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1. Introduction

The existence of periodic solutions for difference equations has been extensively con-
sidered by many authors [1, 4, 8, 9, 12, 16]. Recently, existence of multiple solutions of
functional differential equations has been studied and some results have been obtained
[6, 14, 18]. Wang [14] investigated existence, multiplicity, and nonexistence of positive
periodic solutions for the equation

d

dt
x(t)= a(t)g

(
x(t)

)
x(t)− λb(t) f

(
x(t− τ(t)

))
, (1.1)

where λ is a positive parameter. Chow [2], Smith and Kuang [13], and many others stud-
ied the type of equations or their generalized forms. This type of equations has been
proposed as models for a variety of physiological processes and conditions including
production of blood cells, respiration, and cardiac arrhythmias [11, 15].

To our best knowledge, few papers are on multiplicity of periodic solutions of neutral
functional difference systems. In this paper, we consider the following first-order neutral
difference equation:

Δ
(
x(n)− cx(n− δ)

)= a(n)g
(
x(n)

)
x(n)− λb(n) f

(
x
(
n− τ(n)

))
, n∈ Z, (1.2)
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2 Two solutions of neutral difference equations

where Z is the set of integers, Δx(n) = x(n + 1)− x(n), λ is a positive parameter, c is a
constant, and |c| �= 1, δ is a positive integer, a(n), b(n), and τ(n) are positive T-periodic
sequences, T ∈N.

Let N∗ = {0,1,2, . . . ,T − 1} and

f0 = lim
u→0+

f (u)
u

, f∞ = lim
u→∞

f (u)
u

,

i0 = number of zeros in the set
{
f0, f∞

}
,

i∞ = number of infinities in the set
{
f0, f∞

}
.

(1.3)

It is clear that i0, i∞ = 0,1, or 2. Then we should show that (1.2) has i0 or i∞ periodic
solution(s) for some certain λ, respectively. In what follows, we set

X = {x | x(n), x(n+T)≡ x(n), n∈ Z} (1.4)

with the norm defined by ‖x‖X =max{|x(n)| : n∈ N∗}. Then X is a Banach space. Let
A : X → X be defined by (Ax)(n)= x(n)− cx(n− δ).

Lemma 1.1. If |c| �= 1, then A has continuous bounded inverse A−1 on X and for all x ∈ X ,

(
A−1x

)
(n)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

j≥0

c jx(n− jδ), if |c| < 1,

−
∑

j≥1

c− jx(n+ jδ), if |c| > 1, n∈ Z,

∥
∥A−1x

∥
∥
X ≤

‖x‖X∣
∣1−|c|∣∣ .

(1.5)

Proof. According to [10, 17], we can get equality (1.5) and then verify the results of
Lemma 1.1.

We consider the following assumptions.
(E1) a(n), b(n) are positive T-periodic sequences, τ(n) is a positive T-periodic integer

sequence.
(E2) f ,g ∈ C([0,∞),[0,∞)) and there exist two positive constants l, L such that 0 < l ≤

g(u)≤ L < +∞ for u∈R; f (u) > 0 for u > 0.
Define

A1 = 1
∏n+T−1

r=n
[
a(r)L+ 1

]− 1
, B =

∏n+T−1
r=n

[
a(r)L+ 1

]

∏n+T−1
r=n

[
a(r)l+ 1

]− 1
, (1.6)
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and α=A1/B, for any r > 0, we denote

M(r)=max
{
f (t) : 0≤ t ≤ r

1−|c|
}

,

m(r)=min
{
f (t) :

α−|c|
1− c2

r ≤ t ≤ r

1−|c|
}

,

k =min

{

α,
1

1 +BLΣT−1
s=0 a(s)

}

.

