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We develop an age-structured epidemic model for malaria with impulsive effect, and con-
sider the effect of blood transfusion and infected-vector transmission. Transmission rates
depend on age. We derive the condition in which eradication solution is locally asymp-
totically stable. The condition shows that large enough pulse reducing proportion and
relatively small interpulse time lead to the eradication of the diseases.
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1. Introduction

Malaria is a common and serious disease. It is reported that the incidence of malaria in
the world may be in the order of 300 millon clinical cases each year. Malaria mortality
is estimated at almost 2 million deaths worldwide per year. The vast number of malaria
deaths occur among young children in Africa, especially in remote rural areas. In addi-
tion, an estimated over 2 billion people are at risk of infection, no vaccines are available
for the disease [12, 14, 18].

Malaria in humans is due to infection by one of four Plasmodium (P. falciparum, P.
vivax, P. ovale and P. malariae). Malaria parasites are normally transmitted from one per-
son to another via mosquitos of the Anopheles species. The form of the parasite that can
infect mosquitos is called gametocyte. Gametocytes start developing in capillaries of the
inner organs of infected persons after invasion of the blood by merozoites. Mature ga-
metocytes, which are infective to mosquitos, appear in the peripheral blood some 3 to 10
days later. The female Anopheles mosquito ingests malaria gametocytes when it takes a
blood meal from an infected person. The parasite then needs a period of development in
the mosquito before it can infect other people again [1, 3, 17].

Malaria infected persons who donate blood before the onset of clinical symptoms, but
after merozoites have entered the blood stream from the liver, can unknowingly transmit
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malaria through their blood donation. Similarly, malaria may be transmitted by contam-
inated needles and syringes. So, individuals in incubation period can also infect suscepti-
ble population.

An effective way to prevent the malaria epidemic is to control mosquitoes, which has
been one of the major intensive efforts in many years. Constantly massive spraying of in-
secticides or eliminating breeding sites has greatly limited malaria in some area. However,
because economic condition, applying these strategies are difficult in many developing
countries.

Scholars have recognized the age structure of a population affects the dynamics of
disease transmission, so various age-structured epidemic models have been investigated
[6, 7, 9]. However, the dynamics of ecological communities require attention to the inter-
play between population dynamics and evolutionary change in interacting species [11].
In the systems, fitness is not constant, and may vary with species densities. So, it is nec-
essary and also it is of practical significance to consider the dynamic behavior about the
vector-host model. Some authors have studied the vector-host models. In [10], a vector-
host model for the spread of Chagas disease has been studied. In [5], the models couple
host evolution with parasite population, and include the relevant genetic structure of
malaria.

Scholars mentioned above used continuous equations to study the epidemiological
dynamic models, while ignoring the external disturbance. However, in the natural world,
the optimization and control of some biological phenomena are impulse. In this disser-
tation, instead of constantly spraying of insecticides, we establish epidemiological model
with impulsive effect. In order to reflect the age structure of a population affects the dy-
namics of disease transmission, we incorporate age into the model, and assume that the
infection rate depend on the age.

This paper is organized as follows: Section 2 introduces vector-host model with im-
pulsive effect. In Section 3 we establish the existence and uniqueness of solution for the
model equations. In Section 4, we get the condition of the local asymptotic stability of
the infection-free solution.

2. The model formulation

In this section, we assume that the host population is in a stationary demographic state,
whose total size is constant N . Let N(a), 0≤ a≤ rm (rm denotes the highest age attained
by the individuals in the host population) be the age density of the total number of indi-
viduals, and N(a) satisfies

N(a)= μ∗Ne−
∫ a

0 μ1(s)ds, (2.1)

μ1(a) is the instantaneous death rate at age a of the host population, μ∗ is the crude death
rate, we assume that μ(a) is nonnegative, locally integrable on [0,rm), and satisfies

∫ rm

0
μ(a)da=∞, (2.2)
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μ∗ satisfies

