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One known theorem on the asymptotic behavior of solution of linear delay difference
equation is considered where a stability criterion is derived via a positive root of the cor-
responding characteristic equation. Two new directions for further investigation are pro-
posed. The first direction is connected with a weakening of the known stability criterion;
the second one is connected with consideration of negative and complex roots of the char-
acteristic equation. A lot of pictures with stability regions and trajectories of considered
processes are presented for visual demonstration of the proposed directions.
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1. Introduction: statement of the problem

There is a series of papers (see, e.g., [5–12]) where a similar method is used for investi-
gation of asymptotic behavior of solutions of difference equations [5, 7], and differential
equations [9, 10, 12], integro-differential equations [6, 8], and difference equations with
continuous time [11]. The basic assumption in this method is that the positive root of
the corresponding characteristic equation satisfies a special sufficient condition for as-
ymptotic stability of some auxiliary equation. Here on the example of Volterra difference
equation it is proposed to improve the results of these investigations in two directions.
Firstly it is shown that the basic assumption on the positive root of the corresponding
characteristic equation can be essentially weaken using different conditions for asymp-
totic stability. Besides of that it is shown that consideration of negative and complex
roots of the characteristic equation gives some new horizons for investigation. For vi-
sual demonstration of the proposed ideas, a lot of pictures with numerical calculations of
stability regions and trajectories of considered processes are presented.

Consider the Volterra difference equation

Δxn = axn +
∞∑

j=1

Kjxn− j , n≥ 0, (1.1)
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with the initial condition

xj = φj , j ≤ 0. (1.2)

Here Δxn = xn+1− xn, a and Kj , j = 1,2, . . . , are real numbers. The equation

λ− 1= a+
∞∑

j=1

λ− jKj (1.3)

is called the characteristic equation of difference equation (1.1).

Theorem 1.1. Let λ0 be a positive root of characteristic equation (1.3) with the property

1
λ0

∞∑

j=1

λ
− j
0 j
∣∣Kj

∣∣ < 1. (1.4)

Then for any initial sequence φj , j ≤ 0, the solution of (1.1), (1.2) satisfies the condition

lim
n→∞λ

−n
0 xn =Qλ0 (φ), (1.5)

where

Qλ0 (φ)= Lλ0 (φ)
1 + γλ0

, γλ0 =
1
λ0

∞∑

j=1

λ
− j
0 jKj ,

Lλ0 (φ)= φ0 +
1
λ0

∞∑

j=1

λ
− j
0 Kj

( −1∑

r=− j

λ−r0 φr

)
.

(1.6)

The proof of Theorem 1.1 follows from [5] where, in particular, it is shown that the
sequence

zn = λ−n0 xn−Qλ0 (φ) (1.7)

is a solution of the linear difference equation

zn =− 1
λ0

∞∑

j=1

λ
− j
0 Kj

( n−1∑

r=n− j

zr

)
, n > 0, (1.8)

and by condition (1.4) zn, defined by (1.7), converges to zero that is equivalent to (1.5).
Two following questions arise here.
Firstly, it is clear that condition (1.4) is a sufficient condition for asymptotic stabil-

ity of the trivial solution of (1.8). But is condition (1.4) a unique or the best sufficient
condition?
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Secondly, why only a positive root of (1.3) is considered here? Which is a situation in
the case of negative or complex root?

Below it is shown that condition (1.4) of Theorem 1.1 can be weaken and the negative
and complex roots of (1.3) also can be useful for investigation of asymptotic behavior of
the solution of (1.1), (1.2).

2. Improvement of the known result

Rewrite equation (1.8) in the form

zn =
∞∑

l=1

alzn−l, n > 0, al =− 1
λ0

∞∑

j=l
λ
− j
0 Kj. (2.1)

Different sufficient conditions for asymptotic stability of the trivial solution of difference
Volterra equation type of (2.1) were obtained in [1–4, 13] via the general method of
Lyapunov functionals construction.