(1.7)

We aim to establish existence, multiplicity, and nonexistence of positive T-periodic
solutions for first-order neutral difference equation (1.2). Our approach is based on a
fixed point theorem in cones as well as some analysis techniques which are used by Wang
[14]. The rest of this paper is organized as follows. Section 2 is about statement of the
method (a fixed point theorem in cones) and some lemmas which play important roles
in proofs of main results; in Section 3, we establish our main results and give an example
to illustrate the applicability of our results. �

2. Preliminaries

We first state the following well-known result. For the proof, we refer to the classical
works [3, 5, 7].

Lemma 2.1 (Deimling [3], Guo and Lakshmikantham [5], and Krasnosel’skiı̆ [7]). Let
E be a Banach space and K a cone in E. For r > 0, define Kr = {u ∈ K : ‖u‖ < r}. Assume
that T : Kr→K is completely continuous such that Tx �=x for x∈∂Kr = {u∈ K : ‖u‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for any x ∈ ∂Kr , then i(T ,Kr ,K)= 0.
(ii) If ‖Tx‖ ≤ ‖x‖ for any x ∈ ∂Kr , then i(T ,Kr ,K)= 1.

Next, we transfer existence of positive T-periodic solutions of (1.2) into existence of
positive fixed points of some fixed point mapping.

In order to establish existence, multiplicity, and nonexistence of positive T-periodic
solutions for (1.2), we first consider the following equation:

Δy(n)= a(n)g
((
A−1y

)
(n)
)(
A−1y

)
(n)− λb(n) f

((
A−1y

)(
n− τ(n)

))
, (2.1)

whereA−1 is defined by (1.5). By Lemma 1.1 and the definition ofA andA−1, we conclude
the following.

Lemma 2.2. y(n) is a T-periodic solution of (2.1) if and only if (A−1y)(n) is a T-periodic
solution of (1.2).

Aiming to apply Lemma 2.1 to (2.1), we rewrite (2.1) as

Δy(n)= a(n)g
((
A−1y

)
(n)
)
y(n)− [a(n)G

(
y(n)

)
+ λb(n) f

((
A−1y

)(
n− τ(n)

))]
,

(2.2)
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where

G
(
y(n)

)=−cg((A−1y
)
(n)
)(
A−1y

)
(n− τ). (2.3)

A cone K in X is defined by

K = {u∈ X : u(n)≥ α‖u‖X , n∈ Z}. (2.4)

For r > 0, define Ωr by Ωr = {u ∈ K : ‖u‖X < r} and ∂Ωr = {u ∈ K : ‖u‖X = r}. Let the
operator Q : K → X be defined by

Qu(n)= Σn+T−1
s=n Ku(n,s)

[
a(s)G

(
u(s)

)
+ λb(s) f

((
A−1u

)(
s− τ(s)

))]
, n∈ Z, (2.5)

where

Ku(n,s)=
∏n+T−1

r=s+1

[
a(r)g

((
A−1u

)
(r)
)

+ 1
]

∏n+T−1
r=n

[
a(r)g

((
A−1u

)
(r)
)

+ 1
]− 1

, n,s∈ Z, n≤ s≤ n+T − 1. (2.6)

Assumption (E2) implies that

0 < A1 ≤ Ku(n,s)≤ B, n,s∈ Z, n≤ s≤ n+T − 1. (2.7)

Lemma 2.3. The positive T-periodic solution of (2.1) is equivalent to the fixed point of Q
in K .

Lemma 2.4. If assumptions (E1) and (E2) hold, c ∈ (−α,0], and y ∈ K , then
(a) ((α−|c|)/(1− c2))‖y‖X ≤ (A−1y)(n)≤ (1/(1−|c|))‖y‖X ,
(b) l|c|((α−|c|)/(1− c2))‖y‖X ≤G(y(n))≤ (L|c|/(1−|c|))‖y‖X , n∈N∗.

Proof
Part (a). Since −α < c ≤ 0, it follows from Lemma 1.1 that

(
A−1y

)
(n)=

∑

j≥0

c j y(n− jδ)

=
∑

j≥0

c2 j y(n− 2 jδ)−
∑

j≥1

|c|2 j−1y
(
n− (2 j− 1)δ

)

≥ α−|c|
1− c2

‖y‖X , n∈N∗,

(
A−1y

)
(n)≤ 1

1−|c|‖y‖X.