μ∗
∫ rm

0
f (a)da= 1, (2.3)

where f (a)= e−
∫ a

0 μ(s)ds is the survival function. We can get the relation N(a)= μ∗N f (a).
The host population is divided into two groups: susceptible S(a, t) (who are healthy but
can be infected), infected I(a, t) (which includes latent individuals, since individuals in in-
cubation period can also infect susceptible population), S(a, t), I(a, t) is the age-densities
of respectively the susceptible and infected population at time t. N(a) also satisfies

N(a)= S(a, t) + I(a, t). (2.4)

Let M(t) denote the number of susceptible vectors (mosquito populations) at time t,
P(t) the number of infected vectors at time t. b, μ2 is the birth and death rate of vectors,
respectively. Since blood transfusion, or using contaminated needles and syringes, sus-
ceptibles S(a, t) can be infected, and become infected individuals at a transmission β1(a).
Susceptibles S(a, t) are infected by infected vector, and go into infected class at a transmis-
sion rate β2. The number of new of vectors by infected hosts depend on the transmission
rate γ(a). The infected population can recover, and go into susceptible population at a
transmission rate α. In order to control the size of mosquito, we apply the pulse spraying
strategy of insecticides. We spray insecticides upon mosquito at time nT every T months,
T is the period of spraying, nT is the time at which we apply the nth (n∈N+) pulse, and
nT− is the time just before applying the nth pulse. Every pulse can reduce a fraction p
of mosquito population. We obtain the following system of equations that describe the
dynamics of the model:

∂S

∂t
+
∂S

∂a
=−

(
μ1(a)+

∫ rm

0
β1(a)I(a, t)da+β2P(t)

)
S(a, t)+αI , 0 < a < rm, t �= nT , n∈N+,

S(a,nT)= S(a,nT−), t = nT ,

∂I

∂t
+
∂I

∂a
=
(∫ rm

0
β1(a)I(a, t)da+β2P(t)

)
S(a, t)− (μ1(a) +α

)
I , 0 < a < rm, t �= nT ,

I(a,nT)= I
(
a,nT−

)
, 0≤ a < rm,

dM

dt
= b−M

∫ rm

0
γ(a)I(a, t)da−μ2M, t �= nT ,

M(nT)= (1− p)M
(
nT−

)
, t = nT ,

dP

dt
=M

∫ rm

0
γ(a)I(a, t)da−μ2P, t �= nT ,

P(nT)= (1− p)P
(
nT−

)
, t = nT ,

(2.5)
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with boundary conditions:

S(0, t)= μ∗N , I(0, t)= 0, (2.6)

and initial conditions:

S(0)= S0(a)≥ 0, I(a,0)= I0(a)≥ 0, M(0)=M0 ≥ 0, P(0)= P0 ≥ 0,
(2.7)

where S0(a),I0(a)∈ L(0,rm).
Let s(a, t) = S(a, t)/N(a), i(a, t) = I(a, t)/N(a). The system (2.5) can be written in a

simple form (we still let S(a, t), I(a, t) denote the age-densities of the susceptible and
infected population, resp.):

∂S

∂t
+
∂S

∂a
=−

(∫ rm

0
β1(a)N(a)I(a, t)da+β2P(t)

)
S(a, t) +αI , 0 < a < rm, t �= nT , n∈N+,

S(a,nT)= S
(
a,nT−

)
, t = nT ,

∂I

∂t
+
∂I

∂a
=
(∫ rm

0
β1(a)N(a)I(a, t)da+β2P(t)

)
S(a, t)−αI , 0 < a < rm, t �= nT ,

I(a,nT)= I
(
a,nT−

)
, 0≤ a < rm,

dM

dt
= b−M

∫ rm

0
γ(a)N(a)I(a, t)da−μ2M, t �= nT ,

M(nT)= (1− p)M
(
nT−

)
, t = nT ,

dP

dt
=M

∫ rm

0
γ(a)N(a)I(a, t)da−μ2P, t �= nT ,

P(nT)= (1− p)P
(
nT−

)
, t = nT ,

(2.8)

with boundary conditions:

