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We show that the difference equation xn = f3(xn−1) f2(xn−2) f1(xn−3), n ∈ N0, where
fi ∈ C[(0,∞),(0,∞)], i ∈ {1,2,3}, is periodic with period 4 if and only if fi(x) = ci/x
for some positive constants ci, i ∈ {1,2,3} or if fi(x) = ci/x when i = 2 and fi(x) =
cix if i ∈ {1,3}, with c1c2c3 = 1. Also, we prove that the difference equation xn =
f4(xn−1) f3(xn−2) f2(xn−3) f1(xn−4), n ∈ N0, where fi ∈ C[(0,∞),(0,∞)], i ∈ {1,2,3,4}, is
periodic with period 5 if and only if fi(x) = ci/x, for some positive constants ci, i ∈
{1,2,3,4}.

Copyright © 2007 Stevo Stević. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The study of the periodic character of solutions of rational and nonlinear difference equa-
tions has recently attracted attention; see, for example, [1–12] and the references therein.
For some classical results see [13–17].

Definition 1.1. Let f be a real valued function defined on a subset of Rn. Say that the
difference equation

xn = f
(
xn−1, . . . ,xn−k

)
, n∈N0, (1.1)

where k ∈N, is periodic if every solution of (1.1) is periodic.
It is easy to see that every solution of the difference equation

xn = C

xn−1xn−2 ···xn−k , n∈N0, (1.2)

is periodic with period (k+ 1).
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We also know that every solution of the difference equation

xn = xn−1 ···xn−(2k+1)

xn−2xn−4 ···xn−2k
, n∈N0, (1.3)

is periodic with period 2k+ 2. Indeed, from (1.3) it follows that

xnxn−2 ···xn−2k = 1, n∈N0. (1.4)

Using the changes yn = x2n and zn = x2n+1, the last equation is reduced to (1.2), from
which the statement follows.

In [18] we studied the global periodicity of (1.1) with k = 2. Among other results it
was proved that if f separates the variables, that is, if

f (x, y)= f2(x) f1(y), (1.5)

then every solution of (1.1) is periodic with period 3 if and only if f (x, y)= c/xy where c
is a positive constant.

Motivated by the method used in paper [18], in this paper we investigate the global
periodicity of the positive solutions of the difference equation

xn = fk
(
xn−1

)··· f1
(
xn−k

)
, n∈N0, (1.6)

where k ∈ {3,4}, fi ∈ C[(0,∞),(0,∞)], i= 1, . . . ,k.
We prove the following result.

Theorem 1.2. Consider (1.6). Then the following statements hold true.
(a) Assume that k = 3. Then, every positive solution of (1.6) is periodic with period 4 if

and only if fi(x)= ci/x, for some positive constants ci, i∈ {1,2,3}, or if fi(x)= ci/x,
when i= 2 and fi(x)= cix if i∈ {1,3}, with c1c2c3 = 1.

(b) Assume that k = 4. Then, every positive solution of (1.6) is periodic with period 5 if
and only if fi(x)= ci/x, for some positive constants ci, i∈ {1,2,3,4}.

2. Auxiliary results

Before we give a proof of Theorem 1.2, we will prove some auxiliary results which are in-
corporated in the following lemmas. We say that for a mapping f : X → X , ( f [p])p∈N∪{0}
denotes the sequence of iterates of f , that is, f [0] = I , the identity function on X , f [1] = f
and generally f [p+1] = f ◦ f [p] for any p ∈N.
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The following lemma is folklore and can be found, for example, in [19] (see also [20]).
We give a proof of the lemma for the benefit of the reader.

Lemma 2.1. Assume that f : I → I is a continuous function on the open (or closed) interval
I ⊂R satisfying the equation

f [p](x)= x, x ∈ I , (2.1)

for some p ∈N. Then f (x)≡ x, x ∈ I or f [2](x)= x.

Proof. Assume that f ∈ C[I ,I] is such that f [p](x) = x for every x ∈ I . Then, if f (x) =
f (y), it follows that

x = f [p](x)= f [p](y)= y (2.2)

which implies that the function f must be 1− 1. Since f is a continuous function, we
have that f must be strictly monotone.

