Assume that p ∈ (0,4). Then all positive solutions of (1.3) are bounded.
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Proof. From (1.3), we have that

xn+1 = A+
x
p
n

x
p
n−1

=A+

(
A

xn−1
+
x
p−1
n−1

x
p
n−2

)p

(2.13)

= A+

(
A

xn−1
+

(
xn−1

x
p/(p−1)
n−2

)p−1)p

= A+

(
A

xn−1
+

(
A

x
p/(p−1)
n−2

+
x
p−p/(p−1)
n−2

x
p
n−3

)p−1)p

= A+

(
A

xn−1
+

(
A

x
p/(p−1)
n−2

+

(
xn−2

x
p/(p−p/(p−1))
n−3

)p−p/(p−1))p−1)p

= ···

= A+

(
A

xn−1
+

(
A

x
p/(p−1)
n−2

+

(
···+

(
A

x
pk
n−k

+
x
p−pk
n−k

x
p
n−k−1

)p−pk−1

···
)p−p/(p−1))p−1)p

,

(2.14)

for every n≥ k, where the sequence pk is defined by

pk+1 = p

p− pk
, p0 = 0. (2.15)

If p = pk1 , for some k1 ∈ N, the recurrence relation in (2.15) defines only k1 + 1 terms,
p0, p1, . . . , pk1 . In this case, we finish the procedure described in (2.13)-(2.14) after k1 steps
(e.g., if p = p1 = 1, the procedure is finished in (2.13)).

If p ≤ p1 = 1, then from (2.13) it follows that

xn+1 ≤A+
(A+ 1)p

Ap , (2.16)

from which the result follows in this case.
Assume now that p > 1. We prove that there is the least k0 ∈ N such that pk0−1 < p

and pk0 ≥ p. Otherwise, pk < p, for every k ∈N. Since 0= p0 < p1 = 1, and the function
f (x) = p/(p− x) is strictly increasing on the interval (0, p), the sequence pk would be
strictly increasing. Since pk is bounded, then it would converge, say, to p∗, and it would
be a solution of the equation

x2− px+ p = 0. (2.17)

However, since p ∈ (0,4), the equation does not have real solutions. Hence, there is the
least k0 ∈N such that pk0−1 < p and pk0 ≥ p, as claimed. From this and (2.14) with k = k0,
it follows that

xn+1=A+

(
A

xn−1
+

(
A

x
p/(p−1)
n−2

+

(
···+

(
A

x
pk0
n−k0

+
1

x
pk0−p
n−k0

x
p
n−k0−1

)p−pk0−1

···
)p−p/(p−1))p−1)p

≤ A+
(

1 +
(

1
Ap/(p−1)−1 +

(
···+

(
1

Apk0−1 +
1

Apk0

)p−pk0−1

···
)p−p/(p−1))p−1)p

,

(2.18)
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for every n≥ k0. The last expression is an upper bound for the sequence xn, finishing the
proof of the theorem. �

3. Case p ∈ (0,1]

In this section we study the global stability of the positive solutions of (1.3) for the case
p ∈ (0,1]. The main result of this section is the following.

Theorem 3.1. Assume that p ∈ (0,1]. Then the positive equilibrium x = A+ 1 of (1.3) is
globally asymptotically stable.

Before proving Theorem 3.1, we need an auxiliary result which is incorporated in the
following lemma.

Lemma 3.2. Let (xn) be a nontrivial positive solution of (1.3). Then the following statements
are true.

(a) (xn) oscillates about the equilibrium x =A+ 1 with semicycles of length two or three
and the extreme in a semicycle occurs in the first or the second term.

(b) For n > 2, one has that

A < xn < A+
(A+ 1)p

Ap . (3.1)

Proof. First, we show that every positive semicycle, except possibly the first, has two or
three terms. To this end, assume that xN−1 < x and xN ≥ x, for some N ∈ N. Then, we
have

xN+1 = A+
x
p
N

x
p
N−1

> A+ 1= x. (3.2)

If xN+1 > xN , then we have

xN+2 =A+
x
p
N+1

x
p
N

> A+ 1= x. (3.3)

On the other hand, since p ∈ (0,1], we have that

xN+2 = A+
x
p
N+1

x
p
N

≤A+
x
p
N+1

xp
≤A+

xN+1

A+ 1
< xN+1, (3.4)

so that x < xN+2 < xN+1.
From this, we have that

xN+3 = A+
x
p
N+2

x
p
N+1

< A+ 1= x, (3.5)

from which it follows that (a) holds true.
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(b) From the proof of Theorem 2.2 and since p ∈ (0,1], we have that

xn+1 = A+
x
p
n

x
p
n−1

=A+

(
A

xn−1
+

1

x
1−p
n−1x

p
n−2

)p

< A+
(A+ 1)p

Ap , (3.6)

as desired. �

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. By the linearized stability theorem, it follows that x = A+ 1 is lo-
cally asymptotically stable if p ∈ (0,1). Now, define the sequences as follows:

L1 = A, U1 = A+
(A+ 1)p

Ap ,

Ln+1 =A+
(A+ 1)p

U
p
n

, Un+1 = A+
(A+ 1)p

L
p
n+1

.
(3.7)