S(0, t)= 1, I(0, t)= 0, (2.9)

and initial conditions:

S(a,0)= S0(a)≥ 0, I(a,0)= I0(a)≥ 0, M(0)=M0 ≥ 0, P(0)= P0 ≥ 0.
(2.10)

3. Existence and uniqueness of solution

Since S(a, t) + I(a, t)= 1, it is sufficient to consider the system (2.8) in terms only I(a, t),
M(t), P(t), once these functions are known, S(a, t) can be obtain by S(a, t) = 1− I(a, t).
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Then the system (2.8) is written to a simpler form:

∂I

∂t
+
∂I

∂a
=
(∫ rm

0
β1(a)N(a)I(a, t)da+β2P(t)

)
(
1−I(a, t)

)−αI , 0 < a < rm, t �= nT ,

I(a,nT)= I
(
a,nT−

)
, 0≤ a < rm,

dM

dt
= b−M

∫ rm

0
γ(a)N(a)I(a, t)da−μ2M, t �= nT ,

M(nT)= (1− p)M
(
nT−

)
, t = nT ,

dP

dt
=M

∫ rm

0
γ(a)N(a)I(a, t)da−μ2P, t �= nT ,

P(nT)= (1− p)P
(
nT−

)
, t = nT ,

(3.1)

with boundary conditions: I(0, t)= 0, and initial conditions:

I(a,0)= I0(a)≥ 0, M(0)=M0 ≥ 0, P(0)= P0 ≥ 0. (3.2)

We note that the system

∂I

∂t
+
∂I

∂a
=
(∫ rm

0
β1(a)N(a)I(a, t)da+β2P(t)

)
(
1− I(a, t)

)−αI , 0 < a < rm, 0 < t <∞,

dM

dt
= b−M

∫ rm

0
γ(a)N(a)I(a, t)da−μ2M, 0 < t <∞,

dP

dt
=M

∫ rm

0
γ(a)N(a)I(a, t)da−μ2P, 0 < t <∞,

(3.3)

with boundary conditions: I(0, t)= 0, and initial conditions:

I(a,0)= I0(a)≥ 0, M(0)=M0 ≥ 0, P(0)= P0 ≥ 0, (3.4)

exists a unique nonnegative solution (applying a semigroup setting to seek the solution
in a weak sense [13, 16], here we omit the proof). Let (I0(a, t),M0(t),P0(t)), 0 ≤ a < rm,
t ∈ [0,∞) denote the solution of the system (3.3).

For n∈N+, the system:

∂In
∂t

+
∂In
∂a
=
(∫ rm

0
β1(a)N(a)In(a, t)da+β2Pn(t)

)
(
1−In(a, t)

)−αIn, 0<a<rm, nT<t<∞,

dMn

dt
= b−Mn

∫ rm

0
γ(a)N(a)In(a, t)da−μ2Mn, nT < t <∞,

dPn
dt

=Mn

∫ rm

0
γ(a)N(a)In(a, t)da−μ2Pn, nT < t <∞,

(3.5)
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with boundary conditions: In(0, t)= 0, and initial conditions:

In(a,nT)= In−1
(
a,nT−

)
, Mn(nT)=Mn−1

(
nT−

)
, Pn(nT)= Pn−1(nT−), (3.6)

is equal to the system

∂Īn
∂τ

+
∂Īn
∂a
=
(∫ rm

0
β1(a)N(a)Īn(a,τ)da+β2P̄n(τ)

)
(
1−Īn(a,τ)