In particular, if

∞∑

l=1

∣∣al
∣∣ < 1, (2.2)

then the trivial solution of (2.1) is asymptotically stable [1]. Condition (2.2) is weaker
than (1.4). Really,

∞∑

l=1

∣∣al
∣∣≤ 1

λ0

∞∑

l=1

∞∑

j=l
λ
− j
0

∣∣Kj

∣∣= 1
λ0

∞∑

j=1

j∑

l=1

λ
− j
0

∣∣Kj

∣∣= 1
λ0

∞∑

j=1

λ
− j
0 j
∣∣Kj

∣∣ < 1. (2.3)

Another sufficient condition for asymptotic stability of the trivial solution of difference
Volterra equation (2.1) has [1] the following form: if 2α− 1 < β < 1, where

β =
∞∑

l=1

al, α=
∞∑

l=1

Bl, Bl =
∣∣∣∣∣

∞∑

j=l+1

aj

∣∣∣∣∣, (2.4)

then the trivial solution of (2.1) is asymptotically stable.
So, the following theorem holds.

Theorem 2.1. Let λ0 be a positive root of characteristic equation (1.3) that satisfies the
property

1
λ0

∞∑

l=1

∣∣∣∣∣

∞∑

j=l
λ
− j
0 Kj

∣∣∣∣∣ < 1 (2.5)
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or the property

2α− 1 < β < 1,

α= 1
λ0

∞∑

l=1

∣∣∣∣∣

∞∑

j=l+1

( j− l)λ
− j
0 Kj

∣∣∣∣∣, β =− 1
λ0

∞∑

l=1

∞∑

j=l
λ
− j
0 Kj.

(2.6)

Then for any initial sequence φj , j ≤ 0, the solution of (1.1), (1.2) satisfies condition
(1.5), (1.6).

From (2.3) it follows that condition (2.5) is weaker than (1.4). To compare conditions
(1.4), (2.5), and (2.6) consider the following example.

Example 2.2. Consider the difference equation

Δxn = axn +K1xn−1 +K2xn−2. (2.7)

Auxiliary difference equation (2.1) in this case has the form

zn =−
(
K1λ

−2
0 +K2λ

−3
0

)
zn−1−K2λ

−3
0 zn−2. (2.8)

Conditions (1.4), (2.5), and (2.6) are correspondingly

∣∣K1
∣∣λ−2

0 + 2
∣∣K2

∣∣λ−3
0 < 1, (2.9)

∣∣K1λ
−2
0 +K2λ

−3
0

∣∣+
∣∣K2

∣∣λ−3
0 < 1, (2.10)

−1 < K1λ
−2
0 + 2K2λ

−3
0 < 1− 2

∣∣K2
∣∣λ−3

0 . (2.11)

It is well known also [13] that the necessary and sufficient condition for asymptotic sta-
bility of the trivial solution of (2.8) is

∣∣K1λ
−2
0 +K2λ

−3
0

∣∣ < 1 +K2λ
−3
0 ,

∣∣K2
∣∣λ−3

0 < 1. (2.12)

One can see that condition (2.12) follows from each of conditions (2.9), (2.10), and
(2.11). From each of these conditions it follows also that 1 + γλ0 = 1 +K1λ

−2
0 + 2K2λ

−3
0 > 0,

so Qλ0 (φ) in (1.6) is defined.



L. Shaikhet 5

−3 −2 −1 0 1 x1

C

H

D−1

F

1

x2

E

B

A

G

Figure 2.1. Different stability regions.

On Figure 2.1 stability regions for (2.8) are shown constructed by conditions (2.9)
(region AECF), (2.10) (region ABCD), (2.11) (region GCD), and (2.12) (region GHD)
in the space (x1,x2), where x1 = K1λ

−2
0 , x2 = K2λ

−3
0 .

3. Different situations with roots of the characteristic equation

To demonstrate the different situations of the use not only positive but also negative and
complex roots of characteristic equation (1.3) consider the simple difference equation

Δxn = axn + bxn−1, n= 0,1, . . . ,

xj = φj , j =−1,0.
(3.1)

The corresponding characteristic equation is

λ− 1= a+ bλ−1. (3.2)

The following theorem deals with behavior of the sequences xn and yn = λ−n0 xn, where xn
is a solution of (3.1) and λ0 is a root of characteristic equation (3.2).

