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We study the difference equation xn+1 = α− xn/xn−1, n ∈ N0, where α ∈ R and where
x−1 and x0 are so chosen that the corresponding solution (xn) of the equation is defined
for every n ∈N. We prove that when α = 3 the equilibrium

––
x= 2 of the equation is not

stable, which corrects a result due to X. X. Yan, W. T. Li, and Z. Zhao. For the case α= 1,
we show that there is a strictly monotone solution of the equation, and we also find its
asymptotics. An explicit formula for the solutions of the equation are given for the case
α= 0.
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1. Introduction

Recently, there has been a great interest in studying nonlinear and rational difference
equations (cf. [1–35] and the references therein).

In [34], the authors study the boundedness, the global asymptotic stability, and the
periodicity of positive and negative solutions (xn)n∈N0 of the difference equation

xn+1 = α− xn
xn−1

, n∈N0, (1.1)

where α∈R and the initial conditions x−1, x0 are arbitrary real numbers.
First note that (1.1) has the unique equilibrium x = α− 1.
By the change xn =−yn (1.1) is transformed into the equation

yn+1 = β+
yn
yn−1

, n∈N0, (1.2)

where β =−α.
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When β > 0 (1.2) was studied in [13] where it was shown that every positive solution
of (1.2) converges to the equilibrium y = β+ 1. Hence, if α∈ (−∞,0), then every negative
solution of (1.1) converges to the equilibrium x = α− 1.

The case α > 0 was investigated for the first time in [34], where the authors proved the
following results (summarized in a theorem).

Theorem 1.1. Consider (1.1). Then the following statements hold true.
(a) x is locally asymptotically stable if and only if α > 3 or α < 0.
(b) x is a saddle point if and only if 1 < α < 3.
(c) x is a repeller if and only if 0 < α < 1.
(d) x is stable, but not locally asymptotically stable, if and only if α= 3.
(e) Equation (1.1) has a periodic solution with minimal period equal to 2 if and only if

α <−1 or α > 3, (1.3)

there are exactly two such solutions and they are defined by the initial conditions

x−1 = φ = α+ 1 + ε
√

(α+ 1)(α− 3)
2

, x0 = ψ = α+ 1− ε√(α+ 1)(α− 3)
2

, (1.4)

where ε = 1 determines one solution and ε =−1 determines another (the values (1.3)
are the roots of the quadratic t2− (α+ 1)t+ (α+ 1)).

(f) If condition (1.3) is satisfied, then the two periodic solutions are saddle points of the
system Yn+1 = F2(Yn), where F2 = F ◦F and F(u,v)= (v,α− v/u)T .

(g) If α > 3 and {x−1,x0} ⊂ [ψ,φ] (where ε = 1 in (1.4)), then all the terms of a positive
solution (xn) of (1.1) lie in the segment and the unique equilibrium α− 1 is a global
attractor of (1.1) with basin [ψ,φ]2 \ {(ψ,φ),(φ,ψ)}.

(h) If (xn) is a positive solution of (1.1), which consists of a single semicycle, then this
sequence converges monotonically to x = α− 1.

(i) If (xn) is a positive solution of (1.1), which consists of at least two semicycles, then
this sequence is oscillatory. Moreover, with the possible exception of the first semi-
cycle, every semicycle has length one and every term xn is less than α, and with the
possible exception of the first two semicycles, no term xn is ever equal to α− 1.

(j) Equation (1.1) has a strictly monotone solution, which converges to x = α− 1.
(k) If α = 0, then every nontrivial solution of (1.1) is periodic with prime period six.

These solutions are x−1,x0,−x0/x−1,1/x−1,1/x0,−x−1/x0, . . ..

Remark 1.2. We would like to point out that statements (e) and (g) in Theorem 1.1 are
different from the original ones. Namely, the authors in [34] claim that there is a unique
prime period solution of (1.1) which is not quite correct. Also, statements (h)–(j) make
sense only if α > 1, which was not mentioned in [34].

