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1. Introduction

A large class of neural networks, which can function as stable content addressable memo-
ries or CAMs [1, 2], had been proposed by Cohen and Grossberg. These Cohen-Grossberg
networks were designed to include additive neural networks, later studied by Hopfield
[3, 4], and shunting neural networks. In the original analysis, Cohen and Grossberg as-
sumed that the weight matrix was symmetric. Meanwhile, the activation functions are
assumed to be continuous, differentiable, monotonically increasing, and bounded, such
as the sigmoid-type function. Usually, such systems have been investigated under the
assumption of asymmetric connection weight and nonmonotonic activation function.
However, monotonicity and differentiability of activation functions come form the exper-
imental results of brain sciences, moreover, they have very strong biological background.
On the other hand, realistic modeling of many large neural networks with nonlocal inter-
action inevitably requires connection delays to be taken into account, since they naturally
arise as a consequence of finite information transmission and processing speeds among
the neurons.
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It is also important to incorporate time delay into the model equations of the net-
work such as delayed cellular neural network, which can be used to solve problems like
the processing of moving images [5, 6]. Ye et al. [7] introduced discrete delays into the
Cohen-Grossberg model. Furthermore, their global stability needed to satisfy the require-
ments that the connection should possess certain amount of symmetry and the discrete
delays were sufficiently small.

For the delayed Hopfield networks [7–14], cellular neural networks [5, 6], as well as
BAM networks [15–18], some delay-independent criteria for the global asymptotic sta-
bility are established without assuming the monotonicity and the differentiability of the
activation functions and also the symmetry of the connection. Wang and Zou [19] also
studied the Cohen-Grossberg model with time delays. The global stability criteria of this
type of neural networks were also obtained by constructing appropriate Lyapunov func-
tionals, or Lyapunov functions combined with the Rezumikhin technique. All of these
criteria are independent of the magnitudes of the delays, and therefore the delays are
harmless in a network satisfying one of the criteria. Actually, the global exponential sta-
bility implies global asymptotic stability, and so the results leading to global exponential
stability can provide relevant estimates on how fast such networks perform during real-
time computations. Furthermore, Liao et al. [20, 21] studied this problem.

Generally, the stability criteria for time-delay systems can be classified into two cat-
egories, namely delay-independent criteria and delay-dependent criteria, depending on
whether they contain the delay argument as a parameter. There have been a number of
significant developments in searching the stability criteria for systems with constant de-
lays [4, 6, 7, 9, 11, 12, 14–17]. Only a few of them are for neural networks with distributed
delays; see, for instance, [1–5, 8, 10, 18]. To the best of the authors’ knowledge, the delay-
dependent criteria in the case of the delayed Cohen-Grossberg model are little studied yet.
In this paper, we will present some new local and global asymptotic stabilities of the equi-
librium of Cohen-Grossberg models with mulitiple delays. Our results essentially show
that the equilibrium of the network remains globally asymptotically stable when the time
delays are small enough. In order to prove our results, we construct the suitable Lyapunov
functionals.

In this paper, the amplification functions need to be continuous, positive, and
bounded. However, the self-signal functions are not assumed to be differentiable, but
only need to satisfy condition (H2), as stated in the next section. At the same time, we do
not confine ourselves to the symmetric connections. The rest of this paper is organized
as follows. In Section 2, the Cohen-Grossberg neural network with time-varying delays
and some preliminary analyses are given. By constructing Lyapunov functionals, some
global exponential stability criteria for the network are presented in Section 3. Finally,
numerical example is given to illustrate our results and some conclusions are drawn in
Section 4.

2. Some preliminaries and network models

We consider Cohen-Grossberg neural networks with multiple time-varying delays, de-
scribed by equations of theform
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u̇i(t)=−ai
(
ui(t)

)
[

bi
(
ui(t)

)−
K∑

k=0

n∑

j=1

t(k)
i j f j

(
uj
(
t− τk(t)

))
+ Ii

]

, i= 1,2, . . . ,n, (2.1)

where ui denotes the state variable associated with the ith neuron, the function ai repre-
sents an amplification function, and bi is an arbitrary function; however we will require

that bi be sufficiently well behaved to keep the solutions of (2.1) bounded. The t(k)
i j ’s de-

note the interconnections which are associated with delay τk(t), τk(t) denotes the kth time
delay for k = 0,1,2, . . . ,K such that 0= τ0 < τ1 < ··· < τk.