)−αĪn, 0<a<rm, 0<τ<∞,

dM̄n

dτ
= b− M̄n

∫ rm

0
γ(a)N(a)Īn(a,τ)da−μ2M̄n, 0 < τ <∞,

dP̄n
dτ

= M̄n

∫ rm

0
γ(a)N(a)Īn(a,τ)da−μ2P̄n, 0 < τ <∞,

(3.7)

with boundary: Īn(0,τ)= 0, and initial conditions:

Īn(a,0)= In−1
(
a,nT−

)
, M̄n(0)=Mn−1

(
nT−

)
, P̄n(nT)= Pn−1

(
nT−

)
, (3.8)

where τ = t−nT , Īn(a,τ)= In(a,τ +nT), M̄n(τ)=Mn(τ +nT), P̄n = Pn(τ +nT), n∈N+.
So we obtain that the system (3.5) exist an unique nonnegative solution, denote it by

(In(a, t),Mn(t),Pn(t)), 0≤ a < rm, nT ≤ t <∞, n∈N+.
Let (I(a, t),M(t),P(t)) denote the solution of the system (3.1), we have the represen-

tation:
(
I(a, t),M(t),P(t)

)= (In(a, t),Mn(t),Pn(t)
)
, 0≤ a < rm, t ∈ [nT , (n+ 1)T

)
, n∈N.

(3.9)

From (3.9) and the system (3.3), (3.5), we can arrive at following result.

Theorem 3.1. If β1(a),γ(a)∈ L∞(0,rm), then the system (3.1) has a unique nonnegative so-
lution (I(a, t),M(t),P(t)) with respect to initial data (I0(a),M0,P0)∈Ω0, and I(a, t), M(t),
P(t) are continuously differentiable on a ∈ (0,rm), t ∈ (nT , (n+ 1)t), n = 0,1,2, . . . , where
Ω0 = {(I0(a),M0,P0),M0,P0 ∈ R+,I0(a)∈ L(0,rm), 0≤ I0(a) < 1, I0(0)= 0}.

4. Stability analysis

The system (2.8) has a periodic infection-free solution E∗ (see [4, 19])

E∗ = (1,0,M∗,0
)
,

M∗ = b

μ2

(
1− peμ2((n+1)T−t)

eμ2T + p− 1

)
, t ∈ [nT , (n+ 1)T

)
, n∈N ,

(4.1)

that is, the system (3.1) has a periodic infection-free solution (0,M∗(t),0).
In order to investigate the stability of the periodic infection-free solution (0,M∗(t),0)

for the system (3.1), we first rewrite (3.1) into equations for small perturbations. Let

I(a, t)= u(a, t), M(t)=M∗(t) + v(t), P(t)= ω(t). (4.2)
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From (3.1), we have

∂u

∂t
+
∂u

∂a
=
(∫ rm

0
β1(a)N(a)u(a, t)da+β2ω(t)

)
(
1−u(a, t)

)−αu, 0 < a < rm, t �= nT ,

u(a,nT)= u
(
a,nT−

)
, 0≤ a < rm, t = nT ,

dv

dt
=−(M∗(t) + v

)
∫ rm

0
γ(a)N(a)u(a, t)da−μ2v, t �= nT ,

v(nT)= (1− p)v
(
nT−

)
, t = nT ,

dω

dt
= (M∗(t) + v

)
∫ rm

0
γ(a)N(a)u(a, t)da−μ2ω, t �= nT ,

ω(nT)= (1− p)ω
(
nT−

)
, t = nT.

(4.3)

It is easy to see that linearization of the system (4.3) at (0,0,0) leads to the following
system:

∂u

∂t
+
∂u

∂a
=
∫ rm

0
β1(a)N(a)u(a, t)da+β2ω(t)−αu, 0 < a < rm, t �= nT ,

u(a,nT)= u
(
a,nT−

)
, 0≤ a < rm, t = nT ,

dω

dt
=M∗(t)

∫ rm

0
γ(a)N(a)u(a, t)da−μ2ω, t �= nT ,

ω(nT)= (1− p)ω
(
nT−

)
, t = nT ,

(4.4)

where we omit the equation for v(t), since is determined from u(a, t). We can obtain
that the system (4.4) has a nonnegative solution for initial conditions u(a,0)= u0(a)≥ 0,
ω(0)= ω0 ≥ 0.

