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It is shown that if a linear difference equation with distributed delay of the form Δx(n)=
∑0

k=−dΔkζ(n+ 1,k− 1)x(n+ k− 1), n≥ 1, satisfies a Perron condition then its trivial so-
lution is uniformly asymptotically stable.
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1. Introduction and preliminaries

The characteristics of many real dynamical models are described by delay differential
equations, see the list of recent papers [1–6]. However, delay differential equations are
hard to manage analytically and thus many articles have examined the models by us-
ing the corresponding delay difference equations. In practice, one can easily formulate a
discrete model directly by experiments or observations. For simulation purposes, never-
theless, it is important that a discrete analog faithfully inherits the characteristics of the
continuous time parent system. In the recent years, the stability of solutions of linear de-
lay difference equations has been extensively studied in the literature. Many authors have
addressed this problem by using various methods and applying different techniques, see
for instance the papers [7–13] and references therein.

It is well known in the theory of ordinary differential equations (see, e.g., [14, page
120]) that if for every continuous function f (t) bounded on [0,∞), the solution of the
equation

x′(t)= A(t)x(t) + f (t), t ≥ 0, (1.1)
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satisfying x(0) = 0 is bounded on [0,∞), then the trivial solution of the corresponding
homogeneous equation

x′(t)= A(t)x(t), t ≥ 0, (1.2)

is uniformly asymptotically stable. This result is referred as Perron’s criterion [15]. Later,
Perron’s criterion has been extended by Halanay [14, page 371] to differential equations
with distributed delay. Indeed, it was shown that if for every continuous function f (t)
bounded on [0,∞), the solution of the equation

x′(t)=
∫ 0

−τ
ds η(t,s)x(t+ s) + f (t), t ≥ 0, (1.3)

satisfying x(t) = 0 for t ∈ [−τ,0] is bounded on [0,∞), then the trivial solution of the
equation

x′(t)=
∫ 0

−τ
ds η(t,s)x(t+ s), t ≥ 0, (1.4)

is uniformly asymptotically stable. Recently, the above result has been carried out for lin-
ear impulsive delay differential equations [16] and for linear impulsive differential equa-
tions with distributed delay [17]. See also the papers [18–21] for related works. The paper
[22] deserves more attention as it discusses a closed result.

For a given differential equation, a difference equation approximation would be most
acceptable if the solution of the difference equation is the same as the differential equation
at the discrete points. But unless we can explicitly solve both equations, it is impossible to
satisfy this requirement. Most of the time, it is desirable that a difference equation, when
derived from a differential equation, preserves the dynamical features of the correspond-
ing continuous time model. If such discrete models can be derived from continuous time
delay models, then the discrete time models can be used without any loss of functional
similarities of continuous models. In this paper, we will consider a discrete time analog of
the continuous-time Perron criterion. We will show that a discrete time analog will pre-
serve the stability condition of its continuous time counterpart. Our approach is based
on the technique followed in [14] and totally different from the one used in [22].

There are several ways of deriving discrete time version of dynamical systems cor-
responding to continuous time formulations. One of the ways is based on appropriate
modifications of the models. For this technique, differential equations with piecewise
constant arguments prove helpful; see [23] for more information. Let us assume that the
average growth rate in (1.4) changes at regular intervals of time, then we can incorporate
this aspect in (1.4) and obtain the following modified equation:

x′(t)=
∫ 0

−τ
ds η

(
[t],s

)
x
(
[t+ s]

)
, t ≥ 0, (1.5)
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where [t] denotes the integer part of t for t ≥ 0. This equation occupies a position midway
between differential and difference equations. Integrating (1.5) on any interval of the
form [n,n+ 1), n= 0,1,2, . . . , we obtain

x(t)− x(n)=
∫ 0

−τ
ds η(n,s)x(n+ s)(t−n). (1.6)

Letting t→ n+ 1, we have

Δx(n)=
∫ 0

−τ
ds η(n,s)x(n+ s), (1.7)

where Δx(n) := x(n + 1)− x(n). Let N and Z denote, as usual, the sets of natural and
integer numbers, respectively. Let ζ : N× Z→ Rm×m be a kernel function satisfying the
following conditions:

(i) ζ(n,k) is normalized so that ζ(n,s)= 0 for s≥−1 and for s≤−d+ 1, where d > 3
is a positive integer;

(ii) there exists a positive real number γ such that supt≥0

∑0
s=−d ‖Δsζ(t,s)‖ ≤ γ.