Theorem 3.1. There are four different situations with a solution of (3.1).
(1) If

a+ 1 �= 0, (a+ 1)2 + 4b > 0, (3.3)

then

lim
n→∞ yn =Qλ0 (φ), (3.4)
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where

Qλ0 (φ)= Lλ0 (φ)

1 + λ−2
0 b

, Lλ0 (φ)= φ0 + λ−1
0 bφ−1, (3.5)

λ0 = a+ 1
2

(
1 +

√

1 +
4b

(a+ 1)2

)
. (3.6)

(2) If

a+ 1= 0, b > 0, (3.7)

then λ0 =±
√
b and

y2k = φ0, y2k+1 = λ0φ−1, k = 0,1, . . . . (3.8)

(3) If

a+ 1 �= 0, (a+ 1)2 + 4b= 0, (3.9)

then

yn = φ0 +nLλ0 (φ), n= 0,1, . . . , (3.10)

where Lλ0 (φ) is defined by (3.5) and λ0 = (1/2)(a+ 1).
(4) If

(a+ 1)2 + 4b < 0, (3.11)

then

∣∣yn−Qλ0 (φ)
∣∣= ∣∣φ0−Qλ0 (φ)

∣∣, n= 0,1, . . . , (3.12)

where

Qλ0 (φ)= φ0

2
∓ i

φ0(a+ 1) + 2bφ−1

2
√∣∣(a+ 1)2 + 4b

∣∣
, (3.13)

and λ0 is one of two conjugate complex roots

λ0 =
a+ 1± i

√∣∣(a+ 1)2 + 4b
∣∣

2
, i=√−1, (3.14)

of characteristic equation (3.2). It means that the values of the process yn are located in a
complex plane on the circle with the center Qλ0 (φ) and the radius r = |φ0 −Qλ0 (φ)|. This
circle includes the points 0 and φ0.
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Proof. (1) Let us suppose that condition (3.3) holds. Put

zn = yn−Qλ0 (φ), yn = λ−n0 xn, (3.15)

where xn is a solution of (3.1) and λ0 is a root of characteristic equation (3.2).
By condition (3.3), (3.2) has two real roots

λ1,2 = a+ 1±√(a+ 1)2 + 4b
2

= a+ 1
2

(
1±

√

1 +
4b

(a+ 1)2

)
. (3.16)

From (2.1) it follows that sequence (3.15) satisfies the equation

zn =−λ−2
0 bzn−1, n= 0,1, . . . . (3.17)

The necessary and sufficient condition for asymptotic stability of the trivial solution of
(3.17) is

∣∣λ−2
0 b
∣∣ < 1. (3.18)

From (3.2) it follows that condition (3.18) is equivalent to |1− (a+ 1)λ−1
0 | < 1 or

λ0(a+ 1)−1 >
1
2
. (3.19)

It is easy to see that from two roots (3.16) of (3.2) root (3.6) only satisfies condition
(3.19). So (3.4) is proven.

(2) By conditions (3.7) from (3.2) it follows that λ−2
0 b = 1. Equation (3.17) takes the

form zn =−zn−1. Therefore, zn = (−1)nz0, n= 1,2, . . .. Via (3.15), (3.5) from here we have

yn =Qλ0 (φ) + (−1)n
[
φ0−Qλ0 (φ)

]

= (−1)nφ0 +
1
2

[
1− (−1)n

][
φ0 +

(
λ−2

0 b
)
λ0φ−1

]

= 1
2

[
1 + (−1)n

]
φ0 +

λ0

2

[
1− (−1)n

]
φ−1

(3.20)

that is equivalent to (3.8).
(3) By condition (3.9) the solution of (3.2) is λ0 = (1/2)(a+ 1). From here and (3.9)

it follows that 1 + λ−2
0 b = 0 and, therefore, Qλ0 (φ) in (3.5) is undefined. It means that

sequence (3.15) undefined too. Using yj = λ
− j
0 xj , j = 0,1, . . ., (3.1), (3.2), and λ−1

0 b =−λ0,
we have

Δxj − axj − bxj−1 = Δ
(
λ
j
0yj
)− aλ

j
0yj − bλ

j−1
0 yj−1

= λ
j
0

[
λ0Δyj +

(
λ0− 1− a

)
yj − bλ−1

0 yj−1
]

= λ
j+1
0

[
Δyj −Δyj−1

]= 0.