(2.8)

Part (b). From part (a) and the assumption (E2), for any n∈ Z, we get

l|c|α−|c|
1− c2

‖y‖X ≤G
(
y(n)

)≤ L|c|
1−|c|‖y‖X. (2.9)

�

Lemma 2.5. If assumptions (E1) and (E2) hold and c ∈ (−α,0], then Q(K) ⊂ K and Q :
K → K is completely continuous.
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Proof. By Lemma 1.1, similar to the proof of Lemma 2.2 in [7], we can prove Lemma
2.5. �

Lemma 2.6. If assumptions (E1) and (E2) hold and c ∈ (−α,0], then y(n) is the fixed point
of Q in K if and only if (A−1y)(n) is a positive T-periodic solution of (1.2).

Proof. If y(n) is the fixed point of Q in K , y(n) is a positive T-periodic solution of
(2.1) and y ∈ K by Lemma 2.3. It follows from Lemmas 2.2 and 2.4 that (A−1y)(n) is
a T-periodic solution of (1.2) and (A−1y)(n) ≥ ((α− |c|)/(1− c2))‖y‖X > 0. Therefore,
(A−1y)(n) is a positive T-periodic solution of (1.2).

If there exists y(n) such that (A−1y)(n) is a positive T-periodic solution of (1.2), then
y(n) is a T-periodic solution of (2.1) by Lemma 2.2. From the definition of A−1 and
c ∈ (−α,0], y(n)= (A−1y)(n)− c(A−1y)(n− δ) > 0. Lemmas 2.3 and 2.5 imply that y(n)
is the fixed point of Q in K . �

Lemma 2.7. Assumptions (E1) and (E2) hold and c ∈ (−α,0], η > 0. If f ((A−1y)(n−
τ(n)))≥ (A−1y)(n− τ(n))η for any y ∈ K and n∈ Z, then

‖Qy‖X ≥ λA1ηΣ
T−1
s=0 b(s)

α−|c|
1− c2

‖y‖X. (2.10)

Proof. By Lemma 2.4, for any y ∈ K and n∈ Z, G(y(n))≥ 0 as c ∈ (−α,0]. Therefore,

Qy(n)≥ λA1Σ
n+T−1
s=n b(s) f

((
A−1y

)(
s− τ(s)

))= λA1Σ
T−1
s=0 b(s) f

((
A−1y

)(
s− τ(s)

))

≥ λA1ηΣ
T−1
s=0 b(s)

(
A−1y

)(
s− τ(s)

)≥ λA1ηΣ
T−1
s=0 b(s)

α−|c|
1− c2

‖y‖X.
(2.11)

That is,

‖Qy‖X ≥ λA1ηΣ
T−1
s=0 b(s)

α−|c|
1− c2

‖y‖X. (2.12)

�

Lemma 2.8. Assumptions (E1) and (E2) hold and c ∈ (−α,0]. For any n∈ Z, if there exists
ε > 0 such that f ((A−1y)(n− τ(n)))≤ (A−1y)(n− τ(n))ε, then

‖Qy‖X ≤ BΣT−1
s=0

[
L|c|a(s) + λεb(s)

]

1−|c| ‖y‖X. (2.13)

Proof. From Lemmas 1.1 and 2.4, we have

‖Qy‖X ≤ BΣT−1
s=0

[
a(s)G

(
y(s)

)
+ λb(s) f

((
A−1y

)(
s− τ(s)

))]

≤ BΣT−1
s=0

[
a(s)

L|c|
1−|c|‖y‖X + λb(s)ε

(
A−1y

)(
s− τ(s)

)]

≤ BΣT−1
s=0

[
L|c|a(s) + λεb(s)

]

1−|c| ‖y‖X.

