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The networks of globally coupled maps with a pacemaker have been introduced. We con-
sider a generalization of the Kaneko model with a pacemaker represented by a single
period-doubling element coupled unidirectionally with a set of other mutually coupled
cells. We also investigate the dynamics of a system of two unidirectionally coupled ele-
ments, which manifests a special type of critical behaviour, known as bicriticality, at the
point of simultaneous transition to chaos in both subsystems. With the help of the renor-
malization group (RG), we show for a case of two mutually coupled bicritical maps with
a pacemaker that there are two types of coupling: dissipative and inertial. We investigate
the dynamics of a network with a pacemaker with two types of global coupling and the
properties of universality and scaling in this system.
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the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The study of networks composed of elements with different types of dynamics attracted
much attention recently. In particular, after seminal works of Kaneko [5–7], a class of
period-doubling maps with global coupling has been studied extensively. Such networks
may serve as models for the description of dynamical phenomena in complex extended
systems of different physical natures. For example, the peculiarities intrinsic to globally
coupled maps have been observed, as reported, in electro-chemical experiments, in elec-
tronic, and in laser systems [3, 11, 12, 16, 19].

One of the main motivations for the study of globally coupled maps is the hope that
it will aid the understanding of the operation of natural neural networks, such as human
or animal brains. Then, the intrinsic nontrivial information processes could be not only
understood, but also reproduced in technical devices. In this context it is worth noting
the simplicity of the design of the global coupling, for example, in electronic and laser
systems.
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Figure 1.1. Schematic illustration of a network with global coupling, elements of which are under
common pacemaker (a), two unidirectionally coupled maps (b), and two coupled maps under com-
mon pacemaker (c).

In natural excitable systems it is often the case that a particular element, or a part of the
network of elements, may be identified as affecting and controlling the other elements.
In biological studies it is called a pacemaker [18]. Apparently, it may be relevant in many
cases for the functioning of natural excitable systems. Hence, it seems interesting to in-
troduce such an additional element into the globally coupled map model of Kaneko and
to reveal any novel dynamical properties. In this paper we consider a generalization of
the Kaneko model with a pacemaker represented by a single period-doubling element
coupled unidirectionally with a set of other mutually coupled cells. We note that the
Feigenbaum quantitative universality intrinsic to period-doubling cascades in an isolated
element implies universal scaling regularities in coupled systems and indeed in globally
coupled networks. These matters have been previously considered using appropriate gen-
eralizations of Feigenbaum’s renormalization group (RG) approach in [1, 2, 9, 13].

In Figure 1.1 the system is schematically shown. A pacemaker is represented as a lo-
gistic map, which is unidirectionally coupled with a set of globally coupled elements
(Figure 1.1(a)). In Section 2, we first consider the dynamics of a system of two unidi-
rectionally coupled elements (Figure 1.1(b)), which manifests a special type of critical
behaviour, known as bicriticality, at the point of simultaneous transition to chaos in both
subsystems. We then develop the renormalization group (RG) analysis for the case of
a pacemaker driving two mutually coupled bicritical systems (Figure 1.1(c)). It will be
shown that two types of coupling are relevant, dissipative and inertial, differing by their
specific properties in terms of the RG transformation and scaling in the neighbourhood
of the transition to chaos. In Section 3 we consider an arbitrary number of “slave” ele-
ments and investigate “clusterization” and dynamics near the bicritical situation.

2. Renormalization group for systems with a pacemaker

2.1. Dynamics of unidirectionally coupled maps. Let us start with the consideration of
a system of two quadratic maps with unidirectional coupling:

xn+1 = 1− λx2
n, yn+1 = 1−Ay2

n−Bx2
n. (2.1)
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Figure 2.1. Parameter space (A,B) of the slave system for fixed parameter of master system λ = 1.
Different tints mean domains of periodical behaviours, chaos is designated by white area. Numbers
mean the period of oscillations. Firm and dotted lines are lines of folds (tangent bifurcations), which
are crossed at cusp point.

Here the dynamical variables xn and yn relate to the master and the slave systems, respec-
tively, λ and A are control parameters of the subsystems, and B is the coupling coefficient.
Dynamics of this model have been previously investigated in some respects in [8, 10, 14].