It turns out that the discrete analog of (1.7) should have the form

Δx(n)=
0∑

k=−d
Δkζ(n,k)x(n+ k), n≥ 1, (1.8)

where by Δkζ(n,k) we mean the difference ζ(n,k+ 1)− ζ(n,k).
For the sake of convenience, however, we will consider an equation of the form

Δx(n)=
0∑

k=−d
Δkζ(n+ 1,k− 1)x(n+ k− 1), n≥ 1. (1.9)

For any a,b ∈N, define N(a) = {a,a+ 1, . . .} and N(a,b) = {a,a+ 1, . . . ,b}, where a ≤ b.
By a solution of (1.9), we mean a sequence x(n) of elements inRm which is defined for all
n∈N(n0− d + 1) and satisfies (1.9) for n∈N(n0) for some n0 ∈N. It is easy to see that
for any given n0 ∈N and initial conditions of the form

x(n)= φ(n), n∈N(n0−d+ 1,n0 + 1
)
, (1.10)

Equation (1.9) has a unique solution x(n) which is defined for n ∈ N(n0 − d + 1) and
satisfies the initial conditions (1.10). To emphasize the dependence of the solution on the
initial point n0 and the initial functions φ, we may use the notation x(n)= x(n;n0,φ).

Consider the nonhomogeneous equation

Δx(n)=
0∑

k=−d
Δkζ(n+ 1,k− 1)x(n+ k− 1) + f (n), n≥ 1, (1.11)

where f is a sequence with values in Rm. Perron’s condition for (1.9) is formulated as
follows.
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Definition 1.1. Equation (1.9) is said to verify Perron’s condition if for every bounded
sequence f (n) for n ≥ 1, the solution of (1.11) with φ(n) = 0 for n ∈ N(−d + 1,1) is
bounded for n≥ 1.

The main result of this paper is stated in the following theorem.

Theorem 1.2. If (1.9) verifies Perron’s condition, then its trivial solution is uniformly
asymptotically stable.

The proof is provided in the last section.

2. Background lemmas

This section is devoted to certain auxiliary assertions that will be needed in the proof of
Theorem 1.2. Lemma 2.1 which introduces the main result of this section is needed to
define an adjoint equation of (1.9). Lemmas 2.3 and 2.6 give representations of solutions
of the considered equations. Lemmas 2.9 and 2.10 are concerned with the boundedness
of fundamental functions of (1.9).

We will construct the adjoint equation of (1.9) which resembles the one constructed
by Halanay in [14, page 365]. It turns out that the function has the form

〈
x(n), y(n)

〉= xT(n)y(n) +
n∑

s=n−d
xT(s− 1)Δs

s+d−1∑

α=n+1

ζT(α,s−α)y(α), (2.1)

where by “T′′ we mean the transposition.
Consider the equation

Δy(n)=−Δn

0∑

k=−d
ζT(n− k,k+ 1)y(n− k), (2.2)

where Δnζ(n,k) := ζ(n + 1,k)− ζ(n,k). We claim that (2.2) is the adjoint equation of
(1.9). The following lemma generalizes a fundamental result to linear difference equa-
tions with distributed delay.

Lemma 2.1. Let x(n) be any solution of (1.9) and let y(n) be any solution of (2.2), then

〈
x(n), y(n)

〉= constant, (2.3)

where 〈 , 〉 is defined by (2.1).

Proof. Clearly, it suffices to show that Δ〈x(n), y(n)〉 = 0. It follows that

Δ
〈
x(n), y(n)

〉= xT(n)Δy(n) +ΔxT(n)y(n+ 1) +Δn

n∑

s=n−d
g(s,n), (2.4)

where

g(s,n)= xT(s− 1)Δs

s+d−1∑

α=n+1

ζT(α,s−α)y(α). (2.5)



J. O. Alzabut and T. Abdeljawad 5

It is easy to see that

Δn

n∑

s=n−d
g(s,n)= g(n+ 1,n+ 1)− g(n−d,n) +

n∑

s=n−d+1

Δng(s,n). (2.6)