First assume that f is strictly increasing. If there is a point x0 ∈ I such that x0 < f (x0),
then by the monotonicity of f we have

x0 < f
(
x0
)
< f [2](x0

)
< ··· < f [p](x0

)= x0 (2.3)

which is a contradiction. If x0 > f (x0), then we have

x0 > f
(
x0
)
> f [2](x0

)
> ··· > f [p](x0

)= x0 (2.4)

arriving again at a contradiction.
From this it follows that f (x)= x for every x ∈ I .
Assume now that f is strictly decreasing. Then the function g(x) = f [2](x) is strictly

increasing and according to the first case we have that

g[p](x)= ( f [2])[p]
(x)= ( f [p])[2]

(x)= x ◦ x = x, (2.5)

that is, f [2](x)≡ x, finishing the proof of the lemma. �

Lemma 2.2. Assume that f is a decreasing continuous function which maps the interval
(0,∞) into itself, and satisfies the following conditions

lim
z→+0

f (z)=∞, lim
z→∞ f (z)= 0,

f (z) f
(

1
z

)
= 1, z ∈ (0,∞),

(2.6)

f (z)= f −1(z) z ∈ (0,∞). (2.7)

Then f (z)= 1/z.
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Proof. Assume that f (z) 	≡ 1/z, z ∈ (0,∞), then there is a z0 ∈ (0,∞) such that f (z0) >
1/z0 or f (z0) < 1/z0. From (2.6) and positivity of the function f it follows that f (1)= 1.
Hence z0 	= 1.

First, assume that f (z0) > 1/z0 and z0 < 1. From this and (2.6) it follows that

f
(

1
z0

)
= 1

f
(
z0
) < z0 < 1 <

1
z0

< f
(
z0
)
. (2.8)

On the other hand, the point ( f (1/z0),1/z0) belongs to the graph of the curve y = f (z),
since f is self-invertible. Hence the points ( f (1/z0),1/z0), (1,1), and (z0, f (z0)) belong to
the graph of the curve y = f (z). We know that f is decreasing and from (2.8) we have
f (1/z0) < z0 < 1, thus we obtain f ( f (1/z0)) > f (z0) > f (1), that is, 1/z0 > f (z0) > 1. The
last statement contradicts (2.8).

Now, assume that f (z0) > 1/z0, 1 < z0, and f (z0) < 1. Note that the points (1/z0,
f (1/z0)), (1,1), and ( f (z0),z0) are on the graph of f . Since 1/z0 < f (z0) < 1 and f is
decreasing it follows that f (1/z0) > f ( f (z0)) > f (1), that is, 1/ f (z0) > z0 > 1, which is a
contradiction.

Assume that f (z0) > 1/z0, 1 < z0 and f (z0) > 1. In the case the points (z0, f (z0)), (1,1)
and ( f (z0),z0) are on the graph of f . If 1 < z0 < f (z0), then we obtain that 1 > f (z0) > z0,
a contradiction. If 1 < f (z0) ≤ z0, then it follows that 1 > z0 ≥ f (z0), which is again a
contradiction.

The case f (z0) < 1/z0 can be treated similarly so we omit the proof of this part of the
lemma. �

3. Proof of the main result

In this section we give a proof of Theorem 1.2. Before this we present some formulae
which are of some interest not only for these two cases in Theorem 1.2, but also for all
k ≥ 3.

Hence, assume that all positive solutions of (1.1) are periodic with period (k+ 1). Then
for every x1, . . . ,xk ∈ (0,∞) we have that the following system of functional relationships
holds:

u= fk
(
xk
)
fk−1

(
xk−1

)··· f2
(
x2
)
f1
(
x1
)
,

x1 = fk(u) fk−1
(
xk
)··· f2

(
x3
)
f1
(
x2
)
,

x2 = fk
(
x1
)
fk−1(u)··· f2

(
x4
)
f1
(
x3
)
,

...

xk = fk
(
xk−1

)
fk−1

(
xk−2

)··· f2
(
x1
)
f1(u).

(3.1)
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From (3.1) it follows that

x1 = fk

( k∏

j=1

f j
(
xj
)
)

fk−1
(
xk
)··· f2

(
x3
)
f1
(
x2
)
,

x2 = fk
(
x1
)
fk−1

( k∏

j=1

f j
(
xj
)
)

··· f2
(
x4
)
f1
(
x3
)
,

x3 = fk
(
x2
)
fk−1

(
x1
)
fk−2

( k∏

j=1

f j
(
xj
)
)

··· f2
(
x5
)
f1
(
x4
)
,

...

xk−1 = fk
(
xk−2

)
fk−1

(
xk−3

)··· f2
( k∏

j=1

f j
(
xj
)
)

f1
(
xk
)
,

xk = fk
(
xk−1

)
fk−1

(
xk−2

)··· f2
(
x1
)
f1

( k∏

j=1

f j
(
xj
)
)

.