First, note a property of multistability intrinsic to this system in some parameter do-
main. To explain this, let us assume for a moment that the coupling parameter B is small
enough, and that the values of λ and A are chosen in such a way so that each subsystem
has a period-2 attractive orbit. Then, they may oscillate either in the same phase or in
opposite phases depending on the initial conditions. Both states are stable and persist for
nonzero coupling at least while it is not large enough. In Figure 2.1 a diagram of the (A,B)
parameter space is shown for fixed λ= 1. At this λ, the master subsystem oscillates with
period two, and it induces the same period in the slave system for very small A. With in-
crease of A, a cascade of period-doubling bifurcations occurs followed by a transition to
chaos. In the domain of period two there is a point of codimension 2 bifurcation, a cusp
on the parameter plane (A,B), at which two bifurcation lines meet, which correspond
to tangent (saddle-node) bifurcations. In the domain between the folds bistability takes
place.

If the parameter of the master system λ is increased, the structure of domains in the
parameter plane becomes more complex, but fundamental features of the picture persist.
If in the master system chaotic behaviour arises, the slave system demonstrates forced
chaotic oscillations.

In Figure 2.2 we show the (λ,A) parameter space with constant coupling B = 0.375. If
parameter λ of the master system is increased (corresponding to motion from left to right
in the parameter plane), a cascade of period-doubling bifurcations in the master system
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Figure 2.2. Parameter space (λ,A) of the slave system for fixed parameter of coupling B = 0.375. It is
designated the bicritical point B (1.401155, 1.124981), which corresponds to simultaneous transition
to chaos in both systems.

takes place. The bifurcation borders correspond to vertical lines in Figure 2.2. If we vary
the parameter A to move from bottom to top in the parameter plane, the dynamics of the
master system remains unchanged, but in the slave system a cascade of period-doubling
bifurcations takes place. If we increase both control parameters A and λ, it is possible
to get a situation of simultaneous transition to chaos in both subsystems. The point of
transition to chaos in such case is called bicritical point [14]. It is designated by the letter
B in Figure 2.2. For coupling parameter B = 0.375 the bicritical point has coordinates
λ= 1.4011552, A= 1.1249814. At this point a special type of universal scaling behaviour
occurs. The RG analysis of this situation has been performed in [8, 10, 14].

The RG method consists in the following. Having the evolution operator of a system
for a certain number of time steps, we can find a new evolution operator for doubled
time interval and then rescale the dynamical variables to make the resultant operator as
similar to the initial one as possible. This is just the RG transformation. We can repeat
the process to obtain from the original operator a sequence of rescaled evolution oper-
ators for 2,4,8,16,. . . units of discrete time. At the parameter values corresponding to
the bicritical point the evolution operators asymptotically become invariant under the
transformation. In other words, the operator sequence converges to a fixed point of the
RG transformation. In the following discussion, dynamics at the critical point and in its
vicinity obeys properties of universality and scaling. The universality arises because the
fixed-point evolution operator is determined by the structure of the RG rather than by
the actual form of an initial evolution operator. Scaling properties in parameter space are
determined by spectrum of eigenvalues of the RG transformation linearized at the fixed
point. Each essential eigenvalue with modulus exceeding unity is responsible for one es-
sential parameter of system and gives a scaling factor for some direction of parameter
space [14].
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For the unidirectionally coupled maps the functional equations for the fixed point of
the RG operator reads (see some details of derivation in the next section):

g(x)= ag
(
g
(
x

a

))
, f (x, y)= b f

(
g
(
x

a

)
, f
(
x

a
,
y

b

))
. (2.2)

Scaling properties of orbits in phase space in directions x and y are characterized by
constants a = −2.502907 . . . and b = −1.505318 . . . , respectively. In parameter space, the
structure of domains in a small neighbourhood of the bicritical point manifests (asymp-
totically in small scales) self-similarity with respect to scale change along the horizontal
and vertical axes in Figure 2.2 by the factors δ1 =−4.669201 . . . and δ2 = 2.392724 . . . .

