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It is well known the differential equation−u′′(t) +Au(t)= f (t) (−∞ < t <∞) in a general
Banach space E with the positive operator A is ill-posed in the Banach space C(E) =
C((−∞,∞),E) of the bounded continuous functions ϕ(t) defined on the whole real line
with norm ‖ϕ‖C(E) = sup−∞<t<∞‖ϕ(t)‖E. In the present paper we consider the high order
of accuracy two-step difference schemes generated by an exact difference scheme or by
Taylor’s decomposition on three points for the approximate solutions of this differential
equation. The well-posedness of these difference schemes in the difference analogy of
the smooth functions is obtained. The exact almost coercive inequality for solutions in
C(τ,E) of these difference schemes is established.

Copyright © 2006 A. Ashyralyev and P. E. Sobolevskiı̆. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The role played by coercive inequalities in the study of local boundary-value problems
for elliptic and parabolic differential equations is well known (see, e.g., [10, 11, 16]).

Coercivity inequalities in Hölder norms with a weight for the solutions of an abstract
differential equation of elliptic type were established for the first time by Sobolevskiı̆ [12].
Further in [1, 2, 4, 7, 13] the coercive inequalities in Hölder norms with a weight were
obtained for the solutions of various local and nonlocal boundary value problems for dif-
ferential and difference equations of elliptic type. Finally in [3, 5, 8, 14] the corresponding
coercivity inequalities in Hölder norms without a weight for the solutions of some local
and nonlocal boundary value problems were obtained.

In the present paper we consider the differential equation

−u′′(t) +Au(t)= f (t) (−∞ < t <∞) (1.1)

in an arbitrary Banach space E with positive operator A.
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2 Well-posedness of the difference schemes

A function u(t) is called a solution of the problem (1.1) if the following conditions are
satisfied:

(i) u(t) is the bounded twice continuously differentiable on the real line (−∞,∞);
(ii) the element u(t) belongs to D(A) for all t ∈ (−∞,∞), and the function Au(t) is

bounded continuous for all t ∈ (−∞,∞);
(iii) u(t) satisfies (1.1).
A solution of the differential equation (1.1) defined in this manner will from now on

referred to as a solution of the differential equation (1.1) in the space C(E)= C((−∞,∞),
E) of all bounded continuous functions ϕ(t) defined on (−∞,∞) with values in E
equipped with the norm

‖ϕ‖C(E) = sup
t∈(−∞,∞)

∥
∥ϕ(t)

∥
∥
E. (1.2)

The well-posedness inC(E) of the differential equation (1.1) means that coercive inequal-
ity

‖u′′‖C(E) +‖Au‖C(E) ≤M‖ f ‖C(E) (1.3)

is true for its solution u(t) ∈ C(E) with some M, does not depend on f (t) ∈ C(E). It is
known that from the coercive inequality (1.3) it follows the positivity of the operator A in
the Banach space E, that means the operator Iλ+A has bounded in E inverse (Iλ+A)−1

for any λ≥ 0, and estimate

∥
∥(λI +A)−1

∥
∥
E→E ≤

M

1 + λ
(1.4)

holds for some 1≤M <∞. It turns out that this positivity property of the operator A in
E is necessary condition of well-posedness of the differential equation (1.1) in C(E). The
positivity of the operator A in E is not a sufficient condition for the well-posedness of the
differential equation (1.1). As it turns out, problem (1.1) is not well-posed for all such
operators.The counterexample given by Sobolevskiı̆ [14].

It is known (see, e.g, [9, 12]) that the operator A1/2 has better spectral properties than
the positive operator A. In particular, the operator λI +

√
A has a bounded inverse for any

complex number λ with Reλ≥ 0, and the estimate
∥
∥
∥

(

λI +
√
A
)−1
∥
∥
∥
E→E ≤M

(|λ|+ 1
)−1

(1.5)

is true for someM ≥ 1. Thus,
√
A is a strongly positive in E operator, that is, the following

estimates hold:
∥
∥e−t

√
A
∥
∥
E→E ≤Me−δt, t

∥
∥
√
Ae−t

√
A
∥
∥
E→E ≤M, t > 0, δ > 0,

∥
∥
∥

(√
A
)β(

e−t
√
A− e−(t+τ)

√
A
)
∥
∥
∥
E→E ≤

Mτα

tα
, 0≤ α, β ≤ 1, 0 < t ≤ t+ τ ≤ 1.