(3.2)

In each of the k equations in (3.2) we choose that all variables, except the jth which is
arbitrary, are equal to 1, and use the changes

gj(x)= f j(x)
k∏

i=1, i 	= j

fi(1), j = 1, . . . ,k. (3.3)

Then, we obtain

gk
(
g1(z)

)= z, gk
(
gj(z)

)
gj−1(z)= C, 2≤ j ≤ k;

gk−1
(
g1(z)

)
gk(z)= C, gk−1

(
g2(z)

)= z, gk−1
(
gj(z)

)
gj−2(z)= C, 3≤ j ≤ k;

gk−2
(
gj(z)

)
gj+k−2(z)= C, j = 1,2,

gk−2
(
g3(z)

)= z, gk−2
(
gj(z)

)
gj−3(z)= C, 4≤ j ≤ k;

...

g2
(
gj(z)

)
gj+2(z)= C, 1≤ j ≤ k− 2, g2

(
gk−1(z)

)= z, g2
(
gk(z)

)
g1(z)= z,

g1
(
gj(z)

)
gj+1(z)= C, 1≤ j ≤ k− 1, g1

(
gk(z)

)= z,

(3.4)

where C =∏k
i=1 fi(1).

From (3.4) it follows that

gj ◦ gk+1− j(z)= z, j = 1, . . . ,k, (3.5)

gj ◦ gi(z)= gi ◦ gj(z), (3.6)
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if i 	= j and i+ j 	= k+ 1, and

g2
k (z)gk−1(z)= C, g2

k−1(z)gk−3(z)= C, g2
k−2(z)gk−5(z)= C,

...

g2
2 (z)g4(z)= C, g2

1 (z)g2(z)= C.

(3.7)

Proof of Theorem 1.2. The sufficiency part of the theorem follows from (1.3) and (1.2).
Hence, we need only prove the necessity.

First, assume that k = 3. Then (3.5)–(3.7) are

g3
(
g1(z)

)= z, g3
(
g2(z)

)
g1(z)= C, g3

(
g3(z)

)
g2(z)= C,

g2
(
g1(z)

)
g3(z)= C, g2

(
g2(z)

)= z, g2
(
g3(z)

)
g1(z)= C,

g1
(
g1(z)

)
g2(z)= C, g1

(
g2(z)

)
g3(z)= C, g1

(
g3(z)

)= z.

(3.8)

From (3.8) we have

g1
(
g3(z)

)= g3
(
g1(z)

)= z, g2
(
g2(z)

)= z, (3.9)

which implies that

g3(z)= g−1
1 (z), g2(z)= g−1

2 (z), (3.10)

and that the functions g1, g2, and g3 map the interval (0,∞), “1− 1” and onto itself.
Further, from the third and seventh identity in (3.8) we have that

g1
(
g1(z)

)= g3
(
g3(z)

)
. (3.11)

From (3.10) and (3.11) it follows that

g[4]
1 (z)= z. (3.12)

Lemma 2.1 implies that

g1(z)= z or g[2]
1 (z)= z. (3.13)

If g1(z) = z, then (3.10) implies g3(z) = z, from this and the second identity in (3.8) we
obtain that g2(z)= C/z. Hence, the equation becomes

xn = C
xn−1xn−3

xn−2
. (3.14)

By some simple calculations it is shown that C must be equal to 1 in order that all solu-
tions of the equation are periodic with period four, from which the result follows in this
case.

If g[2]
1 (z)= z, then

g1(z)= g−1
1 (z). (3.15)
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Equations (3.10) and (3.15) imply that g1 = g3. From this and the sixth identity in (3.8) it
follows that

g2
(
g1(z)

)= C

g1(z)
(3.16)

and by the change g1(z)→ z, we have that

g2(z)= C

z
. (3.17)

Substituting (3.17) into the eight identity in (3.8) we obtain

g1(z)g1

(
C

z

)
= C. (3.18)

Using the change h1(z)= (1/
√
C)g1(

√
Cz) we see that the function h1 satisfies the follow-

ing relationships:

h1(z)h1

(
1
z

)
= 1, h1(z)= h−1

1 (z). (3.19)