System (2.1) is said to be globally stable if for any solution u(t), limt→∞u(t) exists. For
the definitions of stability and asymptotic stability of an equilibrium of (2.1), refer to any
of several standard texts (see, e.g., [22]).

In this paper, we assume that the Cohen-Grossberg neural networks (2.1) satisfy the
following assumptions.

(H1) The function ai is bounded, positive, and continuous.
(H2) The function bi is continuous, and there exist positive constants Bi and Bi, i =

0,1,2, . . . ,n, such that

0 < Bi ≤ bi
(
xi
)− bi

(
yi
)

xi− yi
≤ Bi, for xi �= yi, i= 1,2, . . . ,n,

lim
ui→+∞bi

(
ui
)= +∞, lim

ui→−∞
bi
(
ui
)=−∞.

(2.2)

(H3) f j ∈ C1(R,R) is a sigmoidal function (so that s′j(xj)
Δ= dsj(xj)/dxj > 0,

limxj→+∞ f j(xj)= 1, limxj→−∞ f j(xj)=−1, and lim|xj |→∞ s
′
j(xj)= 0).

(H4) τk : [0,+∞)→ [0,+∞) is continuous and 0≤ τk(t)≤ τ.
The initial condition for system (2.1) is given as follows:

uj(s)= φj(s), s∈ [−τ,0]. (2.3)

Lemma 2.1. If assumption (H1)–(H4) are satisfied for system (2.1)–(2.3), then any solution
of (2.1) and (2.3) is bounded.

Proof. We only need to consider system (2.1). We know by (H1)–(H4) that the terms
f j(uj(t)) and f j(uj(t − τk(t))) are bounded for all j = 1,2, . . . ,n. Furthermore, since
limui→+∞ bi(ui)= +∞ and limui→−∞ bi(ui)=−∞, there must exist M >0 such that

bi
(
ui(t)

)−
K∑

k=0

n∑

j=1

t(k)
i j f j

(
uj
(
t− τk(t)

))
+ Ii > 0 (2.4)

whenever ui(t)≥M and

bi
(
ui(t)

)−
K∑

k=0

n∑

j=1

t(k)
i j f j

(
xj
(
t− τk(t)

))
+ Ii < 0 (2.5)

whenever ui(t) ≤ −M for all i = 1,2, . . . ,n. Since ai(ui(t)) is positive by (H1), it can be
concluded that for any solution u(t) of system (2.1), u̇i(t) < 0 whenever ui(t) ≥M and
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u̇i(t) > 0 whenever ui(t) ≤ −M for all i = 1,2, . . . ,n. We may assume that for the initial
condition φj(s), |φj(s)| < M, otherwise we just pick a larger M. Thus we can conclude
that ‖ui(t)‖ ≤M for all t ≥ 0 and all i= 1,2, . . . ,n. �

It is not difficult to show that under (H1)–(H4), the solution of (2.1) satisfying the
initial condition (2.3) exists on R+ ≡ [0,+∞) (see, e.g., [22, 23]). Actually, note that from
Lemma 2.2, it is clear that the solution of (2.1) is also unique.

It is also easy to show that (2.1) has always an equilibrium u∗j , i = 1,2, . . . ,n. That is,
there exist u∗j , i= 1,2, . . . ,n, such that

bi
(
u∗i
)=

K∑

k=0

n∑

j=1

t(k)
i j f j

(
u∗j
)

+ Ii, i= 1,2, . . . ,n. (2.6)

By using the strict monotonicity property of bi, there exist positive numbers bi > 0,
i= 1,2, . . . ,n, such that

bi
(
u∗i
)= biu

∗
i , i= 1,2, . . . ,n. (2.7)

Thus,

u∗i = bi
−1
{ K∑

k=0

n∑

j=1

t(k)
i j f j

(
u∗j
)

+ Ii

}

, i= 1,2, . . . ,n. (2.8)

In fact, let us consider the map P = (P1,P2, . . . ,Pn) on the compact convex set Ω, where

Pi
(
u1,u2, . . . ,un

)= bi
−1
{ K∑

k=0

n∑

j=1

t(k)
i j f j

(
u∗j
)

+ Ii

}

, i= 1,2, . . . ,n,

Ω= {(u1,u2, . . . ,un
) | ∣∣ui

∣
∣≤Ni0

}
,

Ni0 =
∑K

k=0

∑n
j=1

∣
∣t(k)

i j

∣
∣Fj +

∣
∣Ii
∣
∣

∣
∣bi
∣
∣ ,

∣
∣ f j

(
u∗j
)∣∣≤ Fj , j = 1,2, . . . ,n.

