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We study the dynamical behavior of a class of neural network models with time-varying
delays. By constructing suitable Lyapunov functionals, we obtain sufficient delay-depend-
ent criteria to ensure local and global asymptotic stability of the equilibrium of the neu-
ral network. Our results are applied to a two-neuron system with delayed connections
between neurons, and some novel asymptotic stability criteria are also derived. The ob-
tained conditions are shown to be less conservative and restrictive than those reported in
the known literature. Some numerical examples are included to demonstrate our results.
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1. Introduction

An artificial neural network model is usually described by a system of ordinary differ-
ential equations. But experimental studies have demonstrated that, in general, time de-
lays exist in electronic circuits because of the finite switching speed of amplifiers and
the model should be described by the system of delay differential equations. Therefore,
theoretical and computational studies of the dynamical system for the Hopfield-type ana-
log neural network with time delays have advanced greatly in the recent years (see, e.g.,
[5, 7–9, 11–13, 16, 17, 19–22] and the references therein). It is well known that the ef-
fects of time delays on dynamical properties of neural networks are very complicated.
If the connection matrix is symmetric or antisymmetric, Hopfield-type neural network
without time delays is always either a convergent gradient networks or a stable network,
respectively. However, if the delays are present, their convergences and stability proper-
ties may be lost even for very small delays, and oscillations or chaos may occur (see, e.g.,
[1, 14, 15, 18, 21]).

On the other hand, it is also known that delays may lead to increased stability for some
dynamical systems[2, 4, 22]. The existence of equilibria of neural networks is studied in
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[3, 7–9, 11–13, 16, 17, 19, 20, 22]. Detailed analysis of local stability (or, the so-called lin-
ear stability) of equilibria, oscillation, and existence of periodic solutions for some mod-
els simpler than neural network model (e.g., ring neural network models) is presented in
[1, 14, 15, 18, 21], based on the classical methods of characteristic equations and Hopf
bifurcation analysis (see [10, 14, 15, 18]) and numerical computations.

Global asymptotic stability of the equilibrium of neural network with time delays,
which is more important and usually more difficult to analyze than local stability, is
investigated in [7–13, 16, 17, 19, 20, 22] by Lyapunov functions. The results in [3, 6–
9, 11–20, 22] essentially say that if the gains of the activation functions or the synaptic
connection strength are small enough, the network is globally asymptotically stable inde-
pendent on the delay. Global asymptotic stability of the equilibrium of a class of delayed
Hopfield-type ring neural network model which satisfies positive feedback condition is
also considered in [21], and a very general sufficient criterion for global asymptotic sta-
bility of equilibrium is given based on the properties of monotone semidynamical system
[4, 22].

However, in many practical time-delay neural networks, the time delays appearing in
the systems are time-varying or are only known to be bounded in a certain range. Typical
time-delay neural networks with multiple time-varying delays include the Hopfield neu-
ral network model [7–9, 12, 16, 19, 22], cellular neural network model [12, 17, 20], and
bi-directional associative memory [3, 13]. Consequently, the stability analysis of time-
delay systems has been a main concern of researchers. The stability criteria for time-
delay systems can be classified into two categories, namely, delay-independent criteria
and delay-dependent criteria, depending on whether they contain the delay argument
as a parameter. There have been a number of significant developments in searching the
stability criteria for systems with constant delays. However, the criteria are mostly delay-
independent ones for time-delay systems with constant delays [3, 6–9, 11–13, 16, 17, 19,
20, 22] and only a few of them are for neural networks with time-varying delays, see, for
example, [7, 8, 11, 12].

In this paper, we will give some new criteria for local and global asymptotic stability
of the equilibrium of neural networks with time-varying delays. Our results essentially
show that if the equilbirum of the network remains globally asymptotically stable when
time delays are small enough, suitable Lyapunov functionals are constructed to prove our
results.

The organization of this paper is as follows. In the following section, we will give the
network system to be considered and some needed preliminaries. The proofs of the main
results will be given in Section 3. In Section 4, we apply our results to two-neuron system
with time delays and numerical simulations to illustrate the applications of our results.
Some conclusions are also given in Section 5. Finally, we will give the detailed constructive
procedure of the Lyapunov functional V used in Appendix A.
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2. Statement of networks and preliminaries

In this paper, we will consider the following neural networks with time-varying delays:

u̇i(t)=−di
(
ui(t)

)
+

n∑

j=1

wijg j
(
uj(t)

)

+
n∑

j=1

wτ
i jg j

(
uj
(
t− τi j(t)

))
+ Ii, i= 1,2, . . . ,n,

(2.1)

for t ≥ 0, where wij , wτ
i j , and Ii are real constants. The delays τi j(t) are more than zeros.

The functions gj are continuously differentiable on R= (−∞,+∞) and such that gj(0)=
0, j = 1,2, . . . ,n.

