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This paper presents a three-dimensional topological horseshoe in the hyperchaotic gen-
eralized Hénon map. It looks like a planar Smale horseshoe with an additional vertical
expansion, so we call it 3D Smale horseshoe. In this way, a computer assisted verification
of existence of hyperchaos is provided by means of interval analysis.
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1. Introduction

The most significant result on chaotic dynamics is perhaps topological horseshoe theory
[1]. Since horseshoes provide the “backbone” of chaotic attractors, they are essential to
both the mathematical and physical analysis of a chaotic system.

The first and fundamental achievement on topological horseshoes is the theory about
Smale horseshoes. A Smale horseshoe map is a sequence of basic topological operations
consist of stretching (which gives sensitivity to initial conditions) and folding (which gives
the attraction). Since trajectories in phase space cannot cross, the repeated stretching
and folding operations result in an object of great topological complexity. The theory
concerns on a set Q (usually diffeomorphic to a rectangle) in a two-dimensional manifold
M and a diffeomorphism π : Q→M. By using only hypotheses on the first iterate of π on
Q, Smale concludes that there is a compact invariant set QI in Q which is homeomorphic
to a shift on 2 symbols [2].

In this paper, we will show a picture of a 3D Smale horseshoe for a hyperchaotic
discrete-time system. This new horseshoe looks like a planar Smale horseshoe with an ad-
ditional vertical expansion. It concerns on a cuboid c and a diffeomorphism H : c→ R3,
here H is the hyperchaotic generalized Hénon map which is useful in many applications
of discrete hyperchaos [3–5]. By means of interval analysis, we show that there exists a
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closed invariant set cI ⊂ c for which H4 | cI is semiconjugate to a shift map on 2 sym-
bols. Numerical studies suggest that H4 | cI has two-directional expansions. In this way, a
computer-assisted verification of hyperchaos is carried out by virtue of topological horse-
shoe theory.

2. A result on topological horseshoe theory

Let X be a metric space, Q is a compact subset of X , and f : Q→ X is map satisfying the
assumption that there exist m mutually disjoint compact subsets Q1,Q2, . . . ,Qm of Q, the
restriction of f to each Qi, that is, f |Qi is continuous.

Definition 2.1. Let γ be a compact subset of Q, such that for each 1≤ i≤m, γi = γ∩Qi

is nonempty and compact, then γ is called a connection with respect to Q1,Q2, . . . ,Qm.
Let F be a family of connections γs with respect to Q1,Q2, . . . ,Qm satisfying property: γ ∈
F ⇒ f (γi)∈ F. Then F is said to be an f -connected family with respect to Q1,Q2, . . . ,Qm.

Theorem 2.2. Suppose that there exists an f -connected family with respect to Q1,Q2, . . . ,
Qm. Then there exists a compact invariant set K ⊂ Q, such that f | K is semiconjugate to
m-shift dynamics, then ent( f )≥ logm, where ent( f ) denotes the entropy of the map f .

In addition, for every positive integer k, ent( f k)= (1/k)ent( f ).
For details about the proof of this theorem, see [6], and for details of symbolic dynam-

ics and horseshoe theory, see [7].

3. The 3D Smale horseshoe

The hyperchaotic generalized Hénon map x(k+ 1)=H(x(k)) can be described by a third
order difference equation [3]:

x1(k+ 1)= 1.76− x2
2(k)− 0.1x3(k),

x2(k+ 1)= x1(k),

x3(k+ 1)= x2(k).

(3.1)

Its attractor is shown in Figure 3.1.
Now, we discuss that there exists a horseshoe imbedded in this attractor under the map

H4. Let ρ be a subset of R3, ρ′ denote the image of ρ under H4 in the following discussion.
By many attempts, we take a cuboid c in the state space with its eight vertices in term

of (x2,x3,x1) to be

C1 = (0.82,1.13,0.65), C2 = (1.63,1.13,0.65),

C3 = (1.63,0.94,1.03), C4 = (0.82,0.94,1.03),

C5 = (0.82,1.01,0.59), C6 = (1.63,1.01,0.59),

C7 = (1.63,0.82,0.97), C8 = (0.82,0.82,0.97),

(3.2)

as illustrated in Figure 3.1, where its top surface ct is rectangle |C1C2C3C4|, its bottom sur-
face cb is rectangle |C5C6C7C8|, and its side surface cs consists of the other four rectangles.
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Figure 3.1. The attractor of the hyperchaotic generalized Hénon map.