(1.6)

That means if spectral angle ϕ(A,E) of operator A in E equal π, then spectral angle
ϕ(A1/2,E) of operator A1/2 in E less than π/2. If the function f (t) is not only continu-
ous, but also bounded continuously differentiable, it is known that (see, e.g., [14]) the
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formula

u(t)= 1
2
B−1

∫∞

−∞
e−|t−τ|B f (τ)dτ. (1.7)

(Here and in this paper we will put B =A1/2) gives a solution of differential equation (1.1)
in C(E).

In the papers [8, 14] the well-posedness of the differential equation (1.1) was estab-
lished in the Banach space Cα(E) = Cα((−∞,∞),E) (0 < α < 1) obtained by completion
of the set of E-valued smooth functions ϕ(t) on (−∞,∞) in the norm

‖ϕ‖Cα(E) = ‖ϕ‖C(E) + sup
−∞<t<t+τ<∞

∥
∥ϕ(t+ τ)−ϕ(t)

∥
∥
E

τα
(1.8)

and in the Banach spaceC(Eα)= C((−∞,∞),Eα). Here, the Banach space Eα = Eα(E,A1/2)
(0 < α < 1) consists of those v ∈ E for which the norm (see, e.g, [6])

‖v‖Eα = sup
z>0

z1−α∥∥A1/2 exp
{− zA1/2}v

∥
∥
E +‖v‖E (1.9)

is finite. Moreover, in the paper [14] the difference scheme second order of accuracy

−τ−2(uk+1− 2uk +uk−1
)

+Auk = ϕk, ϕk = f (tk), tk = kτ, −∞ < k <∞ (1.10)

for the approximate solutions of (1.1) was studied. The exact almost coercive inequality
for solutions in C(τ,E) of this difference scheme was established.

In the present paper we consider two-step difference schemes of the high order of accu-
racy generated by an exact difference scheme or by Taylor’s decomposition on three points
for the approximate solutions of (1.1). The well-posedness of these difference schemes in
the difference analogy of the smooth functions is obtained.The exact almost coercive in-
equality for solutions in C(τ,E) of these difference schemes is established.

2. Difference schemes generated by an exact difference scheme

The construction of two-step difference schemes of an arbitrary high order of accuracy
for the approximate solutions of the differential equation (1.1) is based on the following
theorem.

Theorem 2.1. Let u(tk) be a solution of the differential equation (1.1) at the grid points
t = tk. Then {u(tk)}∞−∞ is the solution of the following second order difference equations:

− τ−2(u
(

tk+1
)− 2u

(

tk
)

+u
(

tk−1
))

+ τ−2(I − exp{−τB})(u(tk+1
)

+u
(

tk−1
))

+ τ−2(exp{−2τB}− I)u(tk
)= ψk,

ψk = (2τB)−1(ψ1,k +ψ2,k+1
)− (2τB)−1 exp{−τB}(ψ1,k+1 +ψ2,k

)

,

ψ1,k = τ−1
∫ tk

tk−1

exp
{− (tk − s

)

B
}

f (s)ds,

ψ2,k = τ−1
∫ tk

tk−1

exp
{− (s− tk−1

)

B
}

f (s)ds, tk = kτ, k ∈ (−∞,∞).

(2.1)



4 Well-posedness of the difference schemes

The proof of Theorem 2.1 is based on the formula (1.7) for the solution of the differ-
ential equation (1.1).

From (2.1) it is clear that for approximate solutions of the differential equation (1.1)
it is necessary to approximate the expressions exp{−τB} and

τ−1
∫ tk

tk−1

exp
{− (tk − s

)

B
}

f (s)ds, τ−1
∫ tk

tk−1

exp
{− (s− tk−1

)

B
}

f (s)ds. (2.2)

Let us remark that in constructing difference schemes it is important to know how to

construct a right-hand side ψ
l, j
k that satisfies

(2τB)−1(ψ1,k +ψ2,k+1
)− (2τB)−1 exp{−τB}(ψ1,k+1 +ψ2,k

)−ψl, jk = o
(

τl+ j
)

, (2.3)

and is sufficiently simple. The choice formula ψ
l, j
k is not unique. Let f (λ)(t) ∈ D(Bm−λ)

for 0≤ λ≤m, 1≤m≤ l+ j. Using Taylor’s formula, we obtain

τ−1
∫ tk

tk−1

exp
{− (tk − s

)