For system (2.1), we assume that the following conditions are satisfied.
(H1) There exist positive constants Di and Di, i = 1,2, . . . ,n, such that, for all argu-

ments,

0 < Di ≤
di
(
xi
)−di

(
yi
)

xi− yi
≤Di, for xi �= yi, i= 1,2, . . . ,n. (2.2)

(H2) gj , j = 1,2, . . . ,n, are bounded on R, that is, there exist positive constants, Gj ,
j = 1,2, . . . ,n, such that for any w ∈ R,

∣
∣gj(w)

∣
∣≤Gj , j = 1,2, . . . ,n. (2.3)

(H3) For any w ∈ R, g′j(w) > 0, j = 1,2, . . . ,n.
(H4) τi j : [0,+∞)→ [0,+∞) is continuous and 0≤ τi j(t)≤ τ.
The initial condition for (2.1) is given as follows:

uj(s)= φj(s), s∈ [−τ,0], (2.4)

where φj(s), j = 1,2, . . . ,n, are continuous on [−τ,0].
It is not difficult to show that under (H1)–(H4), the solution of (2.1) satisfying the

above initial condition exists on R+ ≡ [0,+∞) (see, e.g., [2, 4, 12]). In fact, note that from
Lemma 2.1 below, it is clear that the solution of (2.1) is also unique.

It is also easy to show that (2.1) has always an equilibrium u∗j , j = 1,2, . . . ,n. That is,
there exist u∗j , j = 1,2, . . . ,n, such that

di
(
u∗i
)=

n∑

j=1

(
wij +wτ

i j

)
gj
(
u∗j
)

+ Ii, i= 1,2, . . . ,n. (2.5)

By using the strict monotonicity property of di, there exist positive numbers di > 0
such that

di
(
u∗i
)= diu

∗
i , i= 1,2, . . . ,n. (2.6)
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Hence,

u∗i = d
−1
i

{ n∑

j=1

(
wij +wτ

i j

)
gj
(
u∗j
)

+ Ii

}

, i= 1,2, . . . ,n. (2.7)

In fact, let us consider the map P = (P1,P2, . . . ,Pn) on the compact convex set Ω, where

Pi
(
u1,u2, . . . ,un

)= d
−1
i

{ n∑

j=1

(
wij +wτ

i j

)
gj
(
u∗j
)

+ Ii

}
, i= 1,2, . . . ,n,

Ω=
{(
u1,u2, . . . ,un

) | ∣∣ui
∣
∣≤Ni0

}
,

Ni0 =
∑n

j=1

∣
∣wij +wτ

i j

∣
∣Gj+

∣
∣Ii
∣
∣

∣
∣di

∣
∣ , i= 1,2, . . . ,n.

(2.8)

It follows from (H1) and (H2) that P is a continuous map which maps Ω into itself. Thus,
it follows from Brouwer’s fixed point theorem (see, e.g., [2, 4]) that P has at least one
fixed point (u∗1 ,u∗2 , . . . ,u∗n )in Ω, that is,

(
u∗1 ,u∗2 , . . . ,u∗n

)= P
(
u∗1 ,u∗2 , . . . ,u∗n

)
. (2.9)

This shows that (u∗1 ,u∗2 , . . . ,u∗n ) satisfies (2.5).
The following lemma is useful in our discussion below.

Lemma 2.1. If (H1)–(H4) are satisfied, then for any solution of (2.1),

limsup
t→∞

∣
∣ui(t)

∣
∣≤Ni

(≤Ni0
)
, i= 1,2, . . . ,n, (2.10)

where the positive constants Ni, i= 1,2, . . . ,n, satisfy

Ni =
∑n

j=1

∣
∣wij +wτ

i j

∣
∣gi
(
Ni
)

+
∣
∣Ii
∣
∣

∣
∣di

∣
∣ ,

gi
(
Ni
)=max

{
gi
(
Ni
)
,−gi

(−Ni
)}

, i= 1,2, . . . ,n.

(2.11)

Proof. It is clear from (H1)–(H4) and (2.1) that

limsup
t→∞

∣
∣ui(t)

∣
∣≤Ni0, i= 1,2, . . . ,n. (2.12)

Thus, for sufficiently small η > 0 and sufficiently large T0 > 0, such that for t ≥ T0,

∣
∣ui(t− τ)

∣
∣≤Ni0 +η, i= 1,2, . . . ,n, (2.13)

which, together with (H3) and (2.1), yields that, for t ≥ T0,

u̇i(t)≤−
∣
∣di

(
ui(t)

)∣∣+
n∑

j=1

(∣∣wij +wτ
i j

∣
∣)g j

(
Ni0 +η

)
+
∣
∣Ii
∣
∣, i= 1,2, . . . ,n. (2.14)
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Note that, one can take η→ 0 as t→ +∞. We have

limsup
t→∞

∣
∣ui(t)

∣
∣≤Ni1, i= 1,2, . . . ,n, (2.15)

where

Ni1 =
∑n

j=1

(∣∣wij +wτ
i j

∣
∣)gi

(
Ni0

)
+
∣
∣Ii
∣
∣

∣
∣di

∣
∣ ≤Ni0, i= 1,2, . . . ,n. (2.16)

By repeating the above procedure, we can obtain positive sequences {Ni,k}such that

Ni,k+1 =
∑n

j=1

(∣∣wij +wτ
i j

∣
∣)gi

(
Ni,k

)
+
∣
∣Ii
∣
∣

∣
∣di

∣
∣ ≤Ni,k, i= 1,2, . . . ,n,

limsup
t→∞

∣
∣ui(t)

∣
∣≤Ni,k, i= 1,2, . . . ,n, k = 0,1,2, . . . .

(2.17)

Let Ni denote the limits of {Ni,k} as k→ +∞, respectively. Then, we have

Ni =
{∑n

j=1

(∣∣wij +wτ
i j

∣
∣)gi

(
Ni,k

)
+
∣
∣Ii
∣
∣

∣
∣di

∣
∣

}

, i= 1,2, . . . ,n,

limsup
t→∞

∣
∣ui(t)

∣
∣≤Ni.

