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We give a complete picture regarding the asymptotic periodicity of positive solutions of
the following difference equation: xn = f (xn−p1 , . . . ,xn−pk ,xn−q1 , . . . ,xn−qm), n∈N0, where
pi, i ∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are natural numbers such that p1 < p2 < ··· <
pk, q1 < q2 < ··· < qm and gcd(p1, . . . , pk,q1, . . . ,qm) = 1, the function f ∈ C[(0,∞)k+m,
(α,∞)], α > 0, is increasing in the first k arguments and decreasing in other m arguments,
there is a decreasing function g ∈ C[(α,∞),(α,∞)] such that g(g(x)) = x, x ∈ (α,∞),
x = f (x, . . . ,x

︸ ︷︷ ︸

k

,g(x), . . . ,g(x)
︸ ︷︷ ︸

m

), x ∈ (α,∞), lim x→α+g(x) = +∞, and lim x→+∞g(x) = α. It is

proved that if all pi, i∈ {1, . . . ,k}, are even and all qj , j ∈ {1, . . . ,m} are odd, every pos-
itive solution of the equation converges to (not necessarily prime) a periodic solution
of period two, otherwise, every positive solution of the equation converges to a unique
positive equilibrium.

Copyright © 2007 Stevo Stević. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recently, there is a huge interest in studying nonlinear difference equations; see, for ex-
ample, [1–29] and the references therein.

In [26], we proved the following theorem.

Theorem A. Consider the following difference equation:

xn = 1 +

∑ k
i=1αixn−pi

∑m
j=1βjxn−qj

, n∈N0, (1.1)
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where αi, i ∈ {1, . . . ,k}, and βj , j ∈ {1, . . . ,m}, are positive numbers such that
∑ k

i=1αi =
∑m

j=1βj = 1, and pi, i ∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are natural numbers such that
p1 < p2 < ··· < pk and q1 < q2 < ··· < qm. Assume that

G := gcd
(

p1, . . . , pk,q1, . . . ,qm
)= 1. (1.2)

Then if all pi, i∈ {1, . . . ,k}, are even and all qj , j ∈ {1, . . . ,m}, are odd, every positive solu-
tion of (1.1) converges to a periodic solution of period two. Otherwise, every positive solution
of (1.1) converges to a unique positive equilibrium.

On the other hand, by the main result in [15], in [18], we proved the following result.

Theorem B. Consider the difference equation

xn+1 = F
(

xn,xn−2, . . . ,xn−2k
)

, (1.3)

where k ∈N is fixed. If
(a) F ∈ C[(0,+∞)k+1,(0,+∞)] is nonincreasing in each of its arguments,
(b) F(z1,z2, . . . ,zk+1) is strictly decreasing in the first argument z1,
(c) g(g(x))= x for all x ∈ (0,+∞), where g(x)= F(x,x, . . . ,x),

then every positive solution of (1.3) converges to (not necessarily prime) a period-two solu-
tion.

For closely related results to Theorem B, see [5, 7, 14, 16, 19] and the references therein.
These two theorems motivated us to investigate the behavior of positive solutions of

the following difference equation:

xn = f
(

xn−p1 , . . . ,xn−pk ,xn−q1 , . . . ,xn−qm
)

, n∈N0, (1.4)

where pi, i ∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are natural numbers such that p1 < p2 <

··· < pk and q1 < q2 < ··· < qm, and the function f ∈ C[(0,∞)k+m, (α,∞)], α > 0, satis-
fies the following conditions:

(a) f is increasing in first k arguments and decreasing in other m arguments;
(b) there is a decreasing function g ∈ C[(α,∞),(α,∞)] such that g(g(x)) = x, x ∈

(α,∞);
(c)

x = f

⎛

⎜

⎝x, . . . ,x
︸ ︷︷ ︸

k

,g(x), . . . ,g(x)
︸ ︷︷ ︸

m

⎞

⎟

⎠ , x ∈ (α,∞); (1.5)

(d)

lim
x→α+

g(x)= +∞, lim
x→+∞g(x)= α. (1.6)
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Note that if x is sufficiently close to α, then from (d) it follows that x < g(x). From this
and by (a) and (c), we have that

x = f

⎛

⎜

⎝x, . . . ,x
︸ ︷︷ ︸

k

,g(x), . . . ,g(x)
︸ ︷︷ ︸

m

⎞

⎟

⎠ < f

⎛

⎜

⎝x, . . . ,x
︸ ︷︷ ︸

k+m

⎞

⎟

⎠ . (1.7)