(2.9)

It follows from (H1) that P is a continuous map Ω into itself. Thus, it follows from
Brouwer’s fixed point theorem (see, e.g., [22]) that P has at least one fixed point (u∗1 ,
u∗2 , . . . ,u∗n ) in Ω, that is,

(
u∗1 ,u∗2 , . . . ,u∗n

)= P
(
u∗1 ,u∗2 , . . . ,u∗n

)
. (2.10)

This shows that (u∗1 ,u∗2 , . . . ,u∗n ) satisfies (2.6).
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Lemma 2.2 is immediate.

Lemma 2.2. If (H1)–(H4) are satisfied, then for any solution of (2.1),

lim
t→∞sup

∣
∣ui(t)

∣
∣≤Ni

(≤Ni0
)
, i= 1,2, . . . ,n, (2.11)

where the positive constants Ni, i= 1,2, . . . ,n, satisfy

Ni =
∑K

k=0

∑n
j=1

∣
∣t(k)

i j

∣
∣ fi
(
Ni
)

+
∣
∣Ii
∣
∣

∣
∣bi
∣
∣ ,

fi
(
Ni
)=max

{
fi
(
Ni
)
,− fi

(−Ni
)}

, i= 1,2, . . . ,n.

(2.12)

Proof. It is clear from (H1)–(H4) and (2.1) that

lim
t→∞sup

∣
∣ui(t)

∣
∣≤Ni0, i= 1,2, . . . ,n. (2.13)

Thus, for sufficiently small η > 0 and sufficiently large T0 > 0, such that for t ≥ T0,

∣
∣ui(t− τ)

∣
∣≤Ni0 +η, i= 1,2, . . . ,n, (2.14)

which together with (H3) and (2.1) yield that for t ≥ T0,

u̇i(t)≤ ai
(
ui(t)

)
[

−∣∣di
(
ui(t)

)∣∣+
K∑

k=0

n∑

j=1

∣
∣t(k)

i j

∣
∣ f j

(
Ni0 +η

)
+
∣
∣Ii
∣
∣
]

, i= 1,2, . . . ,n.

(2.15)

Note that one can take η→ 0 as t→ +∞, we have

lim
t→∞sup

∣
∣ui(t)

∣
∣≤Ni1, i= 1,2, . . . ,n, (2.16)

where

Ni1 =
∑K

k=0

∑n
j=1

∣
∣t(k)

i j

∣
∣ fi
(
Ni0
)

+
∣
∣Ii
∣
∣

∣
∣bi
∣
∣ ≤Ni0, i= 1,2, . . . ,n. (2.17)

By repeating the above procedure, we can obtain positive sequences {Ni,k} such that

Ni,k+1 =
∑K

k=0

∑n
j=1

∣
∣t(k)

i j

∣
∣ fi
(
Ni,k

)
+
∣
∣Ii
∣
∣

∣
∣bi
∣
∣ ≤Ni,k, i= 1,2, . . . ,n,

lim
t→∞sup

∣
∣ui(t)

∣
∣≤Ni,k, i= 1,2, . . . ,n, k = 1,2, . . . .

(2.18)
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Let Ni denote the limits of {Ni,k} as k→ +∞, respectively. Then, we have

Ni =
{∑K

k=0

∑n
j=1

∣
∣t(k)

i j

∣
∣ fi
(
Ni,k

)
+
∣
∣Ii
∣
∣

∣
∣bi
∣
∣

}

, i= 1,2, . . . ,n,

lim
t→∞sup

∣
∣ui(t)

∣
∣≤Ni.