B
}

f (s)ds=
l+ j
∑

m=1

m
∑

λ=0

(

m
λ

)

Bm−λ f (λ)(tk
) (−1)mτm

(m+ 1)!
+ o
(

τl+ j
)

,

τ−1
∫ tk

tk−1

exp
{− (s− tk−1

)

B
}

f (s)ds=
l+ j
∑

m=1

m
∑

λ=0

(

m
λ

)

(−B)m−λ f (λ)(tk−1
) τm

(m+ 1)!
+ o
(

τl+ j
)

.

(2.4)

Applying the exact difference scheme (2.1) and formulas (2.4), we obtain (l+ j)-order of
accuracy two-step difference schemes

−τ−2(uk+1− 2uk +uk−1
)

+ τ−2(I −Rj,l(τB)
)(

uk+1 +uk−1
)

+ τ−2(R2
j,l(τB)− I)uk = ψl, jk ,

ψ
l, j
k = (2τB)−1

(

ψ
l, j
1,k +ψ

l, j
2,k+1

)

− (2τB)−1Rj,l(τB)
(

ψ
l, j
1,k+1 +ψ

l, j
2,k

)

,

ψ
l, j
1,k =

l+ j
∑

m=1

m
∑

λ=0

(

m
λ

)

Bm−λ f (λ)(tk
) (−1)mτm

(m+ 1)!
,

ψ
l, j
2,k =

l+ j
∑

m=1

m
∑

λ=0

(

m
λ

)

(−B)m−λ f (λ)(tk−1
) τm

(m+ 1)!
+ o
(

τl+ j
)

, k ∈ (−∞,∞).

(2.5)

Here, the function Rj,l(z) is constructed on the base of Padé’s fractions

Rj,l(z)= Pj,l(z)

Qj,l(z)
, (2.6)

respectively

Pj,l = 1 + a1z+ ···+ ajz j , Qj,l(z)= 1 + b1z+ ···+ bjzl, (2.7)

where the coefficients ai, ai = 1, . . . , j, and bi, i = 1, . . . , l, are uniquely defined from the
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condition
∣
∣Rj,l(z)− e−z∣∣= o(|z| j+l+1) (2.8)

for |z| → 0.
Let F(τ,E) be the linear space of mesh functions ϕτ = {ϕk}∞−∞ with values in the

Banach space E. Next on F(τ,E) we denote C(τ,E) and Cα(τ,E) Banach spaces with the
norms

∥
∥ϕτ

∥
∥
C(τ,E) = sup

−∞<k<∞

∥
∥ϕk

∥
∥
E,

∥
∥ϕτ

∥
∥
Cα(τ,E) =

∥
∥ϕτ

∥
∥
C(τ,E) + sup

−∞<k<k+r<∞

∥
∥ϕk+r −ϕk

∥
∥
E

(rτ)α
.

(2.9)

We say that the difference scheme (2.5) is stable in F(τ,E) if we have the inequality
∥
∥uτ

∥
∥
F(τ,E) ≤M

∥
∥ψτj,l

∥
∥
F(τ,E), (2.10)

where M is independent not only of ψτj,l, but also on τ.
We say that the difference scheme (2.5) is coercively stable (well-posed) in F(τ,E) if

we have the coercive inequality
∥
∥
∥

{

τ−2(uk+1− 2uk +uk−1
)}∞
−∞
∥
∥
∥
F(τ,E)

≤M∥∥ψτj,l
∥
∥
F(τ,E), (2.11)

where M is independent not only of ψτj,l but also of τ.

It is known that if A is a positive operator, then A1/2 is a strongly positive operator.
Since, difference schemes (2.5) are constructed by using an operator A1/2, instead of A.
Therefore, we have the following theorem.

Theorem 2.2. Let j = l− 1, l− 2. Then two-step difference schemes (2.5) are stable in Cα(τ,
E), 0≤ α≤ 1.