Each point of c can be estimating the accuracy by utilizing the technique of interval arith-
metic [8] with INTLAB (an interval arithmetic package for MATLAB [9]). By sampling
thousands of equally distributed points from each surface of c, the image of c is computed
with the maximal error of all points less than 10−10, as shown in Figure 3.2 from four dif-
ferent angles of view. In Figures 3.2(c) and 3.2(d), all surfaces are half transparent. So
Figure 3.2(c) indicates that c′s is mapped outside of cs. With additional consideration of
Figure 3.2(d), c′t and c′b transversely intersect c twice between ct and cb. If there is a plane
paralleling |C3C4C8C7| and intersecting with c and c′, it is easy to see that the intersection
must look like a Smale horseshoe. Thereby, it is not hard to have the following statement.

Theorem 3.1. For the map H corresponding to the cuboid c, there exists a closed invariant
set cI ⊂ c for which H4 | cI is semiconjugate to 2-shift dynamics, then ent( f )≥ (1/4)log2.

Proof. In view of Theorem 2.2, we only need to show that for two disjoint compact sub-
sets of c, such as a and b, there exists an H4-connected family.

By many attempts, we take two cuboid in c. The first one is a with its eight vertices in
term of (x2,x3,x1) to be

A1 = (0.84,1.13,0.65), A2 = (1.205,1.13,0.65),

A3 = (1.205,0.94,1.03), A4 = (0.84,0.94,1.03),

A5 = (0.84,1.01,0.59), A6 = (1.205,1.01,0.59),

A7 = (1.205,0.82,0.97), A8 = (0.84,0.82,0.97),

(3.3)
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(a) A 3D view
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(b) Another 3D view
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(c) The top view
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(d) The side view

Figure 3.2. Cuboid c and its image under H4.
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Figure 3.3. The location of cuboid a and cuboid b.

and the second one is b with its eight vertices in term of (x2,x3,x1) to be

B1 = (1.365,1.13,0.65), B2 = (1.61,1.13,0.65),

B3 = (1.61,0.94,1.03), B4 = (1.365,0.94,1.03),

B5 = (1.365,1.01,0.59), B6 = (1.61,1.01,0.59),

B7 = (1.61,0.82,0.97), B8 = (1.365,0.82,0.97),

(3.4)

as shown in Figure 3.3. It is obvious that H4 | a and H4 | b are both continuous. at, ab,
and as denote the top rectangle |A1A2A3A4|, the bottom rectangle |A5A6A7A8|, and the
other four rectangles of a, respectively. For cuboid b, it has the same situation with a.

After a long time of computation by means of interval analysis, the images of a and b
are shown in Figures 3.4 and 3.5.

For cuboid a, it is easy to see from Figure 3.4 that H4 sends a to its image a′ as follows:
at and ab are almost contracted together while both of them expanded in two directions,
and transversely intersect cuboid a between at and ab and cuboid b between bt and bb; as
is mapped outside of as and bs. In this case, we say that the image a′4(a) lies wholly across
the cuboids a and b with respect to as and bs.

For cuboid b, it has the same situation with a, as shown in Figure 3.5, the image b′4(b)
lies wholly across the cuboids a and b with respect as and bs.

It is easy to see from the wholecrossness of H4(a) and H4(b) with respect to the sides
of a and b that there exists an H4-connected family with respect to a and b. In view of
Theorem 2.2, this means that H4 is semiconjugate to 2-shift map. �

This theorem is similar with the Smale’s conclusion which we have mentioned in
Section 1, and indicates that the map shown in Figure 3.2 is a topological horseshoe. Since
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Figure 3.4. a′4(a) wholly across a and b.
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the whole map looks like a planar Smale horseshoe with an additional vertical expansion,
we call it a 3D Smale horseshoe.

The global picture of the images H4(a) and H4(b) suggests that H4 | a and H4 | b
both expand in two directions. The local expansions of H4 on a and b can be partially
confirmed by numerically studying the Jacobian matrix of H4 =

⎡
⎢⎢⎢⎣

4
(
1.76− x2

1 − 0.1x2
)
x1 0.352− 0.2x2

1 + 0.18x2 0.01

−0.1 4
(
1.76− x2

2 − 0.1x2
)
x2 0.352− 0.2x2

2 − 0.02x2

−2x1 −0.1 0

⎤
⎥⎥⎥⎦ . (3.5)

At randomly chosen points in the intersection set of a and b and their images, we nu-
merically find that the matrix has one eigenvalue lying in the interior of the unit circle
and two eigenvalues that are located outside of the unit circle. This implies that H4 | cI
has two-directional expansions. Thereby it justifiably indicates a very immediate evidence
that the attractor illustrated in Figure 3.1 is hyperchaotic.

4. Conclusions

We have presented a 3D Smale horseshoe in the hyperchaotic generalized Hénon map.
Numerical studies suggest that there exist two-directional expansions in this horseshoe
map. In this way, a computer-assisted verification of hyperchaos has been provided by
virtue of topological horseshoe theory.
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