(2.14)

�
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Lemma 2.9. Assumptions (E1) and (E2) hold and c ∈ (−α,0]. For y ∈ ∂Ωr , r > 0, one can
obtain

‖Qy‖X ≥ λA1m(r)ΣT−1
s=0 b(s). (2.15)

Proof. Since y ∈ ∂Ωr , by Lemma 2.4, ((α− |c|)/(1− c2))r ≤ (A−1y)(n− τ(n)) ≤ r/(1−
|c|). So f ((A−1y)(n− τ(n))) ≥ m(r) for y ∈ ∂Ωr and n ∈ Z. Similar to the proof of
Lemma 2.7, we can obtain Lemma 2.9. �

Lemma 2.10. Assumptions (E1) and (E2) hold and c ∈ (−α,0]. If y ∈ ∂Ωr , r > 0, then

‖Qy‖X ≤ BΣT−1
s=0

[
λb(s)M(r) +

L|c|a(s)r
1−|c|

]
. (2.16)

Proof. By y ∈ ∂Ωr and Lemma 1.1, 0≤ (A−1y)(n− τ(n))≤ r/(1−|c|). So f ((A−1y)(n−
τ(n)))≤M(r) for any y ∈ ∂Ωr and n∈ Z. From The proof of Lemma 2.8, we can similarly
prove Lemma 2.10. �

3. Main results

We state our main results as follows.

Theorem 3.1. Suppose that assumptions (E1), (E2) hold and −k < c ≤ 0.
(a) If i0=1 or 2, then (1.2) has i0 positiveT-periodic solution(s) for λ>1/A1m(1)ΣT−1

s=0 b(s)
> 0.

(b) If i∞ = 1 or 2, then (1.2) has i∞ positive T-periodic solution(s) for 0 < λ < (1−|c| −
BL|c|ΣT−1

s=0 a(s))/BM(1)ΣT−1
s=0 b(s)(1−|c|).

(c) If i∞ = 0 or i0 = 0, then (1.2) has no positive T-periodic solution for sufficiently small
or large λ > 0, respectively.

Theorem 3.2. Suppose that assumptions (E1), (E2) hold and −k < c ≤ 0.
(a) If there exists a constant c1 > 0 such that f (u)≥ c1u for u∈ [0,+∞), then (1.2) has

no positive T-periodic solution for λ > (1− c2)/A1c1(α−|c|)ΣT−1
s=0 b(s).

(b) If there exists a constant c2 > 0 such that f (u)≤ c2u for u∈ [0,+∞), then (1.2) has
no positive T-periodic solution for 0 < λ < (1−|c|−BL|c|ΣT−1

s=0 a(s))/Bc2Σ
T−1
s=0 b(s).

Theorem 3.3. Suppose that assumptions (E1), (E2) hold and −k < c ≤ 0. If i0 = i∞ = 0 and

1− c2

max
{
f∞, f0

}
A1
(
α−|c|)ΣT−1

s=0 b(s)
< λ <

1−|c|−BL|c|ΣT−1
s=0 a(s)

min
{
f0, f∞

}
BΣT−1

s=0 b(s)
, (3.1)

then (1.2) has one positive T-periodic solution.

Proof of Theorem 3.1
Part (a). Take r1 = 1 and λ0 = 1/A1m(r1)ΣT−1

s=0 b(s) > 0. For any y ∈ ∂Ωr1 and λ > λ0, it
follows from Lemma 2.9 that

‖Qy‖X > ‖y‖X , y ∈ ∂Ωr1 . (3.2)

From Lemma 2.1, i(Q,Ωr1 ,K)= 0.
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Case 1. If f0 = 0, then for any ε > 0, we can choose 0 < r2 < r1 such that f (u) ≤ εu for
0≤ u≤ r2. Since −k < c ≤ 0, 1 > BL|c|ΣT−1

s=0 a(s)/(1−|c|). Take ε > 0 satisfying

λBεΣT−1
s=0 b(s)

1−|c| < 1− BL|c|ΣT−1
s=0 a(s)

1−|c| . (3.3)