From this we see that the function h1 satisfies the conditions of Lemma 2.2, which implies
that h1(z)= 1/z. Hence g1(z)= C/z and consequently

g3(z)= C

z
, g2(z)= C

z
, (3.20)

form which the result follows.
Assume now that k = 4. Then (3.5)–(3.7) are

g4
(
g1(z)

)= z, g4
(
g2(z)

)
g1(z)= C, g4

(
g3(z)

)
g2(z)= C, g4

(
g4(z)

)
g3(z)= C,

g3
(
g1(z)

)
g4(z)= C, g3

(
g2(z)

)= z, g3
(
g3(z)

)
g1(z)= C, g3

(
g4(z)

)
g2(z)= C,

g2
(
g1(z)

)
g3(z)= C, g2

(
g2(z)

)
g4(z)= C, g2

(
g3(z)

)= z, g2
(
g4(z)

)
g1(z)= C,

g1
(
g1(z)

)
g2(z)= C, g1

(
g2(z)

)
g3(z)= C, g1

(
g3(z)

)
g4(z)= C, g1

(
g4(z)

)= z.
(3.21)

From (3.21) we have

g1
(
g4(z)

)= g4
(
g1(z)

)= z, g2
(
g3(z)

)= g3
(
g2(z)

)= z, (3.22)

which implies

g4(z)= g−1
1 (z), g3(z)= g−1

2 (z), (3.23)
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and consequently that the functions g1, g2, g3, and g4 map the interval (0,∞), “1− 1” and
onto itself. Also, we have

gi
(
gj(z)

)= gj
(
gi(z)

)
, when i+ j 	= 5, i 	= j, (3.24)

g4
(
g4(z)

)
g3(z)= C, g3

(
g3(z)

)
g1(z)= C,

g2
(
g2(z)

)
g4(z)= C, g1

(
g1(z)

)
g2(z)= C.

(3.25)

From (3.24) and (3.25), it follows that

g[2]
4 ◦ g2(z)= g[2]

3 ◦ g4(z)= g[2]
2 ◦ g1(z)= g[2]

1 ◦ g3(z)= C

z
. (3.26)

From (3.24) and (3.26), it follows that

g[3]
3 (z)= g4(z), g[3]

4 (z)= g2(z), g[3]
1 (z)= g3(z), g[3]

2 (z)= g1(z). (3.27)

For example, if we replace in the first equality in (3.26) z by g3(z) and use (3.22) and
(3.24), we obtain

g[2]
4 (z)= g[2]

4 ◦ g2 ◦ g3(z)= g[2]
3 ◦ g4 ◦ g3(z)= g[3]

3 ◦ g4(z), (3.28)

from which it follows that

g[3]
3 (z)= g4(z). (3.29)

Using (3.27), we obtain that

g[81]
i (z)= gi(z), i∈ {1,2,3,4}, (3.30)

and consequently

g[80]
i (z)= z, i∈ {1,2,3,4}. (3.31)

By Lemma 2.1, we have that

gi(z)= z or g[2]
i (z)= z. (3.32)

If g1(z)= z, then g4(z)= z. From this and the fourth equality in (3.21), it follows that

g3(z)= C

z
. (3.33)

On the other hand, from (3.33) and the seventh equality in (3.21), it follows that

g3

(
C

z

)
= C

z
, (3.34)
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which implies that g3(z) = z, a contradiction. Similar, if gi(z) = z for some i ∈ {2,3,4},
we obtain a contradiction.

Hence, g[2]
i (z)= z, for every i∈ {1,2,3,4}. From this and (3.25) it follows that

g1(z)= g2(z)= g3(z)= g4(z)= C

z
, (3.35)

finishing the proof of the theorem. �

Remark 3.1. We believe that Theorem 1.2 can be extended in a natural way for every
k ≥ 2, and that the proof of the corresponding result can be obtained by some modifica-
tions of the proof of Theorem 1.2. We leave the solution of the problem to the reader.
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Stevo Stević: Mathematical Institute of the Serbian Academy of Science, Knez Mihailova 35/I,
11000 Beograd, Serbia
Email addresses: sstevic@ptt.yu; sstevo@matf.bg.ac.yu

mailto:sstevic@ptt.yu
mailto:sstevo@matf.bg.ac.yu

	1. Introduction
	2. Auxiliary results
	3. Proof of the main result
	References