Equations (1.1) and (1.2) and their extensions have been extensively studied for some
time, see, for example, [1–3, 5, 7, 13, 14, 18, 21, 25–27, 33].
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2. Case α= 3

In this section we consider the case α= 3 in detail. The reason for this is the fact that the
statement in Theorem 1.1(d) was obtained by the authors of paper [34] by applying the
linearized stability theorem which failed in this case. Namely, the characteristic equation
associated with (1.1) for the case α= 3 is

2zn+1 + zn− zn−1 = 0, (2.1)

and the roots of its characteristic equation

2λ2 + λ− 1= 0 (2.2)

are

λ1 =−1, λ2 = 1
2
. (2.3)

The following theorem shows that Theorem 1.1(d) is not true.

Theorem 2.1. The equilibrium x = 2 of the equation

xn+1 = 3− xn
xn−1

, n∈N0, (2.4)

is unstable.

Proof. Let θn = xn− 2. Then (2.4) takes the form

θn+1 = θn−1− θn
θn−1 + 2

, (2.5)

and we must prove that θ = 0 is an unstable equilibrium of (2.5). We further let βn =
(−1)nθn. Then (2.5) turns into the system

β2k+1 = β2k−1 +β2k

2−β2k−1
,

β2k+2 = β2k+1 +β2k

2 +β2k
,

(2.6)

and we must prove that β = 0 is an unstable equilibrium of (2.6).
Suppose the inequalities

β2k−1 ∈ (0,1), β2k > 0 (2.7)

hold for some k ∈N0. Let η ∈ (0,β2k−1) be fixed such that

1−η < β2k

η
. (2.8)
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Further let

γ ∈
(

1−η,min
(

1,
β2k

η

))
(2.9)

be fixed. Clearly, such η and γ always exist. Then certainly 0 < η < β2k−1 < 1, 0 < 1−η < γ,
and γη < β2k. Furthermore,

β2k+1 = β2k−1 +β2k

2−β2k−1
≥ η+β2k

2−η ≥ η+ηγ
2−η = η 1 + γ

2−η > η,

β2k+2 = β2k+1 +β2k

2 +β2k
≥ η+β2k

2 +β2k
≥ η+ηγ

2 + γη
= η (1 + γ)

2 + γη

> η
(1 + γ)
2 +η

= η 1 + γ
2−η ×

2−η
2 +η

.

(2.10)

Let

η∗ = η 1 + γ
2−η , γ∗ = 2−η

2 +η
. (2.11)

Then

1−η∗ − γ∗ = 2η
2 +η

−η∗ = η

4−η2

(
2(2−η)− (2 +η)(1 + γ)

)

= η

4−η2

(
2(1−η− γ)−η(1 + γ)

)
< 0.

(2.12)

Therefore, if

β2k+1 < 1, (2.13)

then we can pass from k with η and γ, to k + 1 with η∗ instead of η and γ∗ instead of γ.
We suppose now that β = 0 is a stable equilibrium of (2.6). Then for ε = 1/2 there exists a
δ ∈ (0,1/2) such that, if |β−1| ≤ δ and |β0| ≤ δ, then

∣
∣βn

∣
∣≤ ε = 1

2
< 1 (2.14)

for all n∈N0∪{−1}.
We take now β−1 ∈ (0,δ), β0 ∈ (0,δ), and fix η0 ∈ (0,β−1) such that

1−η0 <
β0

η0
. (2.15)

Further, fix

γ0 ∈
(

1−η0,min
(

1,
β0

η0

))
. (2.16)
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Then, since (2.14) holds, by induction, it follows that for each k ∈ N0, there exist ηk ∈
(0,β2k−1) and γk ∈ (1−ηk,1) such that

ηkγk ≤ β2k,

ηk+1 = ηk 1 + γk
2−ηk > ηk, γk+1 = 2−ηk

2 +ηk
.