2.2. RG analysis of a system consisting of a master map and two coupled slave maps
near the bicritical point. Let us consider now a system consisting of one master map, the
pacemaker, and two coupled slave maps (Figure 1.1(c)), and assume that the dynamical
equations are of the following form:

xn+1 = g0
(
xn
)
,

yn+1 = f0
(
xn, yn

)
+ εϕ

(
xn, yn,zn

)
,

zn+1 = f0
(
xn,zn

)
+ εϕ

(
xn,zn, yn

)
.

(2.3)

Here ϕ(x, y,z) is a function of coupling which we require to vanish if the second and
the third arguments coincide: ϕ(x, y,z)|z=y ≡ 0. The functions g0(x) and f0(x, y) are as-
sumed to correspond to period-doubling mappings, for example, those presented in
(2.2): g0(x) = 1− λx2

n and f0(x, y) = 1−Ay2
n − Bx2

n, and the parameters are selected in
such a way that without coupling both slave systems are precisely at the bicritical point.

Now we wish to apply RG approach to a situation similar to that developed earlier for
coupled Feigenbaum period-doubling maps [2, 9, 13].

As a preliminary step, we restrict the set of dynamical states under consideration to
those close to symmetric states of both slave subsystems and assume that |yn− zn| � 1.
We rewrite the equations using new variables:

u= y + z

2
, v = y− z

2
, |v|� 1. (2.4)

Then, we have

xn+1 = g0
(
xn
)
,

un+1 = f0
(
xn,un

)
,

vn+1 = f ′0
(
xn,un

)
vn + εφ0

(
xn;un

)
vn.

(2.5)

Here f ′0 (x,u) is the derivative of the function with respect to the second argument, and
the coupling is characterized by the function

φ(x, y)= lim
y→x

ϕ(x; y,z)
z− y

. (2.6)
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After two iterations, the set of variables {x,u,v} obeys the following relations valid in the
first order in ε:

xn+2 = g0
(
g0
(
xn
))

,

un+2 = f0
(
g0
(
xn
)
, f0
(
xn,un

))
,

vn+2 = f ′0
(
g0
(
xn
)
, f0
(
xn,un

))
f ′0
(
xn,un

)
vn

+ εvn
[
f ′0
(
g
(
xn
)
, f0
(
xn,un

))
φ0
(
xn,un

)
+ f ′0

(
xn, yn

)
φ0
(
g0
(
xn
)
, f0
(
xn,un

))]
.

(2.7)

Let us perform a scale change for the dynamical variables x → x/a, u→ u/b, v → v/b,
where a and b are the universal factors mentioned in the previous section. This yields

xn+2 = ag0
(
g0
(
a−1xn

))
,

un+2 = b f0
(
g0
(
a−1xn

)
, f0
(
a−1xn,b−1un

))
,

vn+2 = f ′0
(
a−1xn,b−1un

)
f ′0
(
g
(
a−1xn

)
, f0
(
a−1xn,b−1un

))
vn

+ εvn
[
f ′0
(
g
(
a−1xn

)
, f0
(
a−1xn,b−1un

))
φ0
(
a−1xn,b−1un

)

+ f ′0
(
a−1xn,b−1un

)
φ0
(
g0
(
a−1xn

)
, f0
(
a−1xn,b−1un

))]
.

(2.8)

In terms of new functions,

g1(x)= ag0
(
g0
(
a−1x

))
,

f1(x)= b f0
(
g0
(
a−1x

)
, f0
(
a−1x,b−1u

))
,

φ1(x,u)= f ′0
(
g
(
a−1x

)
, f0
(
a−1x,b−1u

))
φ0
(
a−1x,b−1u

)

+ f ′0
(
a−1x,b−1u

)
φ0
(
g0
(
a−1x

)
, f0
(
a−1x,b−1u

))
.

(2.9)

Equations (2.8) accept exactly the same form as (2.5):

xn+2 = g1
(
xn
)
,

un+2 = f1
(
xn,un

)
,

vn+2 = f ′1
(
xn,un

)
vn + εφ1

(
xn;un

)
vn.

(2.10)

The relations (2.9) express the new functions in terms of the old ones and represent the
RG transformation for the problem we consider. It corresponds to a passage from initial
evolution operator for one iteration step to a renormalized operator for two steps. The
procedure may be repeated again and again to get recursively the evolution operators for
4,8, . . . steps of discrete time.