(3.21)
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Figure 3.1. Regions with different behavior of xn and yn.

From here via (3.5) it follows that

Δyj = Δyj−1 = y0− y−1 = x0− λ0x−1 = φ0 + λ−1
0 bφ−1 = Lλ0 (φ) (3.22)

or yj = yj−1 + Lλ0 (φ). Summing this equality with respect to j = 1,2, . . . ,n, we obtain
(3.10).

(4) Let us suppose now that condition (3.11) holds. Then the conjugate complex roots
of (3.2) are defined by (3.14) and satisfy the condition |λ0|2 = −b = |b| or |λ−2

0 b| = 1.
From (3.17) it follows that process (3.15) satisfies the equation |zn| = |zn−1| or |zn| = |z0|.
It is equivalent to (3.12). Now it is enough to show that Qλ0 (φ) defined by (3.5) equals
Qλ0 (φ) defined by (3.13). Really, putting δ = √|(a+ 1)2 + 4b|, from (3.14) we obtain 2λ0−
(a+ 1) =±iδ. Using (3.2), (3.5), and (3.14), one can transform Qλ0 (φ) by the following
way:

Qλ0 (φ)= Lλ0 (φ)

2− λ−1
0 (a+ 1)

= λ0Lλ0 (φ)
2λ0− (a+ 1)

= λ0Lλ0 (φ)
±iδ = 2iλ0Lλ0 (φ)

∓2δ

= i
(
φ0(a+ 1)± iφ0δ + 2bφ−1

)

∓2δ
= φ0

2
∓ i

φ0(a+ 1) + 2bφ−1

2δ
.

(3.23)

The theorem is proven. �

Four regions described in Theorem 3.1 are shown on Figure 3.1: (1) at the left of the
curve KLM and from the right of the curve KLN ; (2) the line KL; (3) the curve MLN ; (4)
under the curve MLN . The point L with the coordinates a=−1, b = 0 is excluded from
the consideration since in this point λ0 = 0. The inside of the triangle ABC is the region
of asymptotic stability of the trivial solution of (3.1).

Below on Figures 3.2, 3.4, and 3.5 the first situation from Theorem 3.1 is shown.
On Figure 3.2 the trajectories of the processes xn and yn are shown in the point D (it

is shown on Figure 3.1) with the coordinates a=−1.5, b = 0.65. Here φ−1 = 2, φ0 = 0.5,
λ0 = −1.094 (a negative root). The point P does not belong to the stability region (the
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Figure 3.2. Regions with different behavior of xn and yn in the point D.
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Figure 3.3. Behavior of xn and yn in the point E.

triangle ABC) of the trivial solution of (3.1), so the process xn (green) goes to ±∞. The
process yn (red) enough quickly converges to Qλ0 (φ)=−0.446.

On Figure 3.3 the similar trajectories of the processes xn and yn are shown in the point
E (Figure 3.1). Here a=−0.5, b = 0.65, φ−1 =−2, φ0 = 2.5, λ0 = 1.094 (a positive root),
the process xn (green) goes to +∞, the process yn (red) quickly converges to Qλ0 (φ) =
0.850.

On Figure 3.4 the trajectories of the processes xn and yn are shown in the point F
(Figure 3.1) with the coordinates a = −1.5, b = 0.25. Here φ−1 = 3, φ0 = −1.5, λ0 =
−0.809 (a negative root). The point F belongs to the stability region (the triangle ABC)
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Figure 3.4. Behavior of xn and yn in the point F.
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Figure 3.5. Behavior of xn and yn in the point G.

of the trivial solution of (3.1), so, the process xn (green) converges to zero. The process yn
(red) quickly converges to Qλ0 (φ)=−1.756.

On Figure 3.5 the similar trajectories of the processes xn and yn are shown in the point
G (Figure 3.1). Here a=−0.5, b = 0.25, φ−1 = 3, φ0 = 1, λ0 = 0.809 (a positive root), the
process xn (green) converges to zero, the process yn (red) quickly converges to Qλ0 (φ)=
1.394.