(2.18)

This shows that Lemma 2.1 is true. �

By Lemma 2.1, we see that for any sufficiently small positive constant ε, there exists a
sufficiently large time, T = T(ε) > 0, such that for t ≥ T ,

∣
∣ui(t)

∣
∣≤Ni + ε, i= 1,2, . . . ,n. (2.19)

Define the positive constants piε and qiε, i= 1,2, . . . ,n, as follows:

piε ≡ min
−(Ni+ε)≤w≤Ni+ε

g′i (w)≤ max
−(Ni+ε)≤w≤Ni+ε

g′i (w)≡ qiε, i= 1,2, . . . ,n. (2.20)

Let pi and qi, i= 1,2, . . . ,n, denote the limits of piε and qiε, respectively, as ε→ 0.

Remark 2.2. It is not difficult to show that the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of (2.1) is also
unique if (H1)–(H4) and the following (H5) are satisfied.

The following well-known Barbalat lemma (see, e.g., [2]) will also be used.

Lemma 2.3. Let f be a nonnegative function defined on R+ such that f is integrable and
uniformly continuous on R+. Then limt→+∞ f (t)= 0.

3. Stability analysis

In this section, we will consider the stability of the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system
(2.1).

Let us first consider the cases wτ
i j �= 0, for some i, j = 1,2, . . . ,n. We further assume the

following hypothesis (H5).
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(H5) There exist positive constants λi, i= 1,2, . . . ,n, such that the following matrix:

R=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η1 r12 r13 ···r1n

r21 η2 r23 ···r2n

··· ··· ···
rn1 rn2 rn3 ···ηn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.1)

is negative definite, that is,

(−1)i

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η1 r12 r13 ···r1n

r21 η2 r23 ···r2n

··· ··· ···
rn1 rn2 rn3 ···ηn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

> 0, i= 1,2, . . . ,n, (3.2)

where

ηi = λi

(

− Di

qi
+wii +wτ

ii

)

+
1
2

n∑

j=1

[(
λiqjD j

pj

∣
∣wτ

i j

∣
∣τi j(t) +

λjqiDi

pi

∣
∣wτ

ji

∣
∣τji(t)

)]

+
1
2

n∑

j=1

[
λiqjτi j(t)

∣
∣wτ

i j

∣
∣

n∑

k=1

(∣∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)

+
n∑

k=1

λkqjτk j(t)
∣
∣wτ

k j

∣
∣(
∣
∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)
]

, i= 1,2, . . . ,n,

ri j = 1
2

{
λi
(
wij +wτ

i j

)
+ λj

(
wji +wτ

ji

)}
, i �= j, i, j = 1,2, . . . ,n.

(3.3)

Hence, the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of (2.1) is unique.

Theorem 3.1. If wτ
i j �= 0, for some i, j = 1,2, . . . ,n, and (H1)–(H5) are satisfied, then the

equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system (2.1) is globally asymptotically stable.

Proof. As usual, let us set

xj(t)= uj(t)−u∗j , j = 1,2, . . . ,n,

f j
(
xj(t)

)= gj
(
xj(t) +u∗j

)− gj
(
u∗j
)
, j = 1,2, . . . ,n,

hj
(
xj(t)

)= dj
(
xj(t) +u∗j

)−dj
(
u∗j
)
, j = 1,2, . . . ,n.

(3.4)
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Then, the stability properties of the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of (2.1) are equivalent to
that of the trivial solution of the following system:

ẋi(t)=−hi
(
xi(t)

)
+

n∑

j=1

wij f j
(
xj(t)

)
+

n∑

j=1

wτ
i j f j

(
xj
(
t− τi j(t)

))
. (3.5)

It follows from Appendix A that there exists a Lyapunov functional V = V(xt) ≥ 0 such
that the upper right derivative D+V of V along the solutions (3.5) satisfies

D+V |(3.5)≤−δ(ε)
n∑

j=1

f 2
j

(
xj(t)

)
, (3.6)

for t ≥ T + τ. Here δ(ε) > 0 is some constant. xt = x(t+ s) for −τ ≤ s≤ 0.
Integrating (3.6) over [T + τ, t] yields

V
(
xt
)

+ δ(ε)
∫ t

T+τ

n∑

j=1

f 2
j

(
xj(ξ)

)
dξ ≤V

(
xT+τ

)
, (3.7)

which implies that

n∑

j=1

∫ +∞

0
f 2
j

(
xj(ξ)

)
dξ < +∞. (3.8)

Moreover, from Lemma 2.1 and (H2)–(H3) we see that f 2
j (xj(t)), j = 1,2, . . . ,n, are also

uniformly continuous on R+. Hence, Lemma 2.3 implies that

lim
t→+∞

∣
∣ f j

(
xj(t)

)∣∣= 0, j = 1,2, . . . ,n. (3.9)

Again from Lemma 2.1 and (H3), we have

lim
t→+∞xj(t)= 0, j = 1,2, . . . ,n, (3.10)

that is,

lim
t→+∞uj(t)= u∗j , j = 1,2, . . . ,n, (3.11)

which shows that the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of (2.1) is globally attractive.
Furthermore, note (H2), (H3), and the following inequalities:

pi < g′i
(
u∗i
)
< qi, i= 1,2, . . . ,n. (3.12)