As the parameters in the functions g0(x) and f0(x, y) correspond to the bicritical point,
the sequence of functional pairs {gk(x), fk(x, y)} tends to the fixed point of the set of the
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functional equations

g(x)= ag
(
g
(
a−1x

))
, f (x,u)= b f

(
g
(
a−1x

)
, f
(
a−1x,b−1u

))
. (2.11)

The first is the well-known Feigenbaum-Cvitanović equation, and the second is equation
derived and studied in [8, 10, 14]. High precision numerical solutions for these equations
are known and published in the form of finite polynomial expansions [14].

In the remaining equation for the function of coupling, to study asymptotical be-
haviour of φn, we have to substitute the functions {g(x), f (x, y)} corresponding to the
fixed point of the RG transformation with {gk(x), fk(x, y)}. The result is a functional
equation with coefficients independent of k:

νφn+1(x,u)= f ′
(
g
(
a−1x

)
, f̃
(
a−1x,b−1u

))
φn
(
a−1x,b−1u

)

+ f ′
(
a−1x,b−1u

)
φn
(
g
(
a−1x

)
, f̃
(
a−1x,b−1u

))
.

(2.12)

The asymptotic behaviour will be determined by eigenfunctions for the eigenvalue prob-
lem obtained with a substitution φn(x,u) �→ νnφ(x,u):

νφ(x,u)= f ′
(
g
(
a−1x

)
, f̃
(
a−1x,b−1u

))
φ
(
a−1x,b−1u

)

+ f ′
(
a−1x,b−1u

)
φ
(
g
(
a−1x

)
, f̃
(
a−1x,b−1u

))
.

(2.13)

We will show now that in a class of smooth functions φ(x,u) there are two relevant solu-
tions which have eigenvalues larger than unity in modulus.

Let us search for a solution of (2.13) in a form φ(x,u) = f ′(x,u)H(x,u), where the
prime sign designates the derivative with respect to the second argument. Using the ex-
pression f ′(x,u) = f ′(a−1x,b−1u) f ′(g(a−1x), f (a−1x,b−1u)) which follows from differ-
entiating the second equation in (2.11) with respect to u, we obtain the following relation
from (2.13):

νH(x,u)=H
(
a−1x,b−1u

)
+H

(
g
(
a−1x

)
, f̃
(
a−1x,b−1u

))
. (2.14)

Obviously, one eigenmode may be obtained as a trivial solution H ≡ 1 with eigenvalue
ν1 = 2. One more relevant solution can be found from observation that the function
H(x,u) may have a singularity and behave as H ∝ u−1 near zero values of u. (Indeed,
in this case the function φ(x,u)= f ′(x,u)H(x,u) remains smooth because f ′(x,u)∝ u.)
Substituting H ∝ u−1 into (2.14) we see that the singular terms must satisfy ν/u = b/u,
that is, ν2 = b = −1.50532 . . . . Then, in asymptotic of large n the function φn(x,u) will
behave as

φn(x,u)= C1b
nφ1(x,u) +C22nφ2(x,u), (2.15)

where C1 and C2 are some coefficients depending on nature of coupling between two slave
subsystems in the original model. Index 1 corresponds to the coupling we call inertial, and
index 2 to that named dissipative.
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Figure 2.3. Schematic illustration of the two different types of coupling in system of two coupled
maps with a pacemaker: dissipative (a) and inertial (b).

The meaning of two types of coupling is illustrated schematically in Figure 2.3. In
the case of dissipative coupling, the instantaneous states of both subsystems mutually
influence each other at a same step of discrete time. Such coupling tends to equalize the
instantaneous states of both subsystems (Figure 2.3(a)). In the case of inertial coupling,
one element influences another at a next time step. Such coupling keeps a memory about
the state of the partner system on the previous step of evolution.

Let us consider the following model composed of a master and two coupled slave sub-
systems:

xn+1 = 1− λx2
n,

yn+1 = 1−Ay2
n−Bx2

n + εi
(
yn− zn

)
+Aεd

(
z2
n− y2

n

)
,

zn+1 = 1−Az2
n−Bx2

n + εi
(
zn− yn

)
+Aεd

(
y2
n− z2

n

)
.