Since the differential equation (1.1) in the space C(E) of bounded continuous func-
tions defined on the real line with values in E is not well-posed in the case of general
positive operator A, then the well-posedness of the difference schemes (2.5) in C(τ,E)
norm does not take place uniformly with respect to τ > 0. This means that the coercive
norm
∥
∥uτ

∥
∥
k(τ,E) =

∥
∥
∥

{

τ−2(uk+1− 2uk +uk−1
)}∞
−∞
∥
∥
∥
C(τ,E)

+
∥
∥
∥

{

τ−2(I −Rj,l(τB)
)(

uk+1 +uk−1
)

+ τ−2(R2
j,l(τB)− I)uk

}∞
−∞
∥
∥
∥
C(τ,E)

(2.12)

tends to∞ as τ → +0. The investigation of difference schemes (2.5) permits us to establish
the order of growth of this norm to∞.

Theorem 2.3. Let j = l− 1, l− 2. Then for the solution of the two-step difference schemes
(2.5) we have almost coercive inequality

∥
∥uτ

∥
∥
k(τ,E) ≤Mmin

{

ln
1
τ

,1 +
∣
∣ ln‖B‖E→E

∣
∣

}
∥
∥ψτj,l

∥
∥
C(τ,E). (2.13)



6 Well-posedness of the difference schemes

Note that if B is the unbounded positive operator in E, then

min
{

ln
1
τ

,1 +
∣
∣ ln‖B‖E→E

∣
∣

}

= ln
1
τ
. (2.14)

Theorem 2.4. Let j = l− 1, l− 2. Then two-step difference schemes (2.5) are well-posed in
Cα(τ,E) and C(τ,Eα), 0 < α < 1.

3. Difference schemes generated by the Taylor’s decomposition

Let f (2i)(tk) ∈ D(Am−i) for 0 ≤ i ≤ m, 0 ≤ m ≤ l − 1. We consider two-step difference
schemes

−τ−2(uk+1− 2uk +uk−1
)

+
l−1
∑

m=0

2τ2m

(2m+ 2)!
Am+1uk = ϕk, −∞ < k <∞,

ϕk =
l−1
∑

m=0

2τ2m

(2m+ 2)!

m
∑

i=0

Am−i f (2i)(tk
)

, tk = kτ, −∞ < k <∞
(3.1)

of 2l-order of accuracy of approximately solving (1.1). Difference schemes (3.1) generated
by an exact difference scheme

−τ−2(v(tk+1)− 2v(tk) + v(tk−1)) +
l−1
∑

m=0

2τ2m

(2m+ 2)!
Am+1v(tk)= ψk,

ψk =
l−1
∑

m=0

2τ2m

(2m+ 2)!

m
∑

i=0

Am−i f (2i)(tk) + τ−2

×
[∫ tk

tk−1

(

t− tk−1
)
∫ t

tk

(t− s)2l−1

(2l− 1)!
v(2l+2)(s)dsdt

+
∫ tk+1

tk

(

tk+1− t
)
∫ t

tk

(t− s)2l−1

(2l− 1)!
v(2l+2)(s)dsdt

]

.

(3.2)

This exact difference scheme generated by the Taylor’s decomposition on three points.
This difference equation is uniquely solvable, and the following formula holds

uk = (I + τB)(2I + τB)−1B−1
∞
∑

i=−∞
R|k−i|(τB)ϕiτ, (3.3)

where

B = B(τ,A)= τ2Al
2

+

√
√
√
(
τ2Al

2

)2

+Al, Al =
l−1
∑

m=0

2τ2m

(2m+ 2)!
Am+1. (3.4)
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Actually, the difference scheme (3.1) can be rewritten as the equivalent system of the first
order linear difference equations

τ−1(uk −uk−1
)

+Buk =wk,

−τ−1(wk+1−wk
)

+Bwk = (I + τB)ϕk,
(3.5)

with operator B = B(τ,A). Note that B(τ,A) 
= A1/2 but then B(τ,A)→ A1/2 as τ → 0 and
it has same spectral properties of A1/2 under the strong positivity assumption for A. From
the last system it follows the system of recursion formulas

uk = R(τB)uk−1 + τR(τB)wk,

wk = R(τB)wk+1 +ϕk,
(3.6)

where R(τB)= (I + τB)−1. Hence

uk =
k
∑

i=−∞
Rk−i+1(τB)τwi,

wk =
∞
∑

s=k
Rs−k(τB)ϕsτ.