(2.19)

This shows that Lemma 2.2 holds. �

By Lemma 2.2, we see that for any sufficiently small positive constant ε, there exists a
sufficiently large time, T = T(ε) > 0, such that for t ≥ T ,

∣
∣ui(t)

∣
∣≤Ni + ε, i= 1,2, . . . ,n. (2.20)

Define positive constants pi,ε and qi,ε, i= 1,2, . . . ,n, as follows:

pi,ε ≡ min
−(Ni+ε)≤w≤Ni+ε

f ′i (w)≤ max
−(Ni+ε)≤w≤Ni+ε

g′i (w)≡ qi,ε, i= 1,2, . . . ,n. (2.21)

Let pi and qi, i= 1,2, . . . ,n, denote the limits of piε and qiε, respectively, as ε→ 0.

Remark 2.3. It is easy to show that the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of (2.1) is also unique
if (H1)–(H4) and the following (H5) are satisfied.

The following well-known Barbalat lemma (see, e.g., [23]) will also be used.

Lemma 2.4. Let f be a nonnegative function defined on R+ such that f is integrable and
uniformly continuous on R+. Then limt→+∞ f (t)= 0.

3. Stability analysis

In this section, we will consider the stability of the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system
(2.1).

Let us first consider the case t(k)
i j �= 0, for some i, j = 1,2, . . . ,n, k = 1,2, . . . ,K . We fur-

ther assume the following hypothesis.
(H5) There exist positive constants λi, i= 1,2, . . . ,n, such that the matrix:

R=

⎛

⎜
⎜
⎜
⎜
⎝

η1 r12 r13 ··· r1n

r21 η2 r23 ··· r2n
...

...
...

...
...

rn1 rn2 rn3 ··· ηn

⎞

⎟
⎟
⎟
⎟
⎠

(3.1)
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is negative definite, that is,

(−1)i

⎛

⎜
⎜
⎜
⎜
⎝

η1 r12 r13 ··· r1n

r21 η2 r23 ··· r2n
...

...
...

...
...

rn1 rn2 rn3 ··· ηn

⎞

⎟
⎟
⎟
⎟
⎠
> 0, i= 1,2, . . . ,n, (3.2)

where

ηi = λi

(

− Bi

qiε
+

( K∑

k=0

t(k)
ii

))

+
1
2

K∑

k=0

n∑

j=1

τk(t)

[
λiqjεBj

p jε

∣
∣t(k)

i j

∣
∣+

λjqiεBi

piε

∣
∣t(k)

ji

∣
∣
]

+
1
2

K∑

k=0

n∑

j=1

τk(t)

[

λiqjε

∣
∣t(k)

i j

∣
∣
( K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣
)

+ qjε

( K∑

k=0

n∑

l=1

λl
∣
∣t(k)

l j

∣
∣
∣
∣t(k)

ji

∣
∣
)]

ri j = 1
2

K∑

k=0

(
λit

(k)
i j + λjt

(k)
ji

)
, i �= j, i, j = 1,2, . . . ,n.

(3.3)

Hence, the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system (2.1) is unique.

Theorem 3.1. If t(k)
i j �= 0, for some i, j = 1,2, . . . ,n, k = 1,2, . . . ,K , and (H1)–(H5) are satis-

fied, then the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system (2.1) is globally asymptotically stable.

Proof. Let

xj(t)= uj(t)−u∗j , j = 1,2, . . . ,n,

s j
(
xj(t)

)= f j
(
xj(t) +u∗j

)− f j
(
u∗j
)
, j = 1,2, . . . ,n,

hj
(
xj(t)

)= bj
(
xj(t) +u∗j

)− bj
(
u∗j
)
, j = 1,2, . . . ,n.

(3.4)

Then, the stability properties of the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system (2.1) are equiv-
alent to that of the trivial solution of the following system:

ẋi(t)=−ai
(
xi(t) +u∗i

)
[

hi
(
xi(t)

)−
K∑

k=0

n∑

j=1

t(k)
i j s j

(
xj
(
t− τk(t)

))
]

. (3.5)
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We construct the following Lyapunov function:

V1 =
n∑

i=1

λi

∫ xi(t)

0

si(ξ)
ai
(
ξ +u∗i

)dξ. (3.6)

Then its upper right Dini derivative is

D+V1|(3.5) =
n∑

i=1

λisi
(
xi(t)

)
[

−hi
(
xi(t)