(2.16)

Here the coupling between two slave subsystems is characterized by the coupling coef-
ficients εi and εd. It may be shown that the terms with εd just correspond to dissipative



Anna S. Ivanova et al. 9

coupling. The terms with εi contain, in fact, a combination of inertial and dissipative cou-
pling, with superior contribution of the first one. To arrange a situation of pure inertial
coupling we must carefully choose the coefficients in (2.16) to exclude completely the
dissipative coupling. (In other case, even in presence of very weak dissipative component,
it will grow faster than the inertial component under subsequent application of the RG
transformation and, hence, dominate the long-time dynamical behaviour of the system.)

In a concrete model, to estimate coefficients C1 and C2, that is, to analyse a “compo-
sition” of coupling, one can follow a method developed in [13] and consider multipliers
(Floquet eigenvalues) for a set of unstable period-2n cycles dependent on n in the limit
of small coupling. Calculating eigenvalues of the derivative matrix for the mapping (6) at
the fixed point of the equations x∗ = g(x∗), u∗ = f (x∗,u∗), we obtain

μ1 = g′
(
x∗
)=−1.60119 . . . , μ2 = f ′

(
x∗,u∗

)=−1.17885 . . . ,

μ3 = f ′
(
x∗,u∗

)
+ ε
[
C1b

nD1 +C22nD2
]
,

(2.17)

where Di = (1/2)∂φi(x,u)/∂u at x = x∗, u= u∗.
It follows from (2.17) that, asymptotically, they must obey the equation k = C1bnD1 +

C22nD2, and this allows to estimate the coefficients C1 and C2 via parameters of the model

C1 = εi, C2 = εd − 0.11855εi. (2.18)

It is worth noting one important moment distinct for critical behaviour of the cou-
pled systems with a pacemaker and those without it. At the Feigenbaum critical point in
a system without pacemaker, the eigenvalue associated with the inertial coupling is larger
in modulus than that for the dissipative coupling [13]. Therefore, in a case of weak cou-
pling of general form (combination of the inertial and dissipative couplings) structure
of the parameter space near the critical point is determined mainly by the inertial cou-
pling which dominates in the long-time evolution operator. In contrast, in our case of
two coupled slave subsystems at the bicritical point, the dissipative coupling is dominant
and essential for the long-time behaviour in the case of weak coupling of general form.

In Figures 2.4(a) and 2.4(b) the (λ,ε), we present parameter plane diagrams for the
model with pure dissipative (Figure 2.4(a)) and pure inertial (Figure 2.4(b)) couplings.
Different tones of grey represent periodic behaviour of different periods (indicated with
numbers), and white corresponds to chaos. If the parameter λ is increased, a cascade of
period-doubling bifurcations occurs. In the pure dissipative case, the chaotic dynamics
takes place at the λ < λc by increasing the coupling parameter. In the pure inertial case, for
small λ the dynamics remain regular, but the bifurcation borders have more complicated
form than in the pure dissipative coupling case.

In Figure 2.4 the illustrations of scaling in the (λ,ε) parameter space for pure dissipa-
tive (left side) and pure inertial (right side) couplings are shown. As stated previously,
the values of the other parameters correspond to the bicritical point (A= 1.1249 and B =
0.375). Each successive picture shows a magnification of the previous one. The follow-
ing property of scaling holds. At the point of the parameter space (Δλ/δ1,ΔA/δ2,C1a−1,
C22−1) dynamical regimes of the same kind as those found at the point (Δλ,ΔA,C1,C2)
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Figure 2.4. Illustrations of a scaling in the parameter space (λ,ε) for only dissipative (a) and inertial
(b) couplings for the following values of rest parameters A = 1.1249, B = 0.375, which correspond
to the bicritical point. Different tints of grey colour mean periodic behaviour, white area—chaos.
Numbers mean the different periods of oscillations. One can see that after special rescaling we have a
similar structure near the bicritical point.

arise, but with doubled time scale, and initial conditions for dynamical variables obtained
by rescaling with factors a=−2.5029 . . . for x and b =−1.5053 . . . for y and z. We can see
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that after rescaling by these factors, the structure of parameter space in neighbourhood
of bicritical point is very close to the original.