Therefore (2.4) becomes

Δ
〈
x(n), y(n)

〉= xT(n)Δy(n) +ΔxT(n)y(n+ 1) + g(n+ 1,n+ 1)

− g(n−d,n) +
n∑

s=n−d+1

Δng(s,n).
(2.7)

Thus

Δ
〈
x(n), y(n)

〉 by (2.2)= xT(n)

[

−Δn

0∑

k=−d
ζT(n− k,k+ 1)y(n− k)

]

by (1.9)
+

[ 0∑

k=−d
xT(n+ k− 1)Δkζ

T(n+ 1,k− 1)

]

y(n+ 1)

by (2.5)
+ xT(n)

n+d∑

α=n+3

Δnζ
T(α,n+ 1−α)y(α)

by (2.5)− xT(n−d− 1)Δn−d
n−1∑

α=n+1

ζT(α,n−d−α)y(α)

by (2.5)−
n∑

s=n−d+1

xT(s− 1)Δsζ
T(n+ 1,s−n− 1)y(n+ 1).

(2.8)

By changing the indices and using the properties of ζ , we see that the above equation is
equal to zero. The proof is finished. �

In virtue of Lemma 2.1, we may say that (2.2) is an adjoint of (1.9). It is easy to verify
also that the adjoint of (2.2) is (1.9), that is, they are mutually adjoint of each other.

Definition 2.2. A matrix solution X(n,α) of (1.9) satisfying X(α,α) = I , (I is an identity
matrix), and X(n,α)= 0 for n < α is called a fundamental function of (1.9).

Lemma 2.3. Let X(n,α) be a fundamental function of (1.9) and n0 ∈N. If x(n) is a solution
of (1.11)), then

x(n)= X
(
n,n0

)
x
(
n0
)

+
n0∑

s=n0−d
Δs

s+d−1∑

α=n0+1

X(n,α)ζ(α,s−α)x(s− 1) +
n−1∑

k=n0

X(n,k+ 1) f (k).

(2.9)
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Proof. A direct substitution of (2.9) in (1.11) leads to the desired result. Indeed,

Δx(n)= ΔX
(
n,n0

)
x
(
n0
)

+Δn

n0∑

s=n0−d
Δs

s+d−1∑

α=n0+1

X(n,α)ζ(α,s−α)x(s− 1)

+Δn

n−1∑

k=n0

X(n,k+ 1) f (k),

(2.10)

or

Δx(n)
by (1.9)=

0∑

k=−d
Δkζ(n+ 1,k− 1)X

(
n+ k− 1,n0

)
x
(
n0
)

+
n0∑

s=n0−d

[

Δs

s+d−1∑

α=n0+1

{ 0∑

k=−d
Δkζ(n+1,k− 1)X(n+k−1,α)

}

ζ(α,s−α)

]

x(s− 1)

+ f (n) +
n−1∑

k=n0

{ 0∑

k=−d
Δkζ(n+ 1,k− 1)X(n+ k− 1,k+ 1)

}

f (k)

= f (n) +
0∑

k=−d
Δkζ(n+ 1,k− 1)x(n+ k− 1).

(2.11)
�

Corollary 2.4. Let X(n,α) be a fundamental function of (1.9) and n0 ∈ N. If x(n) is a
solution of (1.9), then

x(n)= X
(
n,n0

)
x
(
n0
)

+
n0∑

s=n0−d
Δs

s+d−1∑

α=n0+1

X(n,α)ζ(α,s−α)x(s− 1). (2.12)

Definition 2.5. A matrix solution Y(n,α) of (2.2) satisfying Y(α,α) = I and Y(n,α) = 0
for n > α is called a fundamental function of (2.2).

Lemma 2.6. Let Y(n,α) be a fundamental function of (2.2) and n0 ∈N. If y(n) is a solution
of (1.10), then

y(n)= Y
(
n,n0

)
y
(
n0
)

+
n0∑

s=n0−d
Y(n,s− 1)Δs

s+d−1∑

α=n0+1

ζT(α,s−α)y(α). (2.13)

For more details on the derivation of solutions representations for similar difference
equations, see the papers [24, 25].