Now we consider a comparable system of the system (4.4):

∂ū

∂t
+
∂ū

∂a
=
∫ rm

0
β1(a)N(a)ū(a, t)da+β2ω̄(t)−αū, 0 < a < rm, 0 < t <∞,

dω̄

dt
= b

μ2

eμ2T − 1
eμ2T + p− 1

∫ rm

0
γ(a)N(a)ū(a, t)da−μ2ω̄, 0 < t <∞,

(4.5)

with boundary condition ū(0, t) = 0, and initial conditions ū(a,0) = u0(a), ω̄(0) = ω0.
The system (4.5) has a unique nonnegative solution (ū(a, t), ω̄(t)), and

0≤ u(a, t)≤ ū(a, t), 0≤ ω(t)≤ ω̄(t). (4.6)

So, if we prove that the system (4.5) is stable at (0,0), then the system (4.4) is stable at
(0,0).
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We rewrite the system (4.5) in the following form:

dφ

dt
=Aφ(t) +Bφ(t), φ(t)= (φ1(t),φ2(t)

)T
, φ(0)= φ0, (4.7)

where

A : D(A)−→ X , X = L(0,rm)×R, D(A)=
{(
φ1(a),φ2

)T
, φ1 ∈W1

1

(
0,rm

)
, φ2 ∈ R

}

A=
⎛

⎜
⎝
−dφ1

da
−αφ1

−μ2φ2

⎞

⎟
⎠ ,

B : X −→ X ,

B =

⎛

⎜
⎜
⎜
⎝

∫ rm

0
β1(a)N(a)φ1(a)da+β2φ2

b

μ2

eμ2T − 1
eμ2T + p− 1

∫ rm
0 γ(a)N(a)φ1(a)da

⎞

⎟
⎟
⎟
⎠
.

(4.8)

Clearly, B is a bounded perturbation of A. Moreover, B is compact. Next, we consider the
eigenvalue problem for the linear system (4.7):

dφ1

da
+ (λ+α)φ1 = P1

(
φ1
)

+β2φ2,

(
λ+μ2

)
φ2 = P2

(
φ1
)
,

(4.9)

where

P1
(
φ1
)=

∫ rm

0
β1(a)N(a)φ1(a)da,

P2
(
φ1
)= b

μ2

eμ2T − 1
eμ2T + p− 1

∫ rm

0
γ(a)N(a)φ1(a)da.

(4.10)

From (4.11), we obtain the characteristic equation of the system (4.7):

β2

λ+μ2

b

μ2

eμ2T − 1
eμ2T + p− 1

∫ rm

0
γ(a)N(a)

∫ a

0
e−(λ+α)(a−s)dsda

+
∫ rm

0
β1(a)N(a)

∫ a

0
e−(λ+α)(a−s)dsda= 1.

(4.11)

We denote the left-hand side in (4.11) by Φ(λ). Let μ=min{μ2,α}. If λ≥−μ is real, then
Φ(λ) is a decreasing function of λ, and limλ→+∞Φ(λ) = 0. In addition, for any λ with
Reλ≥ 0, we have |Φ(λ)| ≤Φ(Reλ). Let

R0 = β2

μ2

b

μ2

eμ2T − 1
eμ2T + p− 1

∫ rm

0
γ(a)N(a)

∫ a

0
e−α(a−s)dsda+

∫ rm

0
β1(a)N(a)

∫ a

0
e−α(a−s)dsda.

(4.12)
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If R0 < 1 and assume that λ is a solution to (4.11) with Reλ≥ 0, we have

1= ∣∣Φ(λ)
∣
∣≤Φ(Reλ)≤Φ(0)= R0 < 1, (4.13)

which is a contradiction stemming from the assumption. So, we obtain that the solutions
of (4.11) has negative real part. We get Proposition 4.1.