3. Globally coupled maps with a pacemaker

3.1. Clusterization and equations for dynamics of clusterized states. Now, we may turn
to a system of globally coupled maps with a pacemaker. As stated in the previous section,
there are two relevant types of coupling between two slave subsystems, dissipative and
inertial couplings. By imposing coupling by means of linear and quadratic terms for each
pair of a large collection of the slave subsystems, we arrive to a model of a globally coupled
network with a pacemaker:

xn+1 = 1− λx2
n,

yn+1(i)= (1− εd
)
f
(
xn, yn(i)

)− εi yn(i) + εiN
−1

N∑
j=1

yn( j) + εdN
−1

N∑
j=1

f
(
xn, yn( j)

)
.

(3.1)

Last two terms in (3.1) are the same for all elements of the network and may be regarded
as “mean fields” associated with two types of coupling

F(1)
n =N−1

N∑
j=1

yn( j), F2
n =N−1

N∑
j=1

f
(
xn, yn( j)

)
. (3.2)

In accordance with the relation (2.18), we set

εi = C1, εd = C2 + 0.11855C1, (3.3)

where C1 corresponds to the pure inertial coupling and C2 to the dissipative one.
As known, in the model without pacemaker a phenomenon takes place and it is called

clusterization [4, 6]. It consists in spontaneous formation of groups of cells, clusters, in
such way that instantaneous states of elements relating to the same cluster coincide ex-
actly. This is possible due to the global nature of coupling because neither the states of
the elements, nor the effecting mean field differ for the elements from the same cluster.
The same phenomenon obviously occurs in our model because a pacemaker equally in-
fluences all slave elements in the network. One can classify possible regimes of the system
by a number of clusters K and their relative population numbers. The relative population
number of a cluster is defined as ratio of a number of cells in the cluster to the whole
number of the cells in the network, Pm =Nm/N , where subscript m specifies the cluster.

Following Kaneko, we distinguish in our system four types of clusterized regimes.
(1) Coherent attractor: all elements of the network relate to one cluster, that is, have

identical instantaneous states.
(2) Attractors, which have a relatively small number of clusters, each containing a

large number of elements comparable to the whole number of cells in the net-
work.

(3) Attractors, which have both large clusters (population numbers of order 1) and
small clusters (population numbers of order N−1).
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(4) Attractors with a large number of clusters with population numbers of orderN−1.
Additionally, states of the network may be classified with respect to a type of dynamics

in time. Of particular significance is the nature of the regime of the pacemaker. Remember
that at small λ the map xn+1 = 1− λx2

n has an attractive fixed point. In this case dynam-
ics of the globally coupled slave maps is precisely analogous to that described by Kaneko
in [6]. If λ varies in an interval from 0.75 to 1.25, regular dynamics of period 2 for all
elements of globally coupled maps occurs, from 1.25 to 1.368 period 4, takes place with
period 4 and so on. On the basis of these regimes clusterized states of the network may
be obtained with different periods and with chaotic dynamics of the slave subsystems
by increasing the control parameter A. If λ is larger than λc ≈ 1.401 . . . , the pacemaker
demonstrates chaos (with exception of the so-called windows of regularity), and induces
chaos-like dynamics of the excited elements. It may be synchronous chaos, which corre-
sponds to type-1 regime (coherent state), or dynamics corresponding to types 2–4.

Let us suppose that we have a state of the network of the slave elements with k clusters.
In this case (3.1) may be rewritten as

xn+1 = 1− λx2
n,

Yk
n+1 =

(
1− ε2

)
f
(
xn,Yk

n

)− ε1Y
k
n + ε1

K∑
k=1

pkY
k
n + ε1N

−1
N∑
j=1

f
(
xn,Yk

n

)
,

(3.4)

where k = 1,2, . . . ,K , and a variable Yk
n relates to a cluster number k.

The simplest example is a two-cluster state. The equation (3.4) then takes the following
form:

xn+1 = 1− λx2
n,

Yk
n+1 =

(
1− ε2

)
f
(
xn,Yk

n

)
+ ε1p2

(
Yn−Zn

)
+ ε1p2

(
f
(
xn,Zn

)− f
(
xn,Yn

))
,

Zk
n+1 =

(
1− ε2

)
f
(
xn,Zk

n

)
+ ε1p1

(
Zn−Yn

)
+ ε1p1

(
f
(
xn,Yn

)− f
(
xn,Zn

))
,

(3.5)

where relative population numbers are P1 and P2 = 1−P1.
In the case p1 = p2 = 1/2 the equations for two-cluster state become the same as for

the case of two symmetric coupled maps with a pacemaker, the dynamics of which was
described in previous section. In addition, now it is interesting to investigate how the
asymmetry of population of two clusters influences the dynamics of the system.