Corollary 2.7. Let X(n,n0) be a fundamental function of (1.9) and let Y(n,n0) be a fun-
damental function of (2.2). Then

X
(
n,n0

)= YT
(
n0,n

)
. (2.14)
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Proof. By following the same arguments used by Halanay in [14, page 364], (2.3) can be
written as follows:

〈
x(n), y(n)

〉= 〈x(n0
)
, y
(
n0
)〉

, for any n0 ∈N. (2.15)

Further

XT(n,n)Y
(
n,n0

)
+

n∑

s=n−d
XT(s− 1,n)Δs

s+d−1∑

α=n+1

ζT(α,s−α)Y
(
α,n0

)

by (2.1)= XT
(
n0,n

)
Y
(
n0,n0

)
+

n∑

s=n−d
XT(s− 1,n)Δs

s+d−1∑

α=n+1

ζT(α,s−α)Y
(
α,n0

)
.

(2.16)

Upon using the properties of the fundamental functions X(n,n0) and Y(n,n0), identity
(2.14) is obtained. �

Remark 2.8. Formulas (2.12) and (2.13) can be derived from function (2.1). Indeed, re-
placing X by x or Y by y in (2.16), using (2.14) and employing the properties of X and
Y , we obtain the desired results.

Let D denote the space of bounded sequences f = { f (n)} with values in Rm and
equipped with the norm ‖ f ‖∞ = supn‖ f (n)‖. Clearly, D is a Banach space.

Lemma 2.9. If (1.9) verifies Perron’s condition, then there exists a constant C such that

n−1∑

α=0

∥
∥X(n,α+ 1)

∥
∥ < C, for ≥ 1. (2.17)

Proof. From formula (2.12), the solution x(n) satisfying (1.10) with φ(n) = 0, n ∈
N(−d+ 1,1), has the form

x(n)=
n−1∑

α=0

X(n,α+ 1) f (α). (2.18)

For each n∈N, define a sequence of linear operators Un : D→Rm by

Un( f )=
n−1∑

α=0

X(n,α+ 1) f (α). (2.19)

By using the estimate

∥
∥Un( f )

∥
∥≤

n−1∑

α=0

∥
∥X(n,α+ 1)

∥
∥‖ f ‖∞, (2.20)

it follows that the operators Un are bounded. In virtue of Perron’s condition, we deduce
that for each f ∈D, we can find c f > 0 such that supn‖Un( f )‖ ≤ c f . Hence, by using the
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Banach-Steinhaus theorem, there exists a constant T > 0 such that

sup
n

∥
∥Un( f )

∥
∥≤ T‖ f ‖∞, ∀ f ∈D. (2.21)

For fixed n ≥ 1, let xrk, (1 ≤ r,k ≤m), be the elements of the matrix X(n,α+ 1) where
0≤ α≤ n− 1. Let ep denote the canonical basis having the unity at the pth place and zero
otherwise. Let f rα be the element of D with its α-component the vector Vr ofRm and zeros
otherwise, where Vr =

∑m
k=1 signxrkek. The vector X f rα (α) will have its rth component

equal to
∑m

k=1 |xrk|.
From (2.21), we can write

∥
∥
∥
∥
∥

n−1∑

α=0

X(n,α+ 1) f rα (α)

∥
∥
∥
∥
∥
≤M2, (2.22)

where M2 = T supr ‖Vr‖. Hence

n−1∑

α=0

m∑

k=1

∣
∣xrk(n,α+ 1)

∣
∣≤M2. (2.23)

Since this relation is true for every r, we take the summation
∑m

r=1 of both sides to deduce
that there exists C such that

n−1∑

α=0

∥
∥X(n,α+ 1)

∥
∥ < C for n≥ 1, (2.24)

which completes the proof. �

Lemma 2.10. If (1.9) verifies Perron’s condition, then there exists a constant M such that

∥
∥X
(
n,n0

)∥
∥ <M, for n≥ n0 ≥ 1. (2.25)

Proof. Taking into account that YT(α, t) satisfies (2.2), we take
∑n−1

α=n0
of both sides

n−1∑

α=n0

ΔαY
T(α,n)=−

n−1∑

α=n0

Δα

0∑

k=−d
YT(α− k,n)ζ(α− k,k+ 1). (2.26)

It follows that

X
(
n,n0

) by(16)= I +
n−1∑

α=n0

Δα

0∑

α=−d
X(n,α− k)ζ(α− k,k+ 1). (2.27)