(3.7)

From that it follows that

uk =
k
∑

i=−∞
Rk−i+1(τB)τ

∞
∑

s=i
Rs−i(τB)ϕsτ. (3.8)

Since

k
∑

i=−∞
Rk−i+1(τB)τ

∞
∑

s=i
Rs−i(τB)ϕsτ

=
k
∑

s=−∞
τ

s
∑

i=−∞
Rk+s+1−2i(τB)ϕsτ +

∞
∑

s=k+1

τ
k
∑

i=−∞
Rk+s−2i+1(τB)ϕsτ

= (I −R2(τB)
)−1

k
∑

s=−∞
τRk−s+1(τB)ϕsτ

+
(

I −R2(τB)
)−1

∞
∑

s=k+1

τRs−k+1(τB)ϕsτ

= (I −R2(τB)
)−1

∞
∑

s=1

τ
(

R|k−s|+1(τB)−Rk+s(τB)
)

ϕsτ

(3.9)

we have that

uk =
(

I −R2(τB)
)−1

∞
∑

s=−∞
τR|k−s|+1(τB)ϕsτ. (3.10)

From this formula it follows the formula (3.3).



8 Well-posedness of the difference schemes

As above, let us give the definition of the stability and coercively stable of the difference
equation (3.1).

The difference equation (3.1) is said to be stable in Fτ(E) if we have the inequality

∥
∥uτ

∥
∥
F(τ,E) ≤M

∥
∥ϕτ

∥
∥
F(τ,E), (3.11)

where M is independent not only of ϕτ but also of τ.
The difference equation (3.1) is said to be well-posed (coercively stable) in Fτ(E) if we

have the coercive inequality

∥
∥
∥

{

τ−2(uk+1− 2uk +uk−1
)}∞
−∞
∥
∥
∥
F(τ,E)

+

∥
∥
∥
∥
∥

{ l−1
∑

m=0

2τ2m

(2m+ 2)!
Am+1uk

}∞

−∞

∥
∥
∥
∥
∥
F(τ,E)

≤M∥∥ϕτ∥∥F(τ,E),

(3.12)

where M is independent not only of ϕτ but also of τ.
From the formula (3.3) it follows that the investigation of the stability and well-

posedness of difference schemes (3.1) relies in an essential manner on a number of prop-
erties of the powers of the operator (I + τB)−1. We are not able to obtain the estimates
for powers of the operator (I + τB)−1 in the general cases of operator A. However, for
the investigation of (3.1) it is necessary to construct an operator B = B(τ,A) and to give
estimates

∥
∥Rk(τB)

∥
∥
E→E ≤M(1 + δτ)−k, k ≥ 1

∥
∥kτBRk(τB)

∥
∥
E→E ≤M(1 + δτ)−k, k ≥ 1.

(3.13)

The proof of estimates (3.13) is based upon three theorems.

Theorem 3.1 (a real criterion for strong positivity [13]). A necessary and sufficient con-
dition for B to be strongly positive is that the estimates (3.13) are satisfied.

Theorem 3.2 ([13]). If A is a strongly positive operator, then the operator B denoted by

B = 1
2
τA+

√

1
4

(

τ2A
)2

+A (3.14)

is a strongly positive operator.

Theorem 3.3 ([2]). If A is a strongly positive operator with spectrum angle φ(A,E)≤ π/2l
then the operator Al denoted by formula (3.1) is also a strongly positive operator.

We have the following results.

Theorem 3.4. Let A is a strongly positive operator in a Banach space E with spectral an-
gle φ(A,E) < π/2l. Then difference problem (3.1) is stable in Cα(τ,E), (0≤ α≤ 1). For the
solutions of the difference problem (3.1) satisfy the stability inequalities

∥
∥uτ

∥
∥
Cα(τ,E) ≤M

∥
∥ϕτ

∥
∥
Cα(τ,E), (3.15)

where M does not depend on ϕτ , α and τ.
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Theorem 3.5. Let A is a strongly positive operator in a Banach space E with spectral angle
φ(A,E) < π/2l. Then the solutions of the difference problem (3.1) in C(τ,E) obey the almost
coercive inequality

∥
∥
∥

{

τ−2(uk+1− 2uk +uk−1
)}∞
−∞
∥
∥
∥
C(τ,E)

+

∥
∥
∥
∥
∥

{ l−1
∑

m=0

2τ2m

(2m+ 2)!
Am+1uk

}∞

−∞

∥
∥
∥
∥
∥

C(τ,E)

≤M1 min
{

ln
1
τ

,1 +
∣
∣ ln‖B‖E→E

∣
∣

}
∥
∥ϕτ

∥
∥
C(τ,E),

(3.16)

where M1 is independent not only of ϕτ , but also of τ.