(2.17)

Therefore, there exists c = limk→∞ηk > 0. In view of (2.17),

γk =
(
2−ηk

)ηk+1

ηk
− 1, γk+1 = 2−ηk

2 +ηk
. (2.18)

Letting k→∞ in these two relationships, we obtain

1− c = lim
k→∞

γk = lim
k→∞

γk+1 = 2− c
2 + c

. (2.19)

Hence, c2 + c− 2= c− 2, that is, c = 0, which is a contradiction. Hence, the result follows.
�

3. Case α= 1

In this section we address the problem of the existence of solutions of (1.1) converging to
zero. For the results devoted to the research area, see the following papers [5, 7, 17, 23,
29, 32, 33] and the references therein.

The following theorem was proved in [33].

Theorem 3.1. Let f ∈ C(I2,R) for some interval I , f (x, y) is decreasing in x on I for a fixed
y and increasing in y on I for a fixed x and let f have a unique equilibrium x ∈ I . Then the
following inequality

(
f (x,x)− x)(x− x) < 0 for some x ∈ I \ {x} (3.1)

is a necessary and sufficient condition for the existence of a strictly monotone solution (xn) of
the equation

xn+1 = f
(
xn,xn−1

)
, n∈N0 (3.2)

such that xn converges to x.

Using Theorem 3.1, the authors of [34] prove that (1.1) has a strictly monotone solu-
tion, which converges to x = α− 1, if α≥ 1. However, they apply the theorem to the open
interval (0,∞) so that when α = 1, the equilibrium point x = 0 does not belong to the
interval, which is essential for applying the theorem. Hence, the problem of the existence
of monotone solutions for the case α= 1 was not solved in [34].

Here, we give an answer to the problem of the existence of monotone solutions of (1.1)
for the case α= 1.

A general result which can help in proving the existence of monotone solutions (even
in the nonautonomous case) was developed in [29], based on Berg’s nice ideas in [7]
which use asymptotics. We have proved the following inclusion theorem.
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Theorem 3.2. Let f :Rk+1 →R be a continuous and nondecreasing function in each argu-
ment, and let (yn) and (zn) be sequences such that yn < zn for n≥ n0 and

yn−k ≤ f
(
yn−k+1, . . . , yn+1

)
, f

(
zn−k+1, . . . ,zn+1

)≤ zn−k, for n > n0 + k− 1. (3.3)

Then, the difference equation

xn−k = f
(
xn−k+1, . . . ,xn+1

)
(3.4)

has a solution such that

yn ≤ xn ≤ zn for n≥ n0. (3.5)

Remark 3.3. Theorem 3.2 can be improved if we assume that f is strictly increasing.
Namely, it can be proved that in this case, the solution xn is uniquely defined by its initial
values. Also, in the formulation of Theorem 3.2, we can replace R by an interval I ⊂R.

Asymptotics for solutions of difference equations have been investigated by Berg and
the second author of this paper for some time, see, for example, [6–10, 12, 19–22, 25, 28,
29] and the reference therein. Some methods for construction of the bounds (yn) and
(zn) can be found in [6–8, 10].

Note that if (xn) is a positive solution of the equation

xn+1 = 1− xn
xn−1

, (3.6)

then 0 < xn < 1, n∈N, and from this and (3.6) it follows that xn < xn−1. If limn→∞ xn = x,
then from (3.6) we obtain x = 0. Hence, the following statement is true.

Theorem 3.4. Every positive solution of (3.6) decreasingly converges to zero.