Proposition 4.1. If R0 < 1, the eigenvalues of A+B have negative real part.

It is easy to get Proposition 4.2.

Proposition 4.2. The operator A is a closed linear operator and satisfies

∥
∥(λ−A)−n

∥
∥≤ 1

(λ+μ)n
(4.14)

for λ >−μ and all positive integers n.

To prove that the system (4.7) is stable at (0,0), we need the following definition and
lemma [2].

Definition 4.3. C0-semigroup T(t) is called quasi-compact if T(t)= S(t) +G(t) with op-
erator families S(t) and G(t) for t ≥ 0 such that limt→∞‖S(t)‖ = 0, and G(t) is eventually
compact.

Lemma 4.4. Let H(t) be a quasi-compact C0-semigroup and E its infinitesimal generator.
Then limt→∞ eεt‖H(t)‖ = 0 for some ε > 0 if and only if all eigenvalues of E have strictly
negative real part.

Now we prove a lemma.

Lemma 4.5. Let T(t) be a C0-semigroup and A+B its infinitesimal generator. If R0 < 1, then
the following inequality holds:

ω0(A+B) <−μ, (4.15)

where ω0(A+B) denotes the growth of the semigroup T(t), t ≥ 0.

Proof. Since A is a densely defined operator, from Proposition 4.2, we have that A gener-
ates a C0-semigroup on X , denote it by S(t). From Proposition 4.2, we have ‖S(t)‖ ≤ e−μt.
Since B is a bounded perturbation, A+B also generates a C0-semigroup in X , T(t). More-
over, BS(t) : X → X is compact for every t > 0. From [15, Theorem 3], we get that T(t)
is quasi-compact. By Proposition 4.1 and Lemma 4.4 we have limt→∞ eμt‖T(t)‖ = 0. This
implies that the growth of A+B does not exceed −μ.

The lemma is completed. �

If ω(A + B) < 0, the equilibrium φ = 0 of the system (4.11) is locally exponentially
asymptotically stable in the sense that there exist ε > 0, M ≥ 1 and γ < 0 such that if
φ0 ∈ X and ‖φ0‖ ≤ ε, then the solution φ(t,φ0) exists globally and ‖φ(t,φ0)‖ ≤Meγt‖φ0‖
for all t ≥ 0 [16]. This implies that the equilibrium φ = 0 of the system (4.5) is locally
asymptotically stable.
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From the above argument, and (4.6), we obtain that the system (4.4) is locally expo-
nentially asymptotically stable at (0,0). So we arrive at the following result.

Theorem 4.6. If β1(a),γ(a)∈ L∞(0,rm), β2 ≥ 0 and R0 < 1, then the system (3.1), that is,
the system (2.8), is locally exponentially asymptotically stable at (0,M∗(t),0).

From Theorem 4.6, we know the stability of the infection-free E∗ depends on p and
T . If β1(a) is small enough, and pulse reducing proportion of mosquito is increased and
interpulse period is decreased such that R0 < 1 holds. Consequently, the diseases is eradi-
cated from the population. The results of this theoretical study are instructive to the study
of other diseases, such as Chagas disease.

Here R0 is not basic reproduction ratio [8]. Since the model is impulsive system, it is
difficult to estimate basic reproduction ratio.

References

[1] R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford
University Press, Oxford, UK, 1991.

[2] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander,
and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathe-
matics, vol. 1184, Springer, Berlin, 1986.

[3] T. Bradley, Malaria and drug resistance, MBChB special study module project report, De-
partment of Microbiology and Immunology, University of Leicester, 1996, http://www-micro.
msb.le.ac.uk/224/Bradley/Bradley.html.

[4] A. d’Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model, Mathemat-
ical Biosciences 179 (2002), no. 1, 57–72.