)
+

K∑

k=0

n∑

j=1

t(k)
i j s j

(
xj
(
t− τk(t)

))
]

=
n∑

i=1

λisi
(
xi(t)

)
[

−hi(xi(t)) +
K∑

k=0

t(k)
ii s j

(
xj(t)

)
]

+
n∑

i=1

λisi
(
xi(t)

)
αi +

K∑

k=0

n∑

i=1

n∑

j=1
j �=i

λit
(k)
i j si

(
xi(t)

)
s j
(
xj(t)

)
,

(3.7)

where

αi =
K∑

k=0

n∑

j=1

t(k)
i j

∫ t−τk(t)

t
s′j
(
xj(ξ)

)
x′j(ξ)dξ. (3.8)

Note that

pi,ε ≡ min
−(Ni+ε)≤w≤Ni+ε

s′i (w)≤ max
−(Ni+ε)≤w≤Ni+ε

s′i (w)≡ qi,ε. (3.9)

We also note that for sufficiently large t,

∣
∣xi(t)

∣
∣≤

∣
∣si
(
xi(t)

)∣∣

piε
. (3.10)

Then

∣
∣si
(
xi(t)

)
αi
∣
∣≤ ∣∣si

(
xi(t)

)∣∣
K∑

k=0

n∑

j=1

∣
∣t(k)

i j

∣
∣
∫ t

t−τk(t)

∣
∣s′j
(
xj(ξ)

)∣∣
∣
∣x′j(ξ)

∣
∣dξ

≤ ∣∣si
(
xi(t)

)∣∣
K∑

k=0

n∑

j=1

∣
∣t(k)

i j

∣
∣
∫ t

t−τk(t)
qjε

×
(
∣
∣hj

(
xj(ξ)

)∣∣+
K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣sl
(
xl
(
ξ − τk(ξ)

))
)

dξ
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≤ ∣∣si
(
xi(t)

)∣∣
K∑

k=0

n∑

j=1

∣
∣t(k)

i j

∣
∣
∫ t

t−τk(t)
qjε

×
(
Bj

pjε

∣
∣s j
(
xj(ξ)

)∣∣+
K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣sl
(
xl
(
ξ − τk(ξ)

))
)

dξ

≤ 1
2

K∑

k=0

n∑

j=1

∣
∣t(k)

i j

∣
∣qjε

∫ t

t−τk(t)

×
{
Bj

pjε

[
s2
i

(
xi(t)

)
+ s2

j

(
xj(t)

)]

+
K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣[s2

i

(
xi(t)

)
+ s2

l

(
xl
(
ξ − τk(ξ)

))]
}

dξ

= 1
2

K∑

k=0

n∑

j=1

∣
∣t(k)

i j

∣
∣qjετk(t)

[
Bj

pjε
+

K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣
]

s2
i

(
xl(t)

)

+
1
2

K∑

k=0

n∑

j=1

∣
∣t(k)

i j

∣
∣
∫ t

t−τk(t)
qjε

×
[
Bj

pjε
s2
j

(
xj(ξ)

)
+

K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣s2

l

(
xl
(
ξ − τk(ξ)

))
]

dξ

=
K∑

k=0

n∑

j=1

∣
∣t(k)

i j

∣
∣(Ajkεs

2
i

(
xi(t)

)
+
∫ t

t−τk(t)
μjε(ξ)dξ

)
,

(3.11)

where

Ajkε = 1
2
qjετk(t)

[
Bj

pjε
+

K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣
]

,

μjε(ξ)= 1
2
qjε

[
Bj

pjε
s2
j

(
xj(ξ)

)
+

K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣s2

l

(
xl
(
ξ − τk(ξ)

))
]

.

(3.12)

Furthermore, by (H1), we have for t ≥ T +Δ that

si
(
xi(t)

)
[

−hi
(
xi(t)

)
+

K∑

k=0

t(k)
ii si

(
xi(t)

)
]

≤−Bixi(t) fi
(
xi(t)

)
+

( K∑

k=0

t(k)
ii

)

s2
i

(
xi(t)

)≤
[

− Bi

qiε
+

( K∑

k=0

t(k)
ii

)]

s2
i

(
xi(t)

)
.