Let r2 = (1− |c|)r2. If y ∈ ∂Ωr2 , then 0 ≤ (A−1y)(n− τ(n)) ≤ 1/(1− |c|)‖y‖X ≤ r2. So
f ((A−1y)(n− τ(n))) ≤ ε(A−1y)(n− τ(n)) for any y ∈ ∂Ωr2 and n ∈ Z. By Lemma 2.8
and inequality (3.3), for all y ∈ ∂Ωr2 , we have

‖Qy‖X ≤ λBεΣT−1
s=0 b(s) +BL|c|ΣT−1

s=0 a(s)
1−|c| ‖y‖X < ‖y‖X. (3.4)

Lemma 2.1 implies that i(Q,Ωr2 ,K) = 1. Thus i(Q,Ωr1 \Ωr2 ,K) = −1 and Q has a fixed
point y(n) in Ωr1 \Ωr2 . It follows from Lemma 2.6 that (1.2) has at least one positive
T-periodic solution (A−1y)(n) for λ > λ0.
Case 2. If f∞ = 0, then there exists a constant H̃ > 0 for any ε > 0 such that f (u) ≤ εu

for all u≥ H̃ . −k < c ≤ 0 shows that 1 > BL|c|ΣT−1
s=0 a(s)/(1− |c|). So we can choose ε > 0

satisfying inequality (3.3).
Take r3 =max{2r1, ((1− c2)/(α−|c|))H̃}. For any y ∈ ∂Ωr3 , since (A−1y)(n− τ(n))≥

((α− |c|)/(1− c2))‖y‖X ≥ H̃ , f ((A−1y)(n− τ(n))) ≤ ε(A−1y)(n− τ(n)). From Lemma
2.8 and inequality (3.3), for each y ∈ ∂Ωr3 , we get

‖Qy‖X ≤ λBεΣT−1
s=0 b(s) +BL|c|ΣT−1

s=0 a(s)
1−|c| ‖y‖X < ‖y‖X. (3.5)

It follows from Lemma 2.1 that i(Q,Ωr3 ,K) = 1. Therefore, i(Q,Ωr3 \Ωr1 ,K) = 1 and Q
has at least one fixed point y(n) in Ωr3 \Ωr1 . By Lemma 2.6, we conclude that (1.2) has at
least one positive T-periodic solution (A−1y)(n) for λ > λ0.
Case 3. If f∞ = f0 = 0, from the above arguments, there exist r1, r2, and r3 with 0 < r2 <
r1 < r3 such that Q has fixed points y1(n) and y2(n) in Ωr1 \Ωr2 and Ωr3 \Ωr1 , respec-
tively. By Lemma 2.6, for any λ > λ0, (1.2) has at least two positive T-periodic solutions
(A−1y1)(n) and (A−1y2)(n).

Part (b). −k < c ≤ 0 implies that 1 > BL|c|ΣT−1
s=0 a(s)/(1− |c|). Let r1 = 1 and λ1 = (1−

|c| − BL|c|ΣT−1
s=0 a(s))/BM(r1)ΣT−1

s=0 b(s)(1− |c|) > 0. From Lemma 2.10, for any y ∈ ∂Ωr1

and 0 < λ < λ1, we have

‖Qy‖X < ‖y‖X. (3.6)

By Lemma 2.1, i(Q,Ωr1 ,K)= 1.
Case 1. If f0 =∞, then for any η > 0, there exists 0 < r2 < r1 such that f (u)≥ ηu for each
0≤ u≤ r2. Take η > 0 satisfying

λA1η
α−|c|
1− c2

ΣT−1
s=0 b(s) > 1. (3.7)
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Let r2 = (1− |c|)r2. For any y ∈ ∂Ωr2 , 0 ≤ (A−1y)(n− τ(n)) ≤ (1/(1− |c|))‖y‖X ≤ r2.
Thus f ((A−1y)(n− τ(n))) ≥ η(A−1y)(n− τ(n)) for y ∈ ∂Ωr2 and n ∈ Z. By Lemma 2.7
and inequality (3.7), for any y ∈ ∂Ωr2 , we get