In Figures 3.1 and 3.2 illustrations of scaling in different parameter space cross-sections
are shown for pure dissipative (left side) and pure inertial (right side) couplings. If we
compare Figure 2.4 (symmetric case) and Figure 3.1 (asymmetric case), for pure dissipa-
tive coupling, the domain of chaotic dynamics at P = 0.25 becomes more narrow, that
is, a nonsymmetric distribution of the elements in the clusters gives rise to more regular
dynamics in the two-cluster state. For pure inertial coupling the borders of bifurcations
in nonsymmetric case become more complicated.

In diagrams of the parameter plane (λ, p) in Figure 3.2 for pure dissipative coupling,
the structure of parameter space almost does not change with the variation of the popu-
lation number; for pure inertial coupling the essential change of the structure occurs near
the point of transition to chaos.
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Figure 3.1. Illustrations of a scaling at the parameter space (λ,ε) for pure dissipative (left side) and
pure inertial (right side) couplings for the following values of the rest parameters A = 1.1249, B =
0.375, which correspond to the bicritical point and p1 = 0.25. Different tints of grey colour mean
periodic behaviour, white area—chaos. Numbers mean the different periods of oscillations. One can
see that after special rescaling we have a similar structure near the bicritical point.

Each next picture in Figures 3.1 and 3.2 represents an enlarged fragment of a pre-
vious diagram. Enlargement corresponds to factors of scaling obtained in the previous
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Figure 3.2. Illustrations of a scaling in the parameter space (λ, p1) for pure dissipative (left side) and
pure inertial (right side) couplings for the following values of rest parameters A= 1.1249, B = 0.375,
which correspond to bicritical point and ε = 0.25 at initial time. The factor of scaling for p1 is equal 1.

section (see also the figures’ captions), the factor of scaling for relative population num-
bers equals 1. One can see that after the rescaling, similar structure in parameter space is
observed.
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3.2. Dynamics of globally coupled maps. Let us turn now to consideration of dynamics
of globally coupled maps with a pacemaker without preliminary assumptions about the
cluster structure.

For characterization of regimes that have arisen in the course of dynamical evolution
of the model of the globally coupled network that is dependent on parameters, it is ap-
propriate to use a concept of phases introduced by Kaneko [4, 6, 15, 17]. For a given point
in the parameter space (λ, A, B, ε1, ε2) we consider an ensemble of identical, mutually in-
dependent, globally coupled networks with random initial conditions. After a sufficiently
large number of iterations, we analyse statistics of the number of clusters and determine
the Kaneko phases as follows.

(i) Coherent phase: states with a single cluster (type-1 attractors) dominate in the
ensemble.

(ii) Ordered phase: states with a few numbers of clusters (attractors of type 2) occur
with larger probability.

(iii) Partially ordered phase: many-cluster attractors and few-cluster attractors appear
with comparable probability.

(iv) Turbulent state: all observed attractors have a number of clusters of order N .
In Figure 3.3 the coherent phase is indicated by letter C, ordered by letter O, partially

ordered by PO, and turbulent by letter T. The partially ordered phase, which corresponds
to coexistence clusters with few and many elements, takes place near the boundaries of
transition from one phase to another, for example, from coherent to ordered phase, or
from ordered to turbulent. It occupies usually a very narrow domain in the parameter
space.

One can observe that the largest part of the parameter space is occupied by a domain
of coherent phase. In this domain of the coherent state the dynamics is described simply
by (2.1) relating to two maps (master and slave) with unidirectional coupling. It means
that presence of the pacemaker promotes synchronization in the network in a more wide
region of the parameter space than that without pacemaker. In Figure 3.4 one can see
the phase diagram for pure dissipative coupling (right) and pure inertial one (left) for
case without pacemaker. All detections are similar for Figure 3.3. If coupling parameter
B = 0, the dynamics of (3.1) is really similar to case of network without pacemaker [4].
Also, we observe decrease of the domain of ordered phase due to presence of the pace-
maker.