On the other hand, if x is sufficiently large, from (d), it follows that g(x) < x. This, along
with (a) and (c), yields

x = f

⎛

⎜

⎝x, . . . ,x
︸ ︷︷ ︸

k

,g(x), . . . ,g(x)
︸ ︷︷ ︸

m

⎞

⎟

⎠ > f

⎛

⎜

⎝x, . . . ,x
︸ ︷︷ ︸

k+m

⎞

⎟

⎠ . (1.8)

Hence the equation x = f (x, . . . ,x) has a solution x∗ on the interval (α,∞). In view of (c),
it must be

x∗ = f
(

x∗, . . . ,x∗
)= f

⎛

⎜

⎝x∗, . . . ,x∗
︸ ︷︷ ︸

k

,g
(

x∗
)

, . . . ,g
(

x∗
)

︸ ︷︷ ︸

m

⎞

⎟

⎠ . (1.9)

This, and (a), imply that g(x∗) = x∗, which, along with (b), shows that x∗ is a unique
solution of the equation g(x)= x on the interval (α,∞), and consequently, it is a unique
solution of the equation x = f (x, . . . ,x) on (α,∞).

Here, we give a complete picture regarding the asymptotic stability of positive solu-
tions of (1.4).

We may assume that

G := gcd
(

p1, . . . , pk,q1, . . . ,qm
)= 1, (1.10)

otherwise, (1.4) can be separated into the following G independent difference equations

x(t)
l = f

(

x(t)
l−p1/G

, . . . ,x(t)
l−pk/G,x(t)

l−q1/G
, . . . ,x(t)

l−qm/G
)

, l ∈N0, (1.11)

where x(t)
l = xGl+t and t ∈ {0,1, . . . ,G− 1}.

Remark 1.1. Note that by the definition of G, it follows that at least one of the numbers
pi/G, i∈ {1, . . . ,k} and qj/G, j ∈ {1, . . . ,m} is odd. This fact will be used in the proof of
the main result of this paper, in Theorem 2.4.

Remark 1.2. Note also that some of pi and qj can be equal.

We also need the following result by Karakostas [10] (see also [11]).

Theorem C. Let J be an interval of real numbers, f ∈ C[J l, J], and let (xn)∞n=−l be a bounded
solution of the difference equation

xn = f
(

xn−1, . . . ,xn−l
)

, n∈N0, (1.12)
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with I = lim inf n→∞xn, S= lim supn→∞xn, and with I ,S∈ J. Then there exist two solutions
(In)∞n=−∞ and (Sn)∞n=−∞ of the difference equation

xn = f
(

xn−1, . . . ,xn−l
)

, (1.13)

which satisfy the equation for all n∈ Z, with I0 = I , S0 = S, In,Sn ∈ [I ,S] for all n∈ Z, such
that for every N ∈ Z, IN and SN are limit points of (xn)∞n=−l . Furthermore, for every m≤ − l,
there exist two subsequences (xrn) and (xln) of the solution (xn)∞n=−l such that the following
are true:

lim
n→∞xrn+N = IN , lim

n→∞xln+N = SN , for every N ≥m. (1.14)

The solutions (In)∞n=−∞ and (Sn)∞n=−∞ of (1.13) are called full-limiting solutions of
(1.13) associated with the solution (xn)∞n=−l of (1.12).

2. Main results

The first result in this section concerns the boundedness character of positive solutions
of (1.4). Some other closely related results can be found, for example, in [2, 3, 8, 17, 20–
24, 26, 27].

Theorem 2.1. Every positive solution of (1.4) is bounded.

Proof. Assume that (xn)∞n=−l is a positive solution of (1.4). Then since f : (0,∞)k+m→
(α,∞), we have that xn > α for n≥ 0. From this and in view of condition (d), we have that
there is a positive number l greater than α such that l ≤ xi ≤ g(l) for i ∈ {0,1, . . . ,s− 1},
where s=max{pk,qm}. Employing condition (c) and (1.4), we obtain

l = f
(

l, . . . , l,g(l), . . . ,g(l)
)≤ f

(

xs−p1 , . . . ,xs−pk ,xs−q1 , . . . ,xs−qm
)= xs,

xs = f
(

xs−p1 , . . . ,xs−pk ,xs−q1 , . . . ,xs−qm
)≤ f

(

g(l), . . . ,g(l), l, . . . , l
)= g(l).

(2.1)

By the induction, we obtain that xn ∈ [l,g(l)] for every n∈N0, finishing the proof of the
theorem. �

Theorem 2.2. Assume that (xn)∞n=−l is a positive solution of (1.4) and let lim inf n→∞xn = I
and lim supn→∞xn = S. Then I = g(S) and S= g(I).