Theorem 3.6. Let A is a strongly positive operator in a Banach space E with spectral angle
φ(A,E) < π/2l. Then the solutions of the difference problem (3.1) in Cα(τ,E) and C(τ,Eα),
0 < α < 1 obey the coercive inequality

∥
∥
∥

{

τ−2(uk+1− 2uk +uk−1
)}∞
−∞
∥
∥
∥
Cα(τ,E)

+

∥
∥
∥
∥
∥

{ l−1
∑

m=0

2τ2m

(2m+ 2)!
Am+1uk

}∞

−∞

∥
∥
∥
∥
∥

Cα(τ,E)

≤ M1

α(1−α)

∥
∥ϕτ

∥
∥
Cα(τ,E),

∥
∥
∥

{

τ−2(uk+1− 2uk +uk−1
)}∞
−∞
∥
∥
∥
C(τ,Eα)

+

∥
∥
∥
∥
∥

{ l−1
∑

m=0

2τ2m

(2m+ 2)!
Am+1uk

}∞

−∞

∥
∥
∥
∥
∥

C(τ,Eα)

≤ M1

α(1−α)

∥
∥ϕτ

∥
∥
C(τ,Eα),

(3.17)

where M1 is independent not only of ϕτ , α, but also of τ.

It is clear that

∥
∥AA−1

l

∥
∥
E→E ≤M. (3.18)

From this estimate and Theorems 3.5–3.6 it follows that the following theorem.

Theorem 3.7. Let A is a strongly positive operator in a Banach space E with spectral angle
φ(A,E) < π/2l. Then the solutions of the difference problem (3.1) in Lp,τ(E) obey the almost
coercive inequality

∥
∥
∥

{

τ−2(uk+1− 2uk +uk−1
)}∞
−∞
∥
∥
∥
C(τ,E)

+
∥
∥
∥

{

Auk
}∞
−∞
∥
∥
∥

C(τ,E)

≤M1 min
{

ln
1
τ

,1 +
∣
∣ ln‖B‖E→E

∣
∣

}

‖ϕτ‖C(τ,E),
(3.19)

where M1 is independent not only of ϕτ , but also of τ.

Theorem 3.8. Let A is a strongly positive operator in a Banach space E with spectral angle
φ(A,E) < π/2l. Then the solutions of the difference problem (3.1) in Cα(τ,E) and C(τ,Eα),
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0 < α < 1 obey the coercive inequality

∥
∥
∥

{

τ−2(uk+1− 2uk +uk−1
)}∞
−∞
∥
∥
∥
Cα(τ,E)

+
∥
∥
∥

{

Auk
}∞
−∞
∥
∥
∥

Cα(τ,E)
≤ M1

α(1−α)

∥
∥ϕτ

∥
∥
Cα(τ,E),

∥
∥
∥

{

τ−2(uk+1− 2uk +uk−1
)}∞
−∞
∥
∥
∥
C(τ,Eα)

+
∥
∥
∥

{

Auk
}∞
−∞
∥
∥
∥

C(τ,Eα)
≤ M1

α(1−α)

∥
∥ϕτ

∥
∥
C(τ,Eα),

(3.20)

where M1 is independent not only of ϕτ , α, but also of τ.

4. Application

We consider 2m-order multidimensional elliptic equation

−∂
2u

∂y2
+
∑

|r|=2m

ar(x)
∂|τ|u

∂xr1
1 ···∂xrnn

+ δu(y,x)= f (y,x), −∞ < y <∞, x ∈Rn, (4.1)

where ar(x) and f (y,x) are given sufficiently smooth functions and αr(x) > 0, δ > 0 is the
sufficiently large number. Here r ∈Rn is a vector with nonnegative integer components,
|r| = r1 + ···+ rn.