For small value of parameter of coupling and small λ, we observe the coherent phase.
If ε ≈ 0 and λ = 0.75, then ordered phase has arisen. If λ increases, the turbulent phase
takes place. The main difference between two types of coupling is as follows. In dissipative
coupling case for “big” value of ε one can see only coherent phase, but for inertial one it
may be also ordered or turbulent phase and ordered phase arises for λ < λc.

From scaling regularities stated for a model with two coupled slave systems driven by
a pacemaker (Section 2), it follows that analogous regularities have to be intrinsic to the
network of coupled slave elements because the global coupling may be regarded as the re-
sult of coupling of all possible pairs of elements. The scaling property may be formulated
as follows.
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Figure 3.3. Illustrations of scaling in parameter space (A,ε) for globally coupled maps with pacemaker
for pure dissipative (left side) and pure inertial (right side) couplings. Letter C means coherent phase,
letter O means ordered, and letter T—turbulent phase.

Let us suppose that at some parameter values (λ,A,ε1 = C1, ε2 = C2− 0.11855C1) near
the bicritical point (λc,Ac) we detect some Kaneko phase for ensemble of networks with
random initial conditions from intervals |x| < C, |y| < D. Then, for an ensemble with
random initial conditions in the intervals |x| < C/|α|, |y| < D/|β| at the point of pa-
rameter space (λc + (λ− λc)/δ1, Ac + (A−Ac)/δ2, C1/β,C2/2), we will observe the phase
of the same kind, but with doubled time scale of the dynamics. Here α = 2.5029 and
δ1 = 4.6692 are Feigenbaum’s universal constants, and β = −1.5053 and δ2 = 2.3927 are
universal constants associated with the bicritical behaviour.

In Figure 3.3 we illustrate this scaling property of the parameter space of the network at
fixed master-slave coupling parameter B = 0.375. As one can see in Figure 3.3, the scaling
property is observed with good accuracy. The structure of parameter space after rescaling
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Figure 3.4. Phase diagrams for globally coupled maps without pacemaker for pure dissipative (a)
and pure inertial (b) couplings. Letter C means coherent phase, letter O means ordered, and letter
T—turbulent phase.

is not exactly similar to initial one, but the most important features, such as the lines of
transitions to another phase, the “coherent windows” in turbulent phase, are reproduced.

4. Conclusion

In this paper we have introduced a model network of logistic maps with a pacemaker.
In Section 2 the renormalization group (RG) analysis for two coupled systems with

a pacemaker have been developed. We conclude that in a general case the coupling is
expressed via two basic types of coupling, dissipative and inertial.

For globally coupled system we also must investigate only two types of global
coupling. We argued that clusterization phenomena and the Kaneko classification of
phases suggested for the network with dissipative coupling [6] remain in our model.

In Sections 2 and 3 the two-cluster states were investigated in detail. We discover that
dynamics of nonsymmetrically distributed two-cluster state is more complicated than
the symmetrically distributed one. Variation of the parameter p leads to a more devel-
oped chaos and the appearance of a complicated structure in the parameter plane (see
Figure 3.1).

For globally coupled systems, the presence of a pacemaker leads to an increase in the
size of the domain of coherent phase in the parameter space, that is, to more regular
behaviour of network. In contrast to dissipative coupling, inertial coupling ensures more
reach dynamics (see Figure 3.2, left—for pure dissipative global coupling, right—for pure
inertial one).

We analyse a special type of critical behaviour near transition to chaos, the bicriticality,
at the point of simultaneous transition to chaos in both subsystems. The illustrations of
scaling for two coupled systems with a pacemaker are presented in this paper.

We have demonstrated scaling properties in the globally coupled system with a pace-
maker. It follows from RG arguments developed previously for the system of two unidi-
rectionally coupled maps that the scaling properties appear as an attribute of the univer-
sality class. This means that analogous dynamical regimes and the same scaling properties
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will be intrinsic not only to our logistic map model with a pacemaker but for any glob-
ally coupled network composed of period-doubling elements that relate to the bicritical
class of universality. Thus, the results are expected to be common for globally coupled
networks with a pacemaker of a different physical nature such as those in electronics,
biology, economics, and so forth.
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