We see that (H5) implies (H6) of Theorem 3.4 below. Thus, the equilibrium (u∗1 ,
u∗2 , . . . ,u∗n ) of (2.1) is also locally asymptotically stable. This proves Theorem 3.1. �
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(H′
5) There exist positive constants λi, i= 1,2, . . . ,n, such that

γi =
{

λi

(
− Di

qi
+wii +wτ

ii

)
+

1
2

n∑

j=1

[(
λiqjD j

pj

∣
∣wτ

i j

∣
∣τi j(t) +

λjqiDi

pi

∣
∣wτ

ji

∣
∣τji(t)

)]

+
1
2

n∑

j=1

[

λiqjτi j(t)
∣
∣wτ

i j

∣
∣

n∑

k=1

(∣∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)

+
n∑

k=1

λkqjτk j(t)
∣
∣wτ

k j

∣
∣(
∣
∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)
]

+
1
2

n∑

j=1
j �=i

(
λi
∣
∣wij +wτ

i j

∣
∣+ λj

∣
∣wji +wτ

ji

∣
∣)
}

< 0.

(3.13)

By the process of the proof of Theorem 3.1 (see Appendix A), we can easily obtain.

Corollary 3.2. If wτ
i j �= 0, for some i, j = 1,2, . . . ,n, and (H1)–(H4) and (H′

5) are satisfied,
then the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system (2.1) is globally asymptotically stable.

Remark 3.3. In [7, 8, 12], the authors require that the time-varying delays satisfy τ′i j(t)≤
R < 1. However, in our theorem, these delays are not necessarily continuous and differ-
entiable. They only need to satisfy the condition 0≤ τi j(t)≤ τ. Hence, our results are less
restrictive and conservative than the known results [7, 8, 12].

Theorem 3.4. If wτ
i j �= 0, for some i, j = 1,2, . . . ,n, and (H1)–(H4) and the following as-

sumption (H6) are satisfied, there exist positive constants λi, i = 1,2, . . . ,n, such that the
following matrix:

R∗ =

⎛

⎜
⎜
⎜
⎜
⎝

η∗1 r12 r13 ···r1n

r21 η∗2 r23 ···r2n

··· ··· ···
rn1 rn2 rn3 ···η∗n

⎞

⎟
⎟
⎟
⎟
⎠

(3.14)

is negative definite, where

η∗i = λi

(

− Di

g′i
(
u∗i
) +wii +wτ

ii

)

+
1
2

n∑

j=1

[(
λiD j

∣
∣wτ

i j

∣
∣τi j(t) + λjDi

∣
∣wτ

ji

∣
∣τji(t)

)]

+
1
2

n∑

j=1

[

λig
′
j

(
u∗j
)
τi j(t)

∣
∣wτ

i j

∣
∣

n∑

k=1

(∣∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)

+
n∑

k=1

λkg
′
j

(
u∗j
)
τk j(t)

∣
∣wτ

k j

∣
∣(
∣
∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)
]

,

ri j = 1
2

{
λi
(
wij +wτ

i j

)
+ λj

(
wji +wτ

ji

)}
, i �= j.

(3.15)
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Then, the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of (2.1) is locally asymptotically stable.

Proof. The linearized system of (2.1) at the equilibrium is given as

u̇ j(t)=−di
(
ui(t)

)
+

n∑

j=1

wijg
′
j

(
u∗j
)
uj(t)

+
n∑

j=1

wτ
i jg

′
j

(
u∗j
)
uj
(
t− τi j(t)

)≡Gi(·), i= 1,2, . . . ,n,

(3.16)

for t ≥ 0. Therefore, for t ≥ τ, (3.16) can be further written as

u̇i(t)=

⎡

⎢
⎢
⎢
⎢
⎣
−di

(
ui(t)

)
+
(
wii +wτ

ii

)
g′i
(
u∗i
)

+
n∑

j=1

j �=i

(
wij +wτ

i j

)
g′j
(
u∗j
)
uj(t)

⎤

⎥
⎥
⎥
⎥
⎦

+
n∑

j=1

wτ
i jg

′
j

(
u∗j
)
∫ t−τi j (t)

t
Gi(·)dξ.

(3.17)

By an argument similar to the one used in [4], we see that the stability of the trivial
solution of (3.17) implies that of (3.16). Now, for (3.17), let us define a similar Lyapunov
functional V =V(ut) as V (see Appendix A):

V = 1
2

n∑

i=1

λig
′
i

(
u∗i
)
u2
i (t) +V 2, (3.18)

where the functional V 2 =V 2(ut) is the same as V2 but with setting

piε = qiε = g′j
(
u∗j
)
, j = 1,2, . . . ,n. (3.19)

Using the same type of computation as done in (3.6), we can show that

n∑

j=1

∫ +∞

0
u2
j (t) < +∞, (3.20)

under (H1)–(H4) and (H6). Therefore, uj , j = 1,2, . . . ,n, are bounded on R+, and hence,
are also uniformly continuous on R+. Again by Lemma 2.3 we have limt→+∞ xj(t) = 0,
j = 1,2, . . . ,n, which implies that the trivial solution of (3.17) is asymptotically stable. This
shows that (u∗1 ,u∗2 , . . . ,u∗n ) of (2.1) is locally asymptotically stable. This proves Theorem
3.4. �

Similar to the process of proof for Theorem 3.1, the following corollary is immediate.