By setting α− k = r and then changing the order of summations, we obtain

X
(
n,n0

)= I +
n0+d∑

r=n0

r∑

α=n0

X(n,r)Δαζ(r,α− r + 1) +
n∑

r=n0+d+1

r∑

α=r−d
X(n,r)Δαζ(r,α− r + 1),

(2.28)
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where that X(n,r)= 0 for r > n is used. Taking the norm of both sides, we have
∥
∥X
(
n,n0

)∥
∥

≤ 1 +
n0+d∑

r=n0

r∑

α=n0

∥
∥X(n,r)Δαζ(r,α− r + 1)

∥
∥+

n−1∑

r=n0+d+1

r∑

α=r−d

∥
∥X(n,r)Δαζ(r,α− r + 1)

∥
∥.

(2.29)

By using the properties of ζ , it follows that

∥
∥X
(
n,n0

)∥
∥≤ 1 + γ

n−1∑

r=n0

∥
∥X(n,r)

∥
∥. (2.30)

In view of Lemma 2.9, we end up with the desired result. �

We are now in a position to give the proof of Theorem 1.2.

3. Proof of Theorem 1.2

From formula (2.12), the solution of (1.9) has the form

x
(
n;n0,φ

)= X
(
n,n0

)
x
(
n0
)

+
n0∑

s=n0−d
Δs

s+d−1∑

α=n0+1

X(n,α)ζ(α,s−α)x(s− 1). (3.1)

Changing the order of summations, we get

x
(
n;n0,φ

)= X
(
n,n0

)
x
(
n0
)

+
n0+d−1∑

s=n0+1

X(n,α)
n0∑

s=α−d+1

Δsζ(α,s−α)x(s− 1). (3.2)

In virtue of Lemma 2.10, we obtain
∥
∥x
(
n;n0,φ

)∥
∥≤M1‖φ‖0, (3.3)

where

M1 =M[1 + γd], ‖φ‖0 = sup
n∈N(n0−d+2,n0)

∥
∥x(n)

∥
∥. (3.4)

Thus, the trivial solution is uniformly stable.
It remains to prove that

lim
n→∞x

(
n;n0,φ

)= 0 (3.5)

uniformly with respect to n0 and φ. For our purpose, let m0 ≥ n0, then the solution has
the form

x
(
n;n0,φ)= X

(
n,m0

)
x
(
m0;n0,φ

)
+

m0+d−1∑

α=m0+1

X(n,α)
m0∑

s=α−d+1

Δsζ(α,s−α)x
(
s− 1;n0,φ

)
.

(3.6)
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Taking the summation
∑n

m0=n0
of both sides, we have

(
n−n0

)
x
(
n;n0,φ

)=
n∑

m0=n0

X
(
n,m0

)
x
(
m0;n0,φ

)
+

n∑

m0=n0

m0+d−1∑

α=m0+1

X(n,α)z
(
m0,α

)
, (3.7)

where

z
(
m0,α

)=
m0∑

s=α−d+1

Δsζ(α,s−α)x
(
s− 1,n0,φ

)
. (3.8)

Interchanging the order of summations, we obtain

(
n−n0

)
x
(
n;n0,φ

)=
n∑

m0=n0

X
(
n,m0

)
x
(
m0;n0,φ

)

+
n0+d−1∑

α=n0+1

α−1∑

m0=n0

X(n,α)z(m0,α)

+
n+1∑

α=n0+d

α−1∑

m0=α−d+1

X(n,α)z
(
m0,α

)
,

(3.9)

where that X(n,α)= 0 for α > n is used. Taking the norm of both sides, we get

(
n−n0

)∥
∥x
(
n;n0,φ

)∥
∥

≤M1‖φ‖0

n∑

m0=n0

∥
∥X
(
n,m0

)∥
∥+dγM1

∥
∥φ
∥
∥

0

n+1∑

α=n0+d

∥
∥X(n,α)

∥
∥+d2γMM1‖φ‖0.

(3.10)

It follows that

∥
∥x
(
n;n0,φ

)∥
∥≤ M2(

n−n0
)‖φ‖0, (3.11)

where

M2 =M1
[
C+dγC+Md2γ

]
. (3.12)

Clearly, (3.5) follows from (3.11). The proof is finished.
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