Proof. First, note that in view of Theorem 2.1, every positive solution (xn) of (1.4) is
bounded, which implies that there are finite lim inf n→∞xn and lim supn→∞xn,
moreover, we have that α < I. By taking the limit inferior and limit superior in (1.4) and
using condition (c), we obtain, respectively,

f (I , . . . ,I ,S, . . . ,S)≤ I = f
(

I , . . . ,I ,g(I), . . . ,g(I)
)

, (2.2)

f
(

S, . . . ,S,g(S), . . . ,g(S)
)= S≤ f (S, . . . ,S,I , . . . ,I). (2.3)

From (2.2) and (2.3), it follows that

g(I)≤ S, I ≤ g(S), (2.4)
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which, in view of condition (b), implies that

g(S)≤ g
(

g(I)
)= I , S= g

(

g(S)
)≤ g(I). (2.5)

Hence

I = g(S), S= g(I), (2.6)

as desired. �

Remark 2.3. Note that if all pi are even and all qj are odd, then for every I > α, the se-
quence

(

. . . ,I ,g(I),I ,g(I), . . .
)= (. . . ,I ,S,I ,S, . . .) (2.7)

is a period two solution of (1.4).

Before we formulate and prove the main result of this paper, we need the following
notation. Let

�= {pi | i= 1, . . . ,k
}

, � = {qj | j = 1, . . . ,m
}

. (2.8)

Theorem 2.4. Consider (1.4), where the function f satisfies conditions (a)–(d). Assume
that

G := gcd
(

p1, . . . , pk,q1, . . . ,qm
)= 1. (2.9)

Then if all pi, i∈ {1, . . . ,k}, are even and all qj , j ∈ {1, . . . ,m}, are odd, every positive solu-
tion of (1.4) converges to (not necessarily prime) a periodic solution of period two. Otherwise,
every positive solution of (1.4) converges to a unique positive equilibrium.

Proof. Let (L−i)i∈Z be a full-limiting sequence of a solution (xn)∞n=−l of (1.4) such that
L0 = S. Since (L−i)i∈Z is a solution of (1.4) belonging to the interval [I ,S], by employing
Theorems 2.1 and 2.2 and condition (c), we obtain

S= L0 = f
(

L−p1 , . . . ,L−pk ,L−q1 , . . . ,L−qm
)

≤ f (S, . . . ,S,I , . . . ,I)= f
(

S, . . . ,S,g(S), . . . ,g(S)
)= S.

(2.10)

From (2.10), it follows that L−pi = S for every i ∈ {1, . . . ,k} and L−qj = I for every j ∈
{1, . . . ,m}.

If we assume further that �∩� 	=∅, then we obtain I = S, from which the result fol-
lows in this case.

Now we assume that �∩� =∅ and there is pi0 ∈�, which is odd. Let pi0 = 2s+ 1 and
let qj0 be an arbitrary element of �. Then (1.4) can be written in the form

xn = f
(

. . . ,xn−(2s+1), . . . ,xn−qj0
, . . .
)

. (2.11)

Let (L−i)i∈Z be a full-limiting sequence of a solution (xn) of (1.4) such that L0 = S =
lim supn→∞xn. From

S= L0 = f
(

. . . ,L−(2s+1), . . . ,L−qj0
, . . .
)

, (2.12)
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similar to (2.10), we obtain

L−(2s+1) = S, L−qj0
= I. (2.13)

From (2.13), and since (L−i)i∈Z is a solution of (2.11), it follows that

L−2(2s+1) = S, L−2qj0
= S. (2.14)

Indeed, since

S= L−(2s+1) = f
(

. . . ,L−2(2s+1), . . . ,L−qj0−(2s+1), . . .
)

≤ f (S, . . . ,S,I , . . . ,I)= f
(

S, . . . ,S,g(S), . . . ,g(S)
)= S,

(2.15)

we obtain the first equality in (2.14). On the other hand, from

I = L−qj0
= f

(

. . . ,L−qj0−(2s+1), . . . ,L−2qj0
, . . .
)

≥ f (I , . . . ,I ,S, . . . ,S)= I ,
(2.16)

the second equality in (2.14) follows.
By induction, we obtain

L−(2s+1)i = S, i∈N, (2.17)

L−qj0 j =
⎧

⎨

⎩

I , j odd,

S, j even.
(2.18)

If we take i= qj0 in (2.17) and j = 2s+ 1 in (2.18), we obtain I = L−(2s+1)qj0
= S, as desired.