Corollary 3.5. If wτ
i j �= 0, for some i, j = 1,2, . . . ,n, and (H1)–(H4) and the following as-

sumption (H′
6) are satisfied:
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(H′
6) there exist positive constants λi, i= 1,2, . . . ,n, such that

γ∗i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
λi

(

− Dj

g′j
(
u∗j
) +wii +wτ

ii

)

+
1
2

n∑

j=1

[
(
λiD j

∣
∣wτ

i j

∣
∣τi j(t) + λjDi

∣
∣wτ

ji

∣
∣τji(t)

)
]

+
n∑

j=1

g′j
(
u∗j
)

2

[

λiτi j(t)
∣
∣wτ

i j

∣
∣

n∑

k=1

(∣∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)

+
n∑

k=1

λkτk j(t)
∣
∣wτ

k j

∣
∣(
∣
∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)
]

+
1
2

n∑

j=1
j �=i

(
λi
∣
∣wij +wτ

i j

∣
∣+ λj

∣
∣wji +wτ

ji

∣
∣
)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
< 0,

(3.21)

then, the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of (2.1) is locally asymptotically stable.

If di(xi) = dixi, di > 0, τi j(t) = τi j (constant) in system (2.1), then system (2.1) is re-
duced to the following Hopfield-type neural networks with constant delays:

u̇i(t)=−diui(t) +
n∑

j=1

wijg j
(
uj(t)

)
+

n∑

j=1

wτ
i jg j

(
uj
(
t− τi j

))
+ Ii, i= 1,2, . . . ,n, (3.22)

where ui(t) corresponds to the membrane potential of the units i at time t; gj(·) denotes
a measure of response of activation to its incoming potentials; wij and wτ

i j denote the
synaptic connection weights of unit j to unit i; τi j corresponds the transmission delay
along the axon of unit j to unit i; the constant Ii corresponds to the external bias of input
from outside to unit i; and the coefficient di is the rate with which unit i self-regulates or
resets its potential when isolated form other units and inputs.

Similar to the approach adopted in Theorem 3.1, we have the following result for sys-
tem (3.22).

Theorem 3.6. If wτ
i j �= 0, for some i, j = 1,2, . . . ,n, and (H2)-(H3) hold and there exist

positive constants λi, i= 1,2, . . . ,n, such that the following matrix:

R=

⎛

⎜
⎜
⎜
⎜
⎝

δ1 r12 r13 ···r1n

r21 δ2 r23 ···r2n

··· ··· ···
rn1 rn2 rn3 ···δn

⎞

⎟
⎟
⎟
⎟
⎠

(3.23)
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is negative definite, that is,

(−1)i

⎛

⎜
⎜
⎜
⎜
⎜
⎝

δ1 r12 r13 ···r1n

r21 δ2 r23 ···r2n

··· ··· ···
rn1 rn2 rn3 ···δn

⎞

⎟
⎟
⎟
⎟
⎟
⎠
> 0, i= 1,2, . . . ,n, (3.24)

where

δi = λi

(

− di
qi

+wii +wτ
ii

)

+
1
2

n∑

j=1

[(
λiqjdj

p j

∣
∣wτ

i j

∣
∣τi j +

λjqidi
pi

∣
∣wτ

ji

∣
∣τji

)]

+
1
2

n∑

j=1

[

λiqjτi j
∣
∣wτ

i j

∣
∣

n∑

k=1

(∣∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)+

n∑

k=1

λkqjτk j
∣
∣wτ

k j

∣
∣(
∣
∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)
]

,

ri j = 1
2

{
λi
(
wij +wτ

i j

)
+ λj

(
wji +wτ

ji

)}
, i �= j,

(3.25)

then, the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of (3.22) is unique and globally asymptotically stable.

Similar to the above Corollary 3.2, we have.

Corollary 3.7. If wτ
i j �= 0, for some i, j = 1,2, . . . ,n, (H2)–(H3) are satisfied, and there exist

positive constants λi, i= 1,2, . . . ,n, such that

ρi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
λi

(
− di
qi

+wii +wτ
ii

)
+

1
2

n∑

j=1

[(
λiqjdj

p j

∣
∣wτ

i j

∣
∣τi j +

λjqiDi

pi

∣
∣wτ

ji

∣
∣τji

)]

+
1
2

n∑

j=1

[

λiqjτi j
∣
∣wτ

i j

∣
∣

n∑

k=1

(∣∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)+

n∑

k=1

λkqjτk j
∣
∣wτ

k j

∣
∣(
∣
∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)
]

+
1
2

n∑

j=1

j �=i

(
λi
∣
∣wij +wτ

i j

∣
∣+ λj

∣
∣wji +wτ

ji

∣
∣)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

< 0,

(3.26)
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then the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of system (3.22) is unique and globally asymptotically
stable.

Similar to the above Theorem 3.4, we have the following for system (3.22).