‖Qy‖X ≥ λA1η
α−|c|
1− c2

ΣT−1
s=0 b(s)‖y‖X > ‖y‖X. (3.8)

Lemma 2.1 tells that i(Q,Ωr2 ,K)= 0. So i(Q,Ωr1 \Ωr2 ,K)= 1 and Q has at least one fixed
point y(n) in Ωr1 \Ωr2 . From Lemma 2.6, (A−1y)(n) is a positive T-periodic solution of
(1.2) for λ∈ (0,λ1).
Case 2. If f∞ =∞, then for any η > 0, we can find H̃ > 0 satisfying that f (u)≥ ηu for each
u≥ H̃ . Take η > 0 such that inequality (3.7) holds.

Let r3 =max{2r1, ((1−c2)/(α−|c|))H̃}. As y∈∂Ωr3 , (A−1y)(n−τ(n))≥((α−|c|)/(1−
c2))‖y‖X ≥ H̃ . Then f ((A−1y)(n− τ(n)))≥ η(A−1y)(n− τ(n)) for any y ∈ ∂Ωr3 . For any
y ∈ ∂Ωr3 , it follows from Lemma 2.7 and inequality (3.7) that

‖Qy‖X ≥ λA1η
α−|c|
1− c2

ΣT−1
s=0 b(s)‖y‖X > ‖y‖X. (3.9)

By Lemma 2.1, we obtain i(Q,Ωr3 ,K) = 0. Thus, i(Q,Ωr3 \Ωr1 ,K) = −1 and Q has at
least one fixed point y(n) in Ωr3 \Ωr1 . Lemma 2.6 shows that (A−1y)(n) is a positive
T-periodic solution of (1.2) for λ∈ (0,λ1).
Case 3. If f∞ = f0 = ∞, from the arguments of Cases 1 and 2 in Part (b), there exist
constants 0 < r2 < r1 < r3 such that Q has one fixed point in Ωr1 \Ωr2 and Ωr3 \Ωr1 , re-
spectively, denoting y1(n) and y2(n). That is, for any λ ∈ (0,λ1), (1.2) has at least two
positive T-periodic solutions (A−1y1)(n) and (A−1y2)(n).
Part (c)
Case 1. If i0 = 0, then f0 > 0 and f∞ > 0. Letting c1 =min{( f (u)/u) : u > 0} > 0, we have

f (u)≥ c1u, u∈ [0,+∞). (3.10)

Take λ2 = (1− c2)/(A1c1(α− |c|)ΣT−1
s=0 b(s)) and suppose that u(n) is the positive T-

periodic solution of (1.2) for λ > λ2. For any n ∈ Z, f (A−1u(n− τ(n))) ≥ c1A−1u(n−
τ(n)) ≥ (c1(α− |c|)/(1− c2))‖u‖X and Qu(n) = u(n). From Lemma 2.7, for λ > λ2, we
obtain

‖u‖X = ‖Qu‖X ≥ λA1c1
α−|c|
1− c2

ΣT−1
s=0 b(s)‖u‖X > ‖u‖X , (3.11)

which is a contradiction. Thus, when i0 = 0 and λ > λ2, (1.2) has no positive T-periodic
solution.
Case 2. i∞ = 0 implies that f0 <∞ f∞ <∞. Since −k < c ≤ 0, 1− |c| > BL|c|ΣT−1

s=0 a(s).
Letting c2 =max{ f (u)/u : u > 0} > 0, we get

f (u)≤ c2u, u∈ [0,+∞). (3.12)

Take λ3 = (1− |c| − BL|c|ΣT−1
s=0 a(s))/Bc2Σ

T−1
s=0 b(s). Suppose that u(n) is the positive

T-periodic solution of (1.2) corresponding to λ ∈ (0,λ3). For any n∈Z, f (A−1u(n−
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τ(n)))≤ c2A−1u(n− τ(n)) ≤ (c2/(1−|c|))‖u‖X and Qu(n)=u(n). Therefore, by Lemma
2.8, for λ∈ (0,λ3), we have