As in Lemma 3.2, it can be shown that the sequences (Un) and (Ln) are upper and lower
bounds for the semicycles of the solutions (xn) of (1.3). On the other hand, it is easy to
see that

L1 < L2 < ··· < Ln < Ln+1 < ··· < x < ··· < Un+1 < Un < ··· < U2 < U1, (3.8)

and that they are solutions of the difference equation

wn+1 = A+
[

A+ 1

A+
(
(A+ 1)/wn

)p
]p

. (3.9)

Now we prove that every convergent solution of (3.9) converges to x = A+ 1. In order to
prove this, it is enough to prove that the equation

f (x)= 1
p

ln(x−A) + ln
(
Axp + (A+ 1)p

)− p ln x− ln(A+ 1) (3.10)

has a unique solution x = A+ 1 on the interval (A,+∞).
Since

f ′(x)= Axp+1 + (A+ 1)px
(
1− p2

)
+ p2A(A+ 1)p

px(x−A)
(
Axp + (A+ 1)p

) > 0, (3.11)

when p ∈ (0,1],

lim
x→A+0

f (x)=−∞, lim
x→+∞ f (x)= +∞, (3.12)

it follows that x = A+ 1 is indeed a unique solution of (3.10) on the interval (A,+∞),
finishing the proof of the theorem. �

Remark 3.3. Let g(x) be the numerator of f ′(x), that is,

g(x)= Axp+1− (A+ 1)p
(
p2− 1

)
x+ p2A(A+ 1)p (3.13)

and let p > 1.
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We have

g′(x)= (p+ 1)
(
Axp− (p− 1)(A+ 1)p

)
, (3.14)

so that the function g(x) attains its minimum at the point m = ((p− 1)(A+ 1)p/A)1/p,
and

g(m)= p(A+ 1)p
(
Ap−m(p− 1)

)= p(A+ 1)p
(
Ap−

(
(p− 1)(A+ 1)p

A

)1/p

(p− 1)
)
.

(3.15)

Now we study when this minimum is nonnegative, which is equivalent to

Ap+1pp ≥ (p− 1)p+1(A+ 1)p. (3.16)

Note that when p = A+ 1, the above inequality becomes equality.
Let

h(x)= (p+ 1)lnx+ p ln p− (p+ 1)ln(p− 1)− p ln(x+ 1), (3.17)

then

h(p− 1)= 0, h(+∞)= +∞. (3.18)

On the other hand,

h′(x)= (p+ 1)(x+ 1)− px

x(x+ 1)
> 0 (3.19)

when x > 0, which implies that the function h is increasing on the interval (0,+∞). From
this and (3.18), we obtain that h(x) ≥ 0, if and only if x ≥ p− 1, and consequently in-
equality (3.16) holds for A ≥ p− 1, from which it follows that g(x) ≥ 0 for A ≥ p− 1,
showing that the function f (x) has a unique zero, as desired.

This consideration and Theorem 2.2 motivate us to believe that the following conjec-
ture is true.

Conjecture 3.4. If 1 < p < min{4,A+ 1}, then x = A+ 1 is a global attractor of (1.3) rela-
tive to the set (0,∞)2.

4. Prime two-periodic solutions of (1.3)

In this section, we investigate the existence of prime two-periodic solutions of (1.3).

Theorem 4.1. There are no positive prime two-periodic solutions of (1.3).

Proof. Assume that

. . . ,x, y,x, y, . . . , (4.1)
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where x, y ∈ (A,∞), is a prime two-periodic solution of (1.3). Then it must be

x = A+
(
y

x

)p

, y =A+
(
x

y

)p

, (4.2)

which implies that

y = A+
1

x−A
. (4.3)

Substituting (4.3) into (4.2) and after some simple calculation, it follows that

(x−A)p+1xp = (A(x−A) + 1
)p
. (4.4)

Taking the logarithm on both sides of (4.4), we obtain

f (x)= (p+ 1)ln(x−A) + p ln x− p ln
(
A(x−A) + 1

)= 0. (4.5)

It is clear that x =A+ 1 is an obvious solution of (4.5). Now we prove that this is a unique
solution of the equation. Since

f ′(x)= (x−A)
(
Ax+ p

(
A(x−A) + 1

))
+ (p+ 1)x

x(x−A)
(
A(x−A) + 1

) , (4.6)

we have that f ′(x) > 0, for x ∈ (A,∞), which implies that the function f is strictly mo-
notonous on the interval (A,∞). Hence, A+ 1 is the unique solution of (4.5), and con-
sequently (A + 1,A + 1) is a unique solution of system (4.2), finishing the proof of the
theorem. �

Research project. Investigate whether or not (1.3) has positive prime periodic solutions
of period greater than two.
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[12] S. Stević, “A generalization of the Copson’s theorem concerning sequences which satisfy a linear

inequality,” Indian Journal of Mathematics, vol. 43, no. 3, pp. 277–282, 2001.
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[15] S. Stević, “A global convergence results with applications to periodic solutions,” Indian Journal

of Pure and Applied Mathematics, vol. 33, no. 1, pp. 45–53, 2002.
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[18] S. Stević, “On the recursive sequence xn+1 = xn−1/g(xn),” Taiwanese Journal of Mathematics,

vol. 6, no. 3, pp. 405–414, 2002.
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