On Figures 3.6 and 3.7 the second situation from Theorem 3.1 is shown.
On Figure 3.6 the trajectories of the processes xn and yn are shown in the point U

(Figure 3.1) with the coordinates a=−1, b = 1.1. Here φ−1 = 1.5, φ0 =−1, λ0 =−1.049
(a negative root). The point U does not belong to the stability region (the triangle ABC)
of the trivial solution of (3.1), so the process xn (green) goes to ±∞. The process yn (red)
has two values: φ0 =−1 and λ0φ−1 =−1.573.
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Figure 3.6. Behavior of xn and yn in the point U .
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Figure 3.7. Behavior of xn and yn in the point V .

On Figure 3.7 the similar trajectories of the processes xn and yn are shown in the point
V (Figure 3.1). Here a=−1, b = 0.6, φ−1 = 1.5, φ0 =−1, λ0 = 0.775 (a positive root), the
process xn (green) converges to zero, the process yn (red) has two values: φ0 = −1 and
λ0φ−1 = 1.162.

On Figures 3.8 and 3.9 the third situation from Theorem 3.1 is shown.
On Figure 3.8 the trajectories of the processes xn and yn are shown in the point W

(Figure 3.1) with the coordinates a = 0, b = −0.25. Here φ−1 = 3.5, φ0 = 1.6, λ0 = 0.5 (a
positive root), Lλ0 (φ)=−0.15. The point W belongs to the stability region (the triangle
ABC) of the trivial solution of (3.1), so the process xn (green) converges to zero. The
process yn (red) is a straight line.

On Figure 3.9 the trajectories of the processes xn and yn are shown in the point A
(Figure 3.1) with the coordinates a = −3, b = −1. Here φ−1 = 1.2, φ0 = −1, λ0 = −1
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Figure 3.8. Behavior of xn and yn in the point W .
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Figure 3.9. Behavior of xn and yn in the point A.

(a negative root), Lλ0 (φ) = 0.2. The point A does not belong to the stability region (the
triangle ABC) of the trivial solution of (3.1), so the process xn (green) goes to ±∞. The
process yn (red) is a straight line.

On Figures 3.10 and 3.11 the fourth situation from Theorem 3.1 is shown.
On Figure 3.10(a) the trajectory of the complex process yn is shown in the point P

(Figure 3.1) with the coordinates a = −0.5, b = −0.6. Here φ−1 = −3, φ0 = 3. One can
see that the values of the process yn are located in the complex plane on the circle with
radius r = 2.297 and the center Qλ0 (φ) = 1.5− i1.739 (green) if λ0 = 0.25 + i0.733 and
Qλ0 (φ) = 1.5 + i1.739 (red) if λ0 = 0.25− i0.733. On Figure 3.10(b) the trajectory of the
process xn is shown in the same point P (Figure 3.1). This point belongs to the stability
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Figure 3.10. (a) Behavior of yn in the point P; (b) behavior of xn in the point P.
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Figure 3.11. (a) Behavior of yn in the point R; (a) behavior of xn in the point R.
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region (the triangle ABC) of the trivial solution of (3.1), so the process xn converges to
zero.

On Figure 3.11(a) the trajectory of the complex process yn is shown in the point R
(Figure 3.1) with the coordinates a=−0.5, b =−1.2. Here φ−1 =−3, φ0 = 4. One can see
that the values of the process yn are located in the complex plane on the circle with radius
r = 2.941 and the center Qλ0 (φ) = 2− i2.157 (green) if λ0 = 0.25 + i1.067 and Qλ0 (φ) =
2 + i2.157 (red) if λ0 = 0.25− i1.067. On Figure 3.11(b) the trajectory of the process xn is
shown in the same point R (Figure 3.1). This point does not belong to the stability region
(the triangle ABC) of the trivial solution of (3.1), so the process xn goes to ±∞.

4. Conclusion

In this paper it is shown that the known results type of Theorem 1.1 (see [5–12]) can be
improved similar to Theorem 2.1 by virtue of different stability conditions obtained via
general method of Lyapunov functionals construction [1–4, 13]. On the other hand, it
is noted that the results of the papers [5–12] in general case can be essentially extended
similar to Theorem 3.1 via consideration of not only positive but also negative and com-
plex roots of the corresponding characteristic equation. These ideas can be applied both
for difference and for functional-differential equations.
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