[5] Z. Feng, D. L. Smith, F. E. McKenzie, and S. A. Levin, Coupling ecology and evolution: malaria
and the S-gene across time scales, Mathematical Biosciences 189 (2004), no. 1, 1–19.

[6] D. Greenhalgh, Analytical threshold and stability results on age-structured epidemic models with
vaccination, Theoretical Population Biology 33 (1988), no. 3, 266–290.

[7] , Threshold and stability results for an epidemic model with an age-structured meeting rate,
IMA: Journal of Mathematics Applied in Medicine and Biology 5 (1988), no. 2, 81–100.

[8] H. W. Hethcote, The mathematics of infectious diseases, SIAM Review 42 (2000), no. 4, 599–653.
[9] H. Inaba, Threshold and stability results for an age-structured epidemic model, Journal of Mathe-

matical Biology 28 (1990), no. 4, 411–434.
[10] H. Inaba and H. Sekine, A mathematical model for Chagas disease with infection-age-dependent

infectivity, Mathematical Biosciences 190 (2004), no. 1, 39–69.
[11] S. A. Levin and J. D. Udovic, A mathematical model of coevolving populations, The American

Naturalist 111 (1977), no. 980, 657–675.
[12] Malaria Foundation International, Malaria: background information, http://www.malaria.org/

backgroundinfo.html, 1998.
[13] M. Martcheva and H. R. Thieme, Progression age enhanced backward bifurcation in an epidemic

model with super-infection, Journal of Mathematical Biology 46 (2003), no. 5, 385–424.
[14] J. H. Pollard, Mathematical Models for the Growth of Human Population, Cambridge University

Press, London, 1973.
[15] H. R. Thieme, Quasi-compact semigroups via bounded perturbation, Advances in Mathematical

Population Dynamics—Molecules, Cells and Man (Houston, TX, 1995) (O. Arino, D. E. Axel-
rod, and M. Kimmel, eds.), Ser. Math. Biol. Med., vol. 6, World Scientific, New Jersey, 1997, pp.
691–711.

http://www-micro.msb.le.ac.uk/224/Bradley/Bradley.html
http://www-micro.msb.le.ac.uk/224/Bradley/Bradley.html
http://www.malaria.org/backgroundinfo.html
http://www.malaria.org/backgroundinfo.html


Helong Liu et al. 11

[16] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Text-
books in Pure and Applied Mathematics, vol. 89, Marcel Dekker, New York, 1985.

[17] W. H. Wernsdorfer, The importance of malaria in the world, Malaria. Volume 1: Epidemiology,
Chemotherapy, Morphology, and Metabolism (J. P. Kreier, ed.), Academic Press, New York,
1980, pp. 1–93.

[18] WHO, Malaria, fact sheets, http://www.who.int/inf-fs/en/fact094.html, 1998.
[19] Y. Zhou and H. Liu, Stability of periodic solutions for an SIS model with pulse vaccination, Math-

ematical and Computer Modelling 38 (2003), no. 3-4, 299–308.

Helong Liu: Department of Mathematics, Xinyang Teachers College, Xinyang, Henan 464000, China
E-mail address: liuhelong2004@yahoo.com.cn

Houbao Xu: Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China
E-mail address: xuhoubao@yahoo.com.cn

Jingyuan Yu: Beijing Institute of Information and Control Beijing 100037, China
E-mail address: yujingyuan@biic.net

Guangtian Zhu: Academy of Mathematics and System Science, C.A.S. Beijing 100080, China
E-mail address: gtzhu@amss.ac.cn

http://www.who.int/inf-fs/en/fact094.html
mailto:liuhelong2004@yahoo.com.cn
mailto:xuhoubao@yahoo.com.cn
mailto:yujingyuan@biic.net
mailto:gtzhu@amss.ac.cn

	1. Introduction
	2. The model formulation
	3. Existence and uniqueness of solution
	4. Stability analysis
	References