Now we turn to the problem of the existence of solutions of (3.6) converging to zero.
Since the linearized equation of (3.6) is

xn+1− xn = 0, (3.7)

we expect that there is a solution which has the following asymptotics

xn = a

n
+
b lnn+ c

n2
+
d ln2n+ e lnn

n3
+O

(
1
n3

)
. (3.8)

For some explanations how to guess the asymptotics, see [29] (see also [5, 19, 20, 22]).
Since we ask for solutions which are defined for all n∈N, then we can write (3.6) in

the following form:

H
(
xn−1,xn,xn+1

)
:= xn−1− xn− xn+1xn−1 = 0. (3.9)

If we replace the asymptotics (3.8) into (3.9), then equating the coefficients nearby
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lnl n/nm in the obtained equality to zero, we find that

a= b = d = 1, e = 2c− 1, f = c2− c+
3
2

, (3.10)

where c is an arbitrary real number and f the coefficient of 1/n3.
This motivated us to choose the following expression:

ϕn = 1
n

+
lnn
n2

+ p
(lnn)2

n3
. (3.11)

Now we are in a position to formulate and prove the main result of this section.

Theorem 3.5. There exists an absolute integer constant n0 > 0, such that for any a ∈ [n0,
+∞)∩Z there is a solution xn, of (3.6), which has the following form:

xn = 1
n+ a

+
ln(n+ a)
(n+ a)2

+O
(

(lnn)2

n3

)
, (3.12)

where n∈N0.

Proof. Write (3.6) in the following form:

G
(
xn−1,xn,xn+1

)= xn−1− xn
1− xn+1

= 0. (3.13)

Since

H
(
xn−1,xn,xn+1

)= (1− xn+1
)
G
(
xn−1,xn,xn+1

)
, (3.14)

we have that (3.9), and (3.13) have identical sets of solutions xn satisfying the condition
xn ∈ (0,1) for n∈N0∪{−1} and these sets are equal to the set of all positive solutions of
(3.6).

Note that the function

f (y,z)= y

1− z (3.15)

is increasing in y and z if they belong to the interval (0,1).
Now we show that

G
(
ϕn−1,ϕn,ϕn+1

)
∼ (p− 1)

(lnn)2

n4
. (3.16)

Let η2 = 1. Then

ln(n−η)= lnn− q0(η,n) +O
(

1
n5

)
, (3.17)
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where

q0(η,n)= η

n
+

1
2n2

+
η

3n3
+

1
4n4

; (3.18)

1
n−η = q1(η,n) +O

(
1
n5

)
, (3.19)

where

q1(η,n)= 1
n

+
η

n2
+

1
n3

+
η

n4
; (3.20)

1
(n−η)2

= q2(η,n) +O
(

1
n5

)
, (3.21)

where

q2(η,n)= 1
n2

+
2η
n3

+
3
n4

; (3.22)

1
(n−η)3

= q3(η,n) +O
(

1
n5

)
, (3.23)

where

q3(η,n)= 1
n3

+
3η
n4
. (3.24)

Employing (3.18), (3.22), and (3.24), we have that

q0(η,n)q2(η,n)=
(
η

n
+

1
2n2

+O
(

1
n3

))(
1
n2

+
2η
n3

+O
(

1
n4

))
= q4(η,n) +O

(
1
n5

)
,

(3.25)

where

q4(η,n)= η

n3
+

5
2n4

; (3.26)

(
q0(η,n)

)2 =
(
η

n
+

1
2n2

+
η

3n3
+

1
4n4

)2

= q5(η,n) +O
(

1
n5

)
, (3.27)

where

q5(η,n)= 1
n2

+
η

n3
+

11
12n4

;

q0(η,n)q3(η,n)=
(
η

n
+O

(
1
n2

))(
1
n3

+
3η
n4

)
= q6(η,n) +O

(
1
n5

)
,

(3.28)

where

q6(η,n)= η

n4
. (3.29)
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By using (3.17), (3.21), (3.26), and (3.27), we have that

ln(n−η)
(n−η)2

=
(

lnn− q0(η,n) +O
(

1
n5

))(
q2(η,n) +O

(
1
n5

))

= (lnn)q2(η,n)− q0(η,n)q2(η,n) +O
(

lnn
n5

)

= (lnn)q2(η,n)− q4(η,n) +O
(

lnn
n5

)
,

(3.30)

(
ln(n−η)

)2 =
(

lnn− q0(η,n) +O
(

1
n5

))2

= (lnn)2− 2(lnn)q0(η,n) +
(
q0(η,n)

)2
+O

(
lnn
n5

)

= (lnn)2− 2(lnn)q0(η,n) + q5(η,n) +O
(

lnn
n5

)
.