Theorem 3.8. If wτ
i j �= 0, for some i, j = 1,2, . . . ,n, (H2)–(H3) are satisfied, and there exist

positive constants λi, i= 1,2, . . . ,n, such that the following matrix:

R=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ∗1 r12 r13 ···r1n

r21 δ∗2 r23 ···r2n

··· ··· ···
rn1 rn2 rn3 ···δ∗n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.27)

is negative definite, that is,

(−1)i

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ∗1 r12 r13 ···r1n

r21 δ∗2 r23 ···r2n

··· ··· ···
rn1 rn2 rn3 ···δ∗n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

> 0, i= 1,2, . . . ,n, (3.28)

where

δ∗i = λi

(

− dj

g′j
(
u∗j
) +wii +wτ

ii

)

+
1
2

n∑

j=1

[(
λidj

∣
∣wτ

i j

∣
∣τi j + λjdi

∣
∣wτ

ji

∣
∣τji

)]

+
1
2

n∑

j=1

[
λig

′
j

(
u∗j
)
τi j
∣
∣wτ

i j

∣
∣

n∑

k=1

(∣
∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣
)

+
n∑

k=1

λkg
′
j

(
u∗j
)
τk j
∣
∣wτ

k j

∣
∣(
∣
∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)
]

,

ri j = 1
2

{
λi
(
wij +wτ

i j

)
+ λj

(
wji +wτ

ji

)}
, i �= j,

(3.29)

then, the equilibrium (u∗1 ,u∗2 , . . . ,u∗n )of (2.1) is locally asymptotically stable.

Similar to Corollary 3.5, for system (3.22), we have the following.
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Neuron 1 Neuron 2

f

g

Figure 4.1. The model of two-neuron system.

Corollary 3.9. If wτ
i j �= 0, for some i, j = 1,2, . . . ,n, (H2)-(H3) are satisfied, and there exist

positive constants λi, i= 1,2, . . . ,n, such that

ρ∗i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λi

(
− dj

g′j
(
u∗j
) +wii +wτ

ii

)
+

1
2

n∑

j=1

[(
λidj

∣
∣wτ

i j

∣
∣τi j + λjdi

∣
∣wτ

ji

∣
∣τji

)]

+
n∑

j=1

g′j
(
u∗j
)

2

[

λiτi j
∣
∣wτ

i j

∣
∣

n∑

k=1

(∣∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)+

n∑

k=1

λkτk j
∣
∣wτ

k j

∣
∣(
∣
∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣)
]

+
1
2

n∑

j=1

j �=i

(
λi
∣
∣wij +wτ

i j

∣
∣+ λj

∣
∣wji +wτ

ji

∣
∣)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

< 0,

(3.30)

then, the equilibrium (u∗1 ,u∗2 , . . . ,u∗n ) of (3.22) is locally asymptotically stable.

4. Application to two-neuron system with delays

In this section, the following two-neuron system with different time delays which is capa-
ble of firing or responding continuously with time is considered. Particularly, the firing
is modulated by the difference between its current status and a weighted average of the
firing history [6]:

ẋ1(t)=−x1(t) + a1g
[
x2(t)− b2x2(t− τ)

]
, ẋ2(t)=−x2(t) + a2 f

[
x1(t)− b1x1(t− σ)

]
,

(4.1)

where “•” denotes the derivative, with t, a1, a2, b1, and b2 are arbitrary real numbers. In
(4.1), x1 and x2 denote the mean soma potential of the neuron, while a1 and a2 corre-
spond to the range of the continuous variables x1 and x2, respectively. b1 and b2 denote
the measure of the inhibitory influence of the past history. The terms x1 and x2 in the
argument of the f and g function denote local feedbacks. In biological literature, such
feedback is known as reverberation, while in the literature on artificial neural networks,
it is known as an excitation from other neurons (see Figure 4.1).
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The initial condition for (2.1) is given as follows:

x1(s)=Φ(s), x2(s)=Ψ(s), −Δ≤ s≤ 0, (4.2)

where Δ≡max{τ,σ}, Φ(s) and Ψ(s) are continuous on [−Δ,0].
By using the following transformation:

y1(t)= x1(t)− b1x1(t− σ), y2(t)= x2(t)− b2x2(t− τ) (4.3)

we can transform system (4.1) to

ẏ1(t)=−y1(t) + a1g
(
y2(t)

)− a1b1g
(
y2(t− σ)

)
,

ẏ2(t)=−y2(t) + a2 f
(
y1(t)

)− a2b2 f
(
y1(t− τ)

) (4.4)

for t ≥ 0, where a1, a2, b1, and b2 are real constants. The delays τ and σ are nonnegative
constants. The function f and g are continuously differentiable on R = (−∞,+∞) and
such that f (0)= 0, g(0)= 0.

For (4.1) or (4.4), we assume that the following conditions are satisfied.
(A1) f and g are bounded on R, that is, there exist positive constants Q and L such

that, for any w ∈ R,

∣
∣ f (w)

∣
∣≤Q,

∣
∣g(w)

∣
∣≤ L. (4.5)

(A2) For any w ∈ R, f ′(w) > 0, g′(w) > 0.

Remark 4.1. In [6], Liao et al. derived f (·) = g(·) = tanh(·). However, here we only
require that f and g satisfy the conditions (A1) and (A2). Moreover, our model (4.1) and
the obtained results are more general than those of [6].

It is easy to show that under (A1)-(A2), the solution of (4.1) or (4.4) satisfying the
initial condition (4.2) exists on R+ ≡ [0,+∞) (see, e.g., [4]). In fact, from Lemma 2.1
above, it is clear that the solution of (4.4) is also unique.