(3.13)
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Let

V2 =
K∑

k=0

n∑

i=1

n∑

j=1

λi
∣
∣t(k)

i j

∣
∣
(∫ t

t−τk(t)

∫ t

θ
μjε(ξ)dξdθ +

τk(t)qjε

2

K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣
∫ t

t−τk(t)
s2
l

(
xl(ξ)

)
dξ

)

.

(3.14)

Its derivative is

D+V2|(3.5) =
K∑

k=0

n∑

i=1

n∑

j=1

λiqjε

2

∣
∣t(k)

i j

∣
∣τk(t)

(
Bj

pjε
s2
j (xj(t)) +

K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣s2

l

(
xl(t)

)
)

−
K∑

k=0

n∑

i=1

n∑

j=1

λi
∣
∣t(k)

i j

∣
∣
∫ t

t−τk(t)
μjε(ξ)dξ.

(3.15)

Hence,

D+V =D+V1 +D+V2

≤
n∑

i=1

λi

[

− Bi

qiε
+

( K∑

k=0

t(k)
ii

)]

s2
i

(
xi(t)

)
+

K∑

k=0

n∑

i=1

n∑

j=1

λi
∣
∣t(k)

i j

∣
∣Ajkεs

2
i

(
xi(t)

)

+
K∑

k=0

n∑

i=1

n∑

j=1

λit
(k)
i j si

(
xi(t)

)
s j
(
xj(t)

)

+
K∑

k=0

n∑

i=1

n∑

j=1

λiqjε

2

∣
∣t(k)

i j

∣
∣τk(t)

(
Bj

pjε
s2
j

(
xj(t)

)
+

K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣s2

l

(
xl(t)

)
)

=
n∑

i=1

λi

[

− Bi

qiε
+

( K∑

k=0

t(k)
ii

)

+
K∑

k=0

n∑

j=1

∣
∣t(k)

i j

∣
∣Ajkε

]

s2
i

(
xi(t)

)

+
K∑

k=0

n∑

i=1

n∑

j=1

λit
(k)
i j si

(
xi(t)

)
s j
(
xj(t)

)

+
K∑

k=0

n∑

i=1

n∑

j=1

λiqjε

2

∣
∣t(k)

ji

∣
∣τk(t)

Bj

piε
s2
i

(
xi(t)

)

+
K∑

k=0

n∑

i=1

n∑

j=1

( K∑

k=0

n∑

l=1

λlqjε

2

∣
∣t(k)

l j

∣
∣τk(t)

∣
∣t(k)

ji

∣
∣s2

i

(
xi(t)

)
)
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=
n∑

i=1

{

λi

[

− Bi

qiε
+

( K∑

k=0

t(k)
ii

)

+
K∑

k=0

n∑

j=1

∣
∣t(k)

i j

∣
∣qjετk(t)

2

(
Bj

pjε
+

K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣
)]

+
qiεBi

2piε

K∑

k=0

n∑

j=1

λj

∣
∣t(k)

ji

∣
∣τk(t)

+
K∑

k=0

n∑

j=1

qjε

2

( K∑

k=0

n∑

l=1

λlτk(t)
∣
∣t(k)

l j

∣
∣
∣
∣t(k)

ji

∣
∣
)}

s2
i

(
xi(t)

)

+
K∑

k=0

n∑

i=1

n∑

j=1

λit
(k)
i j si

(
xi(t)

)
s j
(
xj(t)

)

=
n∑

i=1

{

λi

(

− Bi

qiε
+

( K∑

k=0

t(k)
ii

))

+
1
2

K∑

k=0

n∑

j=1

[
λiqjεBj

p jε

∣
∣t(k)

i j

∣
∣τk(t) +

λjqiεBi

piε

∣
∣t(k)

ji

∣
∣τk(t)

]

+
1
2

K∑

k=0

n∑

j=1

[

λiqjετk(t)
∣
∣t(k)

i j

∣
∣
( K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣
)

+ qjετk(t)

( K∑

k=0

n∑

l=1

λl
∣
∣t(k)

l j

∣
∣
∣
∣t(k)

ji

∣
∣
)]}

s2
i

(
xi(t)

)

+
K∑

k=0

n∑

i=1

n∑

j=1

λit
(k)
i j si

(
xi(t)

)
s j
(
xj(t)

)

= 1
2

(
s1
(
x1(t)

)
,s2
(
x2(t)

)
, . . . ,sn

(
xn(t)

))
R(ε)

(
s1
(
x1(t)

)
,s2
(
x2(t)

)
, . . . ,sn

(
xn(t)

))T
,

(3.16)

where

R(ε)=

⎛

⎜
⎜
⎜
⎜
⎝

η1(ε) r12 r13 ··· r1n

r21 η2(ε) r23 ··· r2n
...