Now, the abstract theorems given from above are applied in the investigation of dif-
ference schemes of higher order of accuracy with respect to the set all variables for ap-
proximate solution of the differential equation (4.1). The discretization of problem (4.1)
is carried out in two steps. In the first step let us give the difference operator Axh by the
formula

Axhu
h
x =

∑

2m≤|r|≤S
bxr D

r
hu

h
x + δuhx. (4.2)

The coefficients are chosen in such a way that the operator Axh approximates in a specified
way the operator (see [2])

∑

|r|=2m

ar(x)
∂|r|

∂xr1
1 ···∂xrnn

+ δ. (4.3)

We will assume that for |ξkh| ≤ π the symbol A(ξh,h) of the operator Axh− δ satisfies the
inequalities

(−1)mAx(ξh,h)≥M1|ξ|2m,
∣
∣argAx(ξh,h)

∣
∣≤ φ < φ0 ≤ π

2l
. (4.4)

With the help of Axh we arrive at the infinite system of ordinary differential equations

−d
2vh(y,x)
dy2

+Axhv
h(y,x)= f h(y,x), −∞ < y <∞, x ∈Rn

h. (4.5)
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In the second step we replace differential equation (4.5) by the difference scheme

− 1
τ2

(

uhk+1(x)− 2uhk(x) +uhk−1(x)
)

+
l
∑

i=1

αi
(

Axh
)i
τ2i−2uhk(x)= ϕhk(x),

ϕhk(x)=
l−1
∑

m=0

2τ2m

(2m+ 2)!

m
∑

l=0

(

Axh
)m−i

f h(2i)(yk,x
)

, yk = kτ, −∞ < k <∞, x ∈ Rnh.
(4.6)

Let us give a number of corollaries of the abstract theorems given in the above.

Theorem 4.1. Let τ and h be a sufficiently small numbers.Then the solutions of the differ-
ence schemes (4.6) satisfy the following stability estimates:

∥
∥
∥

{

uhk
}∞
−∞
∥
∥
∥
Cα(τ,C

β
h )
≤M

∥
∥
∥

{

ϕk
h
}∞
−∞
∥
∥
∥
Cα(τC

β
h )

, 0≤ α < 1, 0≤ β < 1, (4.7)

where M does not depend on {ϕkh}∞−∞, α, β, h and τ.
The proof of Theorem 4.1 is based on the abstract Theorem 3.4 and the positivity of

the operator Axh in C
β
h [6].

Theorem 4.2. Let τ and h be a sufficiently small numbers. Then the solutions of the differ-
ence schemes (4.6) satisfy the following almost coercive stability estimates:

∥
∥
∥

{

τ−2(uhk+1− 2uhk +uhk−1

)}∞
−∞
∥
∥
∥
C(τ,Ch)

≤M ln
1

τ +h

∥
∥
∥

{

ϕk
h
}∞
−∞
∥
∥
∥
C(τ,Ch)

, (4.8)

where M does not depend on {ϕkh}∞−∞, h and τ.

The proof of Theorem 4.2 is based on the abstract Theorem 3.7, the positivity of the
operator Axh in Ch and on the almost coercivity inequality for an elliptic operator Axh in
Ch and on the estimate

min
{

ln
1
τ

,1 +
∣
∣ ln

∥
∥Bxh

∥
∥
Ch→Ch

∣
∣

}

≤M ln
1

τ +h
. (4.9)

Theorem 4.3. Let τ and h be a sufficiently small numbers. Then the solutions of the differ-
ence schemes (4.6) satisfy the coercivity estimates:

∥
∥
∥

{

τ−2(uhk+1− 2uhk +uhk−1

)}∞
−∞
∥
∥
∥
Cα(τ,C

β
h )

≤M(α,β)
∥
∥
∥

{

ϕk
h
}∞
−∞
∥
∥
∥
Cα(τ,C

β
h)

, 0≤ α < 1, 0 < β < 1,
(4.10)

where M(α,β) does not depend on {ϕkh}∞−∞, h and τ.

The proof of Theorem 4.3 is based on the abstract Theorem 3.8 and the positivity of

the operator Axh in C
β
h and the coercivity inequality for an elliptic operator Axh in C

β
h ,

0 < β < 1 and on the fact that for any 0 < β < 1/2m the norms in the spaces Eβ(Axh,Ch) and

C
2mβ
h are equivalent uniformly in h [6] and on the following theorem on the structure of

the fractional spaces Eα((Axh)1/2,Ch).
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Theorem 4.4 [2]. Let A is a strongly positive operator in a Banach space E with spectral
angle φ(A,E) < π/2. Then for 0 < α < 1/2 the norms of the spaces Eα(A1/2,E) and Eα/2(A,E)
are equivalent.
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