It is also easy to show that (4.4) has always an equilibrium (y∗1 , y∗2 ), that is, there exist
y∗1 and y∗2 such that

y∗1 − a1g
(
y∗2
)

+ a1b1g
(
y∗2
)= 0, y∗2 − a2 f

(
y∗1
)

+ a2b2 f
(
y∗1
)= 0. (4.6)

In fact, we consider the map P = (P1,P2) on the compact convex set Ω, where

P1
(
y1, y2

)= a1g
(
y2
)− a1b1g

(
y2
)
, P2

(
y1, y2

)= a2 f
(
y1
)− a2b2 f

(
y1
)
,

Ω= {(y1, y2
) | ∣∣y1

∣
∣≤M0,

∣
∣y2

∣
∣≤N0

}
,

M0 =
∣
∣a1

∣
∣(1 +

∣
∣b1

∣
∣)L, N0 =

∣
∣a2

∣
∣(1 +

∣
∣b2

∣
∣)Q.

(4.7)
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It follows from (A1) that P is a continuous map which maps Ω into itself. Thus, it follows
from Brouwer’s fixed point theorem that P has at least one fixed point (y∗1 , y∗2 ) in Ω, that
is,

(
y∗1 , y∗2

)= P
(
y∗1 , y∗2

)
. (4.8)

This shows that (y∗1 , y∗2 ) satisfies (4.6).
In this section, we will consider the stability of the equilibrium (y∗1 , y∗2 ) of (4.4).
Let us first consider the case a1a2(1− b1)(1− b2) �= 1. We further make the following

assumption.
(A3) There exist positive constants d1 and d2 such that

κ1 =−2d1

l
+
[
d1
∣
∣a1b1

∣
∣ q

p
σ +d2

∣
∣a2b2

∣
∣ l

h
τ
]

+ 2d1
∣
∣a1b1

∣
∣
∣
∣a2

∣
∣(1 +

∣
∣b2

∣
∣)qσ < 0,

κ2 =−2d2

q
+
[
d2
∣
∣a2b2

∣
∣ l

h
τ +d1

∣
∣a1b1

∣
∣ q

p
σ
]

+ 2d2
∣
∣a2b2

∣
∣
∣
∣a1

∣
∣(1 +

∣
∣b1

∣
∣)lτ < 0,

κ1κ2 >
[
d1a1

(
1− b1

)
+d2a2

(
1− b2

)]2
.

(4.9)

Hence, the equilibrium (y∗1 , y∗2 ) of (4.4) is also unique.
Similar to the above approach (see Appendix B), we can easily obtain the following.

Theorem 4.2. If a1a2(1− b1)(1− b2) �= 1 and (A1)–(A3) are satisfied, then the equilibrium
(y∗1 , y∗2 ) of (4.4) is globally asymptotically stable.

Theorem 4.3. If a1a2(1− b1)(1− b2) �= 1 and (A1)–(A2) and the following assumption
(A4) are satisfied:

(A4) there exist positive constants d1 and d2 such that

κ∗1 =−
2d1

f ′
(
y∗1
) +

[
d1
∣
∣a1b1

∣
∣σ +d2

∣
∣a2b2

∣
∣τ
]

+ 2d1
∣
∣a1b1

∣
∣
∣
∣a2

∣
∣(1 +

∣
∣b2

∣
∣)g′

(
y∗2
)
σ < 0,

κ∗2 =−
2d2

g′
(
y∗2
) +

[
d2
∣
∣a2b2

∣
∣τ +d1

∣
∣a1b1

∣
∣σ
]

+ 2d2
∣
∣a2b2

∣
∣
∣
∣a1

∣
∣(1 +

∣
∣b1

∣
∣) f ′

(
y∗1
)
τ < 0,

κ∗1 κ
∗
2 >

[
d1a1

(
1− b1

)
+d2a2

(
1− b2

)]2
,

(4.10)

then, the equilibrium (y∗1 , y∗2 ) of (4.4) is locally asymptotically stable.

In general, the delay-independent criteria are particularly restrictive for system param-
eters. Thus, it is reasonable to apply these criteria first. If they are found inappropriate,
the delay-dependent criteria will then be applied. To illustrate the results presented in
Theorems 4.2 and 4.3, some simple examples are given and a comparison of the results is
given in Table 4.1.

From Table 4.1, we can easily find that the delay-independent conditions given in [6]
are not applied and satisfied. This illustrates that the delay-independent criteria are more
conservative and restrictive than the delay-dependent criteria. Numerical simulation re-
sults are shown in Figures 4.2 and 4.3.
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Table 4.1. A comparison of the delay-dependent stability criteria when σ = 0.5τ.

System Parameters Results given by [6] Our results

a1 = 0.8, a2 = 1
τ < 0.1111 τ < 0.1449

b1 = 3, b2 =−3

a1 = 2, a2 = 0.42
τ < 0.4535 τ < 0.6623

b1 = 0.5, b2 =−2

a1 = 0.2, a2 = 0.5
τ < 1.0667 τ < 1.4285

b1 = 3.5, b2 = 2

a1 = 2, a2 = 1
τ < 0.9804 τ < 1.4706

b1 = 0.4, b2 = 0.2

a1 = 1.75, a2 = 0.5
τ < 2.2409 τ < 4.7618

b1 = 0.2, b2 =−0.4

a1 = 0.35, a2 = 2.5
τ < 4.7619 τ < 8.7912

b1 = 0.2, b2 = 0.1

−0.1

−0.05

0

0.05

0.1

0.15

0 50 100 150

x2(t)

x1(t)

t

x

Figure 4.2. Time response of state variable for system (4.1) under a1 = 1.75, a2 = 0.5, b1 = 0.2, b2 =
−0.4, τ = 2.24, σ = 0.5τ.