‖u‖X = ‖Qu‖X ≤ λBc2Σ
T−1
s=0 b(s) +BL|c|ΣT−1

s=0 a(s)
1−|c| ‖u‖X < ‖u‖X , (3.13)

which is a contradiction. So, When i∞ = 0, (1.2) has no positive T-periodic solution for
any 0 < λ < λ3. �

Proof of Theorem 3.2. Following the proof of part (c) of Theorem 3.1, we can obtain this
result immediately. �

Proof of Theorem 3.3
Case 1. If f0 ≤ f∞, then

1− c2

f∞A1
(
α−|c|)ΣT−1

s=0 b(s)
< λ <

1−|c|−BL|c|ΣT−1
s=0 a(s)

f0BΣ
T−1
s=0 b(s)

. (3.14)

We can choose 0 < ε < f∞ such that

1− c2
(
f∞ − ε

)
A1
(
α−|c|)ΣT−1

s=0 b(s)
< λ <

1−|c|−BL|c|ΣT−1
s=0 a(s)

(
f0 + ε

)
BΣT−1

s=0 b(s)
. (3.15)

From the definition of f0, there exists r1 > 0 such that f (u)≤ ( f0 + ε)u for any 0≤ u≤
r1. Take r1 = (1−|c|)r1. For y ∈ ∂Ωr1 , since 0≤ (A−1y)(n− τ(n))≤ (1/(1−|c|))‖y‖X ≤
r1, then f ((A−1y)(n− τ(n))) ≤ ( f0 + ε)(A−1y)(n− τ(n)). By Lemma 2.8, for any y ∈
∂Ωr1 , we get

‖Qy‖X ≤ Bλ
(
f0 + ε

)
ΣT−1
s=0 b(s) +BL|c|ΣT−1

s=0 a(s)
1−|c| ‖y‖X < ‖y‖X. (3.16)

On the other hand, we can choose H̃ > 0 such that f (u) ≥ ( f∞ − ε)u for u ≥ H̃ . Let
r2 =max{2r1, ((1− c2)/(α−|c|))H̃}. If y ∈ ∂Ωr2 , then (A−1y)(n− τ(n))≥ ((α−|c|)/(1−
c2))‖y‖X ≥ H̃ . So f ((A−1y)(n− τ(n))) ≥ ( f∞ − ε)(A−1y)(n− τ(n)) for any y ∈ ∂Ωr2 .
From Lemma 2.7, for y ∈ ∂Ωr2 , we have

‖Qy‖X ≥ λ
(
f∞ − ε

)
A1

α−|c|
1− c2

ΣT−1
s=0 b(s)‖y‖X > ‖y‖X. (3.17)

It follows from Lemma 2.1 that

i
(
Q,Ωr1 ,K

)= 1, i
(
Q,Ωr2 ,K

)= 0, i
(
Q,Ωr2 \Ωr1 ,K

)=−1. (3.18)

Then Q has at least one fixed point y(n) in Ωr2 \Ωr1 . By Lemma 2.6, (A−1y)(n) is the
positive T-periodic solution of (1.2).
Case 2. If f0 > f∞, then

1− c2

f0A1
(
α−|c|)ΣT−1

s=0 b(s)
< λ <

1−|c|−BL|c|ΣT−1
s=0 a(s)

f∞BΣT−1
s=0 b(s)

. (3.19)
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So we can take a constant 0 < ε < f0 satisfying

1− c2
(
f0− ε

)
A1
(
α−|c|)ΣT−1

s=0 b(s)
< λ <

1−|c|−BL|c|ΣT−1
s=0 a(s)

(
f∞ + ε

)
BΣT−1

s=0 b(s)
. (3.20)

0 < f0 <∞ implies that there exists r1 > 0 such that for any 0≤ u≤ r1, f (u)≥ ( f0− ε)u.
Let r1 = (1− |c|)r1. If y ∈ ∂Ωr1 , then 0 ≤ (A−1y)(n− τ(n)) ≤ (1/(1− |c|))‖y‖X ≤ r1.