...
...

...
...

rn1 rn2 rn3 ··· ηn(ε)

⎞

⎟
⎟
⎟
⎟
⎠

,

ηi = λi

(

− Bi

qiε
+

( K∑

k=0

t(k)
kk

))

+
1
2

K∑

k=0

n∑

j=1

τk(t)

[
λiqjεBj

p jε

∣
∣t(k)

i j

∣
∣+

λjqiεBi

piε

∣
∣t(k)

ji

∣
∣
]

+
1
2

K∑

k=0

n∑

j=1

τk(t)

[

λiqjε

∣
∣t(k)

i j

∣
∣
( K∑

k=0

n∑

l=1

∣
∣t(k)

il

∣
∣
)

+ qjε

( K∑

k=0

n∑

l=1

λl
∣
∣t(k)

l j

∣
∣
∣
∣t(k)

ji

∣
∣
)]

ri j = 1
2

K∑

k=0

(
λit

(k)
i j + λjt

(k)
ji

)
, i �= j, i, j = 1,2, . . . ,n.

(3.17)
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Moreover, the upper right derivative D+V of V along solution (3.5) satisfies

D+V |(3.5) ≤−δ(ε)
n∑

i=1

s2
i

(
xi(t)

)
(3.18)

for t ≥ T + τ. Here δ(ε) > 0 is some constant. xt = x(t+ s) for −τ ≤ s≤ 0.
Integrating (3.18) over [T + τ, t] yields

V
(
xt
)

+ δ(ε)
∫ t

T+τ

n∑

i=1

s2
i

(
xi(ξ)

)
dξ ≤V

(
xT+τ

)
, (3.19)

which implies that

n∑

i=1

∫ +∞

0
s2
i

(
xi(ξ)

)
dξ < +∞. (3.20)

Moreover, from Lemma 2.2 and (H2)–(H3), we see that s2
i (xi(t)), i = 1,2, . . . ,n, are also

uniformly continuous on R+. Hence, Lemma 2.4 implies that

lim
t→+∞

∣
∣si
(
xi(t)

)∣∣= 0, i= 1,2, . . . ,n. (3.21)

Again from Lemma 2.2 and (H2), we have

lim
t→+∞xi(t)= 0, i= 1,2, . . . ,n, (3.22)

that is,

lim
t→+∞ui(t)= u∗i , i= 1,2, . . . ,n, (3.23)

which show that the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system (2.1) is globally attractive.
Furthermore, note (H2), (H3), and the following inequalities:

pi ≤ f ′i
(
u∗i
)≤ qi, i= 1,2, . . . ,n. (3.24)

We see that (H5) implies (H6) of Theorem 3.4. Thus, the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of
system (2.1) is also locally asymptotically stable. This proves Theorem 3.1. �

(H′
5) There exist positive constants λi, i= 1,2, . . . ,n, such that

γi = λi

(

− Bi

qiε
+

( K∑

k=0

t(k)
ii

))

+
1
2

K∑

k=0

n∑

j=1

τk(t)

[
λiqjBj

p j

∣
∣t(k)

i j

∣
∣+

λjqiBi

pi

∣
∣t(k)

ji

∣
∣
]

+
1
2

K∑

k=0

n∑

j=1

τk(t)

[

λiqj

∣
∣t(k)

i j

∣
∣
( K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣
)

+ qj

( K∑

k=0

n∑

l=1

λl
∣
∣t(k)

l j

∣
∣
∣
∣t(k)

ji

∣
∣
)]

+
1
2

K∑

k=0

[
λi
∣
∣t(k)

i j

∣
∣+ λj

∣
∣t(k)

ji

∣
∣] < 0.

(3.25)

By the process of the proof of Theorem 3.1, we can easily obtain the following.
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Corollary 3.2. If t(k)
i j �= 0, for some i, j = 1,2, . . . ,n, and (H1)–(H4) and (H′

5) are satisfied,
then the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system (2.1) is also globally asymptotically stable.