(3.31)

Employing (3.31), (3.23), (3.24), (3.28), (3.29), and (3.27), we have that

(
ln(n−η)

)2

(n−η)3
=
(

(lnn)2− 2(lnn)q0(η,n) +O
(

1
n2

))(
q3(η,n) +O

(
1
n5

))

= (lnn)2q3(η,n)− 2(lnn)q0(η,n)q3(η,n) +O
(

(lnn)2

n5

)

= (lnn)2q3(η,n)− 2(lnn)q6(η,n) +O
(

(lnn)2

n5

)
.

(3.32)

Since we study ϕ with fixed p and increasing n, from (3.17), (3.30), (3.32), it follows
that

ϕn−η = 1
n−η +

ln(n−η)
(n−η)2

+ p

(
ln(n−η)

)2

(n−η)3
= (lnn)q2(η,n) + q7(η,n)

+ p(lnn)2q3(η,n)− 2p(lnn)q6(η,n) +O
(

(lnn)2

n5

)
,

(3.33)

where, from (3.20), (3.26),

q7(η,n)= q1(η,n)− q4(η,n)=
(

1
n

+
η

n2
+

1
n3

+
η

n4

)
−
(
η

n3
+

5
2n4

)

= 1
n

+
η

n2
+

1−η
n3

+
η− 5/2
n4

.

(3.34)

Clearly, if (η1)2 = (η2)2 = 1, then

qk
(
η1,n

)
q3
(
η2,n

)=O
(

1
n5

)
(3.35)
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for k = 2,3,5,

qk
(
η1,n

)
q6
(
η2,n

)=O
(

1
n5

)
(3.36)

for k = 0,1,2,3,4,5,6,7. Let

q9(η,n)= q2(η,n)− 1
n2
= 2η
n3

+
3
n4

, (3.37)

q10(η,n)= q7(η,n)− 1
n
= η

n2
+

1−η
n3

+
η− 5/2
n4

, (3.38)

q11(η,n)= q3(η,n)− 1
n3
= 3η
n4

, (3.39)

q12(n)= q2(η,n)q2(−η,n)= 1
n4

+O
(

1
n5

)
, (3.40)

q13(n)=
1∑

k=0

q2
(
(−1)k,n

)
q7
(− (−1)k,n

)
(3.41)

q14(n)= q7(η,n)q7(−η,n), (3.42)

q15(n)=
1∑

k=0

q3
(
(−1)k,n

)
q7
(− (−1)k,n

)
. (3.43)

From (3.22) and (3.34), we obtain

q2(η,n)q7(−η,n)=
(

1
n2

+
2η
n3

+
3
n4

)(
1
n
− η

n2
+O

(
1
n3

))
= 1
n3

+
η

n4
+O

(
1
n5

)
.

(3.44)

Therefore, from (3.41),

q13(n)= 2
n3

+O
(

1
n5

)
. (3.45)

From (3.34), we obtain

q14(n)=
(

1
n

+
1
n3
− 5

2n4

)2

−
(

1
n2
− 1
n3

+
1
n4

)2

= 1
n2

+
1
n4

+O
(

1
n5

)
(3.46)

and by (3.24) and (3.34)

q3(η,n)q7(−η,n)=
(

1
n3

+
3η
n4

)(
1
n

+O
(

1
n2

))
= 1
n4

+O
(

1
n5

)
. (3.47)