For system (4.1) under a1 = 1.75, a2 = 0.5, b1 = 0.2, b2 = −0.4, σ = 0.5τ, numerical
simulations have also been performed (see Figures 4.2–4.5). It is suggested that the trivial
solution of (4.1) still remains globally asymptotically stable for τ < 17 (see Figures 4.2 and
4.3). This shows that our results are actually rather restrictive and there is much room for
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Figure 4.3. Time response of state variable for system (4.1) under a1 = 1.75, a2 = 0.5, b1 = 0.2, b2 =
−0.4, τ = 4.761, σ = 0.5τ.
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Figure 4.4. Time response of state variable x1(t) for system (4.1) under a1 = 1.75, a2 = 0.5, b1 = 0.2,
b2 =−0.4, τ = 18, σ = 0.5τ.

improvement. Numerical simulations also show that for τ = 18, almost all solutions of
(2.1) are oscillatory and ultimately tend to some periodic solution (see Figures 4.4 and
4.5). Hence, the problem of whether the delay super-bound is optimal will be studied in
a forthcoming paper.

5. Conclusions

In this paper, we have analyzed a system composed of multiple neurons with time-varying
delays in detail. We first obtained the global asymptotically stable criteria dependent on
delays for the equilibrium by employing the approach of Lyapunov functional. Our re-
sults are delay dependent. Then, we also derived the delay-dependent criteria for local
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Figure 4.5. Time response of state variables x1(t) and x2(t) for system (4.1) under a1 = 1.75, a2 = 0.5,
b1 = 0.2, b2 =−0.4, τ = 18, σ = 0.5τ.

asymptotic stability. Hence, our work complements and generalizes that is reported in
[7, 8, 11–13]. In the meantime, we note also that, if the neural system starts with a
stable equilibrium, but then becomes unstable due to delays, it will likely be destabi-
lized by means of a Hopf bifurcation leading to periodic solutions with small ampli-
tudes [14, 15, 18]. The analysis of such a bifurcation to find out its bifurcation direction
and stability of the periodic solutions is very complicated and lengthy. It is worth study-
ing whether there are other dynamical behaviors, such as codimension-two bifurcations,
periodic-doubling bifurcations, phase-locking and quasiperiodic dynamics, and so forth,
These works will be studied in the near future.

Appendices

A. Stability proof

We construct the following Lyapunov function:

V1 =
n∑

j=1

λi

∫ xi(t)

0
fi(ξ)dξ, (A.1)

then its upper right Dini-derivative is

D+V1 |(3.5) =
n∑

i=1

λi fi
(
xi(t)

)[−hi
(
xi(t)

)
+wii fi

(
xi(t)

)
+wτ

ii fi
(
xi(t)

)]

+
n∑

i=1

λi fi
(
xi(t)

)
αi +

n∑

i=1

n∑

j=1
j �=i

λi
(
wij +wτ

i j

)
fi
(
xi(t)

)
f j
(
xj(t)

)
,

(A.2)
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where

αi =
n∑

j=1

wτ
i j

∫ t−τi j(t)

t
f ′j
(
xj(ξ)

)
x′j(ξ)dξ. (A.3)

We note that

piε ≡ min
−(Ni+ε)≤w≤Ni+ε

f ′i (w)≤ max
−(Ni+ε)≤w≤Ni+ε

f ′i (w)≡ qiε. (A.4)

Note that for sufficiently large t,
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where
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(A.7)

Furthermore, by (H1), we have for t ≥ T +Δ,
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(A.8)

Therefore,
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Let
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Its derivative is
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Hence,

D+V =D+V1 +D+V2

≤
n∑

i=1

λi

[
− Di

qiε
+
(
wii +wτ

ii

)]
f 2
i

(
xi(t)

)
+

n∑

i=1

n∑

j=1

λi
∣
∣wτ

i j

∣
∣Aijε f

2
i

(
xi(t)

)

+
n∑

i=1

n∑

j=1

j �=i

λi
(
wij +wτ

i j

)
fi
(
xi(t)

)
f j
(
xj(t)

)

+
n∑

i=1

n∑

j=1

λiqjε

2

∣
∣wτ

i j

∣
∣τi j(t)

(
Dj

pjε
f 2
j

(
xj(t)

)
+

n∑

k=1

(∣∣wjk

∣
∣+

∣
∣wτ

jk

∣
∣) f 2

k

(
xk(t)

)
)

≤
n∑

i=1

{

λi

(

− Di

qiε
+wii +wτ

ii +
n∑

j=1

Aijε

∣
∣wτ

i j

∣
∣+

n∑

j=1

λj

∣
∣wτ

ji

∣
∣τji(t)

qiεDi

2piε

)

+
1
2

n∑

j=1

n∑

k=1

λkqjε

∣
∣wτ

k j

∣
∣τk j(t)

(∣∣wji

∣
∣+

∣
∣wτ

ji

∣
∣)
}

f 2
i

(
xi(t)

)

+
n∑

i=1

n∑

j=1

j �=i

λi
(
wij +wτ

i j

)
fi
(
xi(t)

)
f j
(
xj(t)

)



22 Delay-dependent asymptotic stability
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B. Stability proof

By Appendix A, we can obtain
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