Remark 3.3. In [11, 14, 18, 24], the authors require that the time-varying delays satisfy
τ′k(t)≤ R < 1. However, in our theorem, these delays are not necessarily continuous and
differentiable. They only need to satisfy the condition 0 ≤ τk(t) ≤ τ. Hence, our results
are less restrictive and conservative than the known result [7, 19].

(H6) There exist positive constants λi, i= 1,2, . . . ,n, such that the matrix

R∗ =

⎛

⎜
⎜
⎜
⎜
⎝

η∗1 r12 r13 ··· r1n

r21 η∗2 r23 ··· r2n
...

...
...

...
...

rn1 rn2 rn3 ··· η∗n

⎞

⎟
⎟
⎟
⎟
⎠

(3.26)

is negative definite, where

η∗i = λi

(

− Bi

f ′i
(
u∗i
) +

( K∑

k=0

t(k)
ii

))

+
1
2

K∑

k=0

n∑

j=1

τk(t)
[
λiBj

∣
∣t(k)

i j

∣
∣+ λjBj

∣
∣t(k)

i j

∣
∣]

+
1
2

K∑

k=0

n∑

j=1

τk(t)

[

λi f
′
j

(
u∗j
)∣∣t(k)

i j

∣
∣
( K∑

k=0

n∑

l=1

∣
∣t(k)

jl

∣
∣
)

+ f ′j
(
u∗j
)
( K∑

k=0

n∑

l=1

λl
∣
∣t(k)

l j

∣
∣
∣
∣t(k)

ji

∣
∣
)]

ri j = 1
2

K∑

k=0

(
λit

(k)
i j + λjt

(k)
ji

)
, i �= j, i, j = 1,2, . . . ,n.

(3.27)

Hence, we can easily have the following.

Theorem 3.4. If t(k)
i j �= 0, for some i, j = 1,2, . . . ,n, k = 1,2, . . . ,K , and (H1)–(H4) and (H6)

are satisfied, then the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system (2.1) is also locally asymptoti-
cally stable.

4. Numerical example and conclusions

Generally, the delay-independent criteria are particularly restrictive and conservative for
networks parameters. Moreover, it is reasonable to consider and apply these criteria first.
If they are found inappropriate, the delay-dependent criteria will then be applied. To il-
lustrate the results presented in Theorem 3.1 and Corollary 3.2, a simple example is given
and a comparison of the results is given based on the results of literature [7] in the fol-
lowing.

We consider the following model system:

ẋ1(t)=−(4 + sin
(
x1(t)

))[
2x1(t)− tanh

(
x1(t)

)− 0.5tanh
(
2x2(t− τ)

)
+ 0.5

]
,

ẋ2(t)=−(2 + cos
(
x2(t)

))[
2x2(t)− tanh

(
x1(t)

)− 0.5tanh
(
2x2(t− τ)

)− 0.5
]
.

(4.1)
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Figure 4.1. Wave form plot for system (4.1) when τ = 0.282.
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Figure 4.2. Phase plane plot for system (4.1) when τ = 0.282.

We can easily find that the delay-independent conditions given in [7] are not applied
and satisfied. This demonstrates that the delay-independent criteria are more conserva-
tive and restrictive than the delay-dependent criteria.

For system (4.1), we can obtain τ < 0.2828 from [7, Theorem 3.1]. However, we can
also obtain τ ≤ 0.8246 based on our results of Theorem 3.1. Numerical simulations have
also been performed (see Figures 4.1, 4.2, 4.3 and 4.4). However, the problem of whether
the delay superbound is optimal will be studied in a forthcoming paper.

In this paper, we have analyzed Cohen-Grossberg model with time delays in detail.
The global asymptotic stability criteria for the equilibrium are derived based on the ap-
proach of Lyapunov functional. The obtained results are delay-dependent. Then, the
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Figure 4.3. Wave form plot for system (4.1) when τ = 0.8246.
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Figure 4.4. Phase plane plot for system (4.1) when τ = 0.8246.

delay-dependent criteria for local asymptotic stability criteria have also been obtained.
Hence, our work has complemented and generalized that reported in [7].
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