Therefore, from (3.43)

q15(n)= 2
n4

+O
(

1
n5

)
. (3.48)
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In view of (3.11) and (3.33),

ϕn−η−ϕn = u(η,n) + pv(η,n) +O
(

(lnn)2

n5

)
, (3.49)

where, (see (3.37)–(3.39)),

u(η,n)= (lnn)q9(η,n) + q10(η,n),

v(η,n)= (lnn)2q11(η,n)− 2(lnn)q6(η,n).
(3.50)

In view of (3.33), (3.34), (3.29), (3.22), (3.24), (3.35), (3.36), and (3.40)–(3.46),

ϕn−1ϕn+1 = A(n) + q15(n)(lnn)2p+O
(

(lnn)2

n5

)
, (3.51)

where

A(n)= (lnn)2q12(n) + (lnn)q13(n) + q14(n). (3.52)

Since

q10(1,n)− q14(n)=−5/2
n4

+O
(

1
n5

)
, q9(1,n)− q13(n)= 3

n4
+O

(
1
n5

)
,

q11(1,n)− q15(n)= 1
n4

+O
(

1
n5

)
,

(3.53)

it follows from (3.14), (3.49), (3.51), (3.40), (3.29) that

H
(
ϕn−1,ϕn,ϕn+1

)= (p− 1)
(lnn)2

n4
+ (3− 2p)

lnn
n4

− 5
2n4

+O
(

(lnn)2

n5

)

= (p− 1)
(lnn)2

n4
+O

(
lnn
n4

)
.

(3.54)

From (3.54) and the definition of H , (3.16) follows.
With the notation

yn = 1
n

+
lnn
n2

+ p1
ln2n

n3
,

zn = 1
n

+
lnn
n2

+ p2
ln2n

n3
,

(3.55)

where p1 < 1 < p2, we obtain

G
(
yn−1, yn, yn+1

)
∼

(
p1− 1

) ln2n

n4
< 0, G

(
zn−1,zn,zn+1

)
∼

(
p2− 1

) ln2n

n4
> 0.

(3.56)

These relations show that the inequalities (3.3) are satisfied for sufficiently large n, say
n≥ n0, with f defined by (3.15) and G is given by (3.13). In view of Theorem 3.2 (with
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k = 1), it follows that there is a solution of (3.6) with the asymptotics

xn = 1
n

+
lnn
n2

+O
(

(lnn)2

n3

)
, (3.57)

from which the result follows. �

As a consequence of Theorem 3.5, we obtain the following corollary.

Corollary 3.6. There is a decreasing positive solution of (3.6).

4. A remark on the case α= 0

As we have already mentioned if α= 0, then all well-defined solutions of (1.1) are

x−1,x0,− x0

x−1
,

1
x−1

,
1
x0

,−x−1

x0
, . . . , (4.1)

and they are periodic with period six.
Using the change xn = −yn, (1.1) is transformed into (1.2) with β = 0 for which it is

well-known that all well-defined solutions are periodic with period six. It is interesting
that the general real solution of (1.1) can be written in the following form:

xn = eiπ(Fn+1)yn, (4.2)

where yn = |xn| is a positive solution of (1.2) with β = 0 and

Fn = λχ(n) +μχ(n+ 1), (4.3)

where

λ2 = λ, μ2 = μ, χ(3k)= 0, χ(3k+ 1)= χ(3k+ 2)= 1, (4.4)

for k ∈ Z (i.e Fn is an nth element of a Fibonacci sequence mod 2).
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no. 3-4, pp. 99–105, 1996.

[20] S. Stević, “Behavior of the positive solutions of the generalized Beddington-Holt equation,”
Panamerican Mathematical Journal, vol. 10, no. 4, pp. 77–85, 2000.
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[28] S. Stević, “Global stability and asymptotics of some classes of rational difference equations,”

Journal of Mathematical Analysis and Applications, vol. 316, no. 1, pp. 60–68, 2006.
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