Now assume that all pi ∈ P are even, and � has odd as well as even elements. Then
(1.4) can be written in the form

xn = f
(

xn−p1 , . . . ,xn−pk , . . . ,xn−qj0
, . . . ,xn−qj1

, . . .
)

, (2.19)

where qj0 = 2s and qj1 = 2t+ 1.
Condition G = 1 implies that for each sufficiently large n, for example, n ≥ n0, there

are nonnegative numbers di ∈N0, i∈ {1, . . . ,k+m}, such that

k
∑

i=1

pidi +
m
∑

j=1

qjdk+ j = n, (2.20)

see, for example, [13]. From condition G = 1, by using (2.19), (2.20), and employing
the procedure described above for getting formulae (2.17) and (2.18), we obtain that the
subsequence (L−i)i≥n0

of the full-limiting sequence (Li)i∈Z with L0 = S takes only values I
and S.

If we replace n in (2.19) by −n0 − l, l ∈ {0,1, . . . , p1 − 1}, we obtain that L−n0−l =
L−n0−l−p1i for every i∈N and each l ∈ {0,1, . . . , p1− 1}, that is, (L−i)i∈N is eventually pe-
riodic with period p1. Similarly, it can be proven that (L−i)i∈N is eventually periodic with
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periods p2, . . . , pk. The periodicity of (L−i)i∈N with periods 2q1, . . . ,2qm can be proved
similar to (2.13), (2.14), and by using induction.

Since all pi ∈� are even and G= 1, we have that

2≤ gcd
(

p1, p2, . . . , pk,2q1, . . . ,2qm
)

= 2gcd
(

p1

2
,
p2

2
, . . . ,

pk
2

,q1, . . . ,qm

)

≤ 2G= 2,
(2.21)

that is,

gcd
(

p1, p2, . . . , pk,2q1, . . . ,2qm
)= 2. (2.22)

Hence the sequence (L−i)i∈N is eventually periodic with period two. Since (Li)i∈Z is a
solution of (1.4), we obtain that (Li)i∈Z is also periodic with period two. From this, since
L0 = S and by Theorem 2.2, we have that

L2i = S, L2i−1 = I = g(S), i∈ Z. (2.23)

From (2.19), (2.23), and condition (c), we have that

f

⎛

⎜

⎝S, . . . ,S
︸ ︷︷ ︸

k

,I , . . . ,I

⎞

⎟

⎠= S= L0 = f

⎛

⎜

⎝S, . . . ,S
︸ ︷︷ ︸

k

, . . . ,S, . . . ,I , . . .

⎞

⎟

⎠ . (2.24)

This and condition (a) imply that S= I.
If � contains only even elements while � contains only odd elements, then from

condition (c), we see that (1.4) has infinite prime two periodic solutions of the form
x,g(x),x,g(x), . . . . Similar to (2.22), it can be proven that, in this case, the full-limiting
sequence (Li)i∈Z, L0 = S is periodic with period two and that

L2i = S, L2i−1 = I = g(S), i∈ Z. (2.25)

From (2.25) and condition (d), we have that for every ε ∈ (0,S), there is a k0 ∈ Z and
j ∈ {1,2, . . . , [s/2] + 1} such that

S− ε < xk0+2 j , xk0+2 j−1 < g(S− ε), (2.26)

where s=max{pk,qm}.
From (2.26), (1.4), and by conditions (b) and (c), we have that

xk0+2[s/2]+3 < f
(

g(S− ε), . . . ,g(S− ε),S− ε, . . . ,S− ε
)= g(S− ε),

xk0+2[s/2]+4 > f
(

S− ε, . . . ,S− ε,g(S− ε), . . . ,g(S− ε)
)= S− ε.

(2.27)

By induction, we obtain

xk0+2i+1 < g(S− ε), xk0+2i > S− ε, (2.28)

for every i∈N.
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From (2.28) and the fact that lim ε→0g(S− ε)= g(S)= I , it follows that limn→∞x2n = S
and limn→∞x2n−1 = I , or limn→∞x2n = I and limn→∞x2n−1 = S, finishing the proof of the
theorem. �

Remark 2.5. If, in Theorem 2.4, all pi, i ∈ {1, . . . ,k}, are even and all qj , j ∈ {1, . . . ,m},
are odd, then the two periodic solutions to which the other solutions converge can be
essentially different from each other in the sense that one of them cannot be transformed
into another one by means of cyclic permutations.

Remark 2.6. Note that Theorem 2.4 extends Theorem A as well as Theorem B (for the
case when all arguments of the function F are decreasing).
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[14] S. Stević, “A note on bounded sequences satisfying linear inequalities,” Indian Journal of Mathe-

matics, vol. 43, no. 2, pp. 223–230, 2001.
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[21] S. Stević, “On the recursive sequence xn+1 = αn + xn−1/xn. II,” Dynamics of Continuous, Discrete
& Impulsive Systems. Series A, vol. 10, no. 6, pp. 911–916, 2003.
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