So we have f ((A−1y)(n− τ(n)))≥ ( f0− ε)(A−1y)(n− τ(n)) for y ∈ ∂Ωr1 . From Lemma
2.7, for any y ∈ ∂Ωr1 , we obtain

‖Qy‖X ≥ λ
(
f0− ε

)
A1Σ

T−1
s=0 b(s)

α−|c|
1− c2

‖y‖X > ‖y‖X. (3.21)

If 0 < f∞ < ∞, then there exists H̃ > 0 satisfying for any u ≥ H̃ , f (u) ≤ ( f∞ + ε)u.
Take r2 =max{2r1, ((1− c2)/(α− |c|))H̃}. y ∈ ∂Ωr2 tells that (A−1y)(n− τ(n)) ≥ ((α−
|c|)/(1− c2))‖y‖x ≥ H̃ . So f ((A−1y)(n− τ(n)))≤ ( f∞ + ε)(A−1y)(n− τ(n)) for y ∈ ∂Ωr2 .
Thus, by Lemma 2.8, for y ∈ ∂Ωr2 , we have

‖Qy‖X ≤ λB
(
f∞ + ε

)
ΣT−1
s=0 b(s) +BL|c|ΣT−1

s=0 a(s)
1−|c| ‖y‖X < ‖y‖X. (3.22)

It follows from Lemma 2.1 that

i
(
Q,Ωr1 ,K

)= 0, i
(
Q,Ωr2 ,K

)= 1. (3.23)

Therefore, i(Q,Ωr2 \Ωr1 ,K) = 1 and Q has at least one fixed point y(n) in Ωr2 \Ωr1 .
Lemma 2.6 shows that (A−1y)(n) is a positive T-periodic solution of (1.2).

Our results are applicable to consider multiplicity of periodic solutions for many neu-
tral difference equations. �

Example 3.4. We consider the following neutral difference equation:

Δ
[
u(n) +

1
3
u(n− 1)

]
= 1

4
u(n)− λ[1− sinπn]ua

(
n− τ(n)

)
e−u(n−τ(n)), n∈ Z,

(3.24)

where λ and a are two positive parameters, τ(n+ 2)≡ τ(n). Take τ = 1, c =−1/3, a(n)≡
1/4, b(n)= 1− sinπn, g(u)≡ 1, f (u)= uae−u, L= l = 1. Then assumptions (E1) and (E2)
hold, f∞ = 0, and maxu∈[0,∞) f (u)= f (a).

By direct computations, we have k = α= 2/5, f0 = +∞ if a∈ (0,1), f0 = 1 when a= 1,
and f0 = 0 as a > 1. Furthermore, let t0 =min{a, (3/2)}, we have

M(1)=max
{
f (t) : 0≤ t ≤ 3

2

}
= f

(
t0
)
,

m(1)=min
{
f (t) :

3
40
≤ t ≤ 3

2

}
=min

{
f
(

3
2

)
, f
(

3
40

)}
= r0.

(3.25)



J. Wu and Y. Liu 11

Thus

λ0 = 1
A1m(1)ΣT−1

s=0 b(s)
= 3

4r0
, λ1 = 1−|c|−BL|c|ΣT−1

s=0 a(s)
BM(1)ΣT−1

s=0 b(s)
(
1−|c|) =

7
40 f

(
t0
) . (3.26)

Applying Theorem 3.1 to (3.24), we obtain the following results.

4. Conclusion

(a) If a∈ (0,1), then (3.24) has one positive two-periodic solution for λ > 3/4r0 > 0
or 0 < λ < 7/40 f (a).

(b) If a= 1, then (3.24) has one positive two-periodic solution for λ > 3/4r0 > 0.
(c) If a > 1, then (3.24) has two positive two-periodic solutions for λ > 3/4r0 > 0.
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