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This paper deals with a class of singular boundary value problems of differential equations
on infinite time scale. An existence theorem of positive solutions is established by using
the Schauder fixed point theorem and perturbation and operator approximation method,
which resolves the singularity successfully and differs from those of some papers. In the
end of the paper, an example is given to illustrate our main result.
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1. Introduction

Recently, much attention is attracted by questions of existence of positive solutions to
boundary value problems for differential equations on measure chains, see, for example,
[1–7, 10–12, 15, 17–19, 21]. This has been mainly due to its unification of the theory
of differential and difference equations. An introduction to this unification is given in
[5, 17, 19]. Now, this study is still a new area of fairly theoretical exploration in mathe-
matics. However, it has led to several important applications, for example, in the study of
insect population models, neural networks, heat transfer, and epidemic models, see, for
example, [1].

To the author’s knowledge, very little work has been done to the existence of positive
solutions on infinite time scale. In 2002 and 2004, [2, 15] considered boundary value
problems on infinite time scale. Problems in [2, 15] are all nonsingular and the method
used is obtaining the local solutions at first and then extending them to the whole interval.

Motivated by works of [2, 14, 15, 21], in this paper, we investigate the existence of
positive solutions to the following singular boundary value problem on infinite time scale

xΔΔ(t)− k2x
(
σ(t)

)
+m(t) f

(
t,x
(
σ(t)

))= 0, t ∈R+,

x(0)= 0, lim
t→∞x(t)= 0,

(1.1)
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where k > 0 is given, R+ := [0,∞), m(·) and f (·,·) are given functions. m(t) may be
singular at t = 0 and f (t,x) may be singular at x = 0.

To understand the notation used above and the ideas of time scale, some preliminary
definitions are useful.

Definition 1.1. A time scale T is a nonempty closed subset of R, the set of real numbers.

Throughout this paper, the assumption is made that T has the subspace topology in-
herited from the standard topology on R. We also assume that there exist t1

n, t2
n ∈ R+,

n∈ {1,2,3, . . .} ≡N such that

t1
n ↑ ∞ as n−→∞, t2

n ↓ 0 as n−→∞. (1.2)

Definition 1.2. Define the interval in T:

[a,b] := {t ∈ T such that a≤ t ≤ b
}
. (1.3)

Other type of intervals are defined similarly.

A time scale may or may not be connected, so the concept of jump operators is useful.

Definition 1.3. Define the forward jump operator (resp., backward jump operator) at t
for t < supT (resp., for t > inf T) by

σ(t) := inf
{
τ > t; τ ∈ T}∈ T (

resp., ρ(t) := sup
{
τ < t; τ ∈ T}∈ T) (1.4)

for all t ∈ T.

In this definition, we put inf φ = supT (i.e., σ(M) =M if T has a maximum M) and
supφ = inf T (i.e., ρ(m) =m if T has a minimum m), where φ denotes the empty set. If
σ(t) > t, we say t is right scattered, while if ρ(t) < t we say that t is left scattered. Points that
are right scattered and left scattered at the same time are called isolated. Also, if t < supT
and σ(t)= t, then t is called right-dense, and if t > inf T and ρ(t)= t, then t is called left-
dense. Points that are right-dense and left-dense are called dense. If T has a left-scattered
maximum M, then we define T∗ := T−{M}, otherwise T∗ := T.

Now we consider a function x : T→R and define so-called delta (Hilger) derivative of
x at a point t ∈ T∗.

Definition 1.4. Assume x : T→ R and fix t ∈ T∗. Then define x
(t) to be the number
(provided that it exists) with the property that given any ε > 0, there is a neighborhood U
of t such that

∥
∥[x
(
σ(t)

)− x(s)
]− x
(t)

[
σ(t)− s

]∥∥≤ ε
∣
∣σ(t)− s

∣
∣, (1.5)

for all s∈U . Call x
(t) the delta (or Hilger) derivative of x(t) at t ∈ T. The derivative can
also be defined in terms of a limit as follows:

x
(t) := lim
s→t,σ(s) �=t

x
(
σ(s)

)− x(t)
σ(s)− t

= lim
s→t,σ(t) �=s

x
(
σ(t)

)− x(s)
σ(t)− s

. (1.6)

The second derivative of x(t) is defined by x

(t)= (x
)
(t).
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Reference [5, Theorem 1.3(iv)] tells us that if t ∈ T∗ and f : T→R+ is delta-differential
at t, then

f
(
σ(t)

)= f (t) +
(
σ(t)− t

)
f Δ(t). (1.7)

Definition 1.5. A function F : T→ R is called delta-antiderivative of f : T→ R provided
that F
(t)= f (t) holds for all t ∈ T∗. In this case, define the integral of f by

∫ t

a
f (τ)
τ = F(t)−F(a). (1.8)

It is important to make further illumination on the integral in Definition 1.5. We get
from [5, Theorem 1.30] that

∫ b

a
f (t)Δt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

t∈[a,b)

[
σ(t)− t

]
f (t) if a < b,

0 if a= b,

−
∑

t∈[b,a)

[
σ(t)− t

]
f (t) if a > b,

(1.9)

where [a,b] consists of only isolated points and f ∈ Crd[a,b]. [5, Chapter 5, pages 145–
155] investigated improper integrals on time scales and presented that

∫∞

a
f (t)Δt = lim

A→∞

{∫ A

a
f (t)Δt

}
, (1.10)

if the integral F(A)= ∫ Aa f (t)Δt approaches a finite limit as A→∞. We call that limit the
improper integral of first kind of f from a to ∞. In such a case we say that the improper
integral

∫∞
a f (t)Δt exists or that it is convergent. If f has a singularity at t = b and the

left-sided limit limc→b−
∫ c
a f (t)Δt exists as a finite number, then we say that the improper

integral
∫ b
a f (t)Δt exists or that it is convergent. In such a case we call this limit the value

of the improper integral
∫ b
a f (t)Δt and write

∫ b

a
f (t)Δt = lim

c→b−

∫ c

a
f (t)Δt. (1.11)

Proposition 1.6 [5, Theorem 5.52]. Let the inequalities 0≤ f (t)≤ g(t) be satisfied for all
t ∈ [a,∞). Then the convergence of the improper integral

∫∞

a
g(t)Δt (1.12)

implies the improper integral

∫∞

a
f (t)Δt (1.13)
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and the inequality

∫∞

a
f (t)Δ≤

∫∞

a
g(t)Δ, (1.14)

while the divergence of integral (1.13) implies the divergence of integral (1.12).

Formulas (1.9)–(1.11) and the comparison test Proposition 1.6 will play an important
role in Example 4.1.

Definition 1.7. A function f : T→R is called rd-continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The
set of rd-continuous functions f : T→R will be denoted by

Crd = Crd(T)= Crd(T,R). (1.15)

Definition 1.8. Define S to be the set of all functions x : T→R such that

S := {x : x ∈ C
(
R+;R

)
, xΔΔ ∈ C

(
R+;R

)}
. (1.16)

A positive solution to BVP (1.1) is a function x ∈ Swhich satisfies (1.1) for each t ∈R+

and x(t) > 0 on (0,∞).
The aim of this paper is to give the existence of positive solutions of BVP (1.1) on

infinite time scale R+. Here the problem (1.1) may be singular. Generally speaking, limit
conditions are required on many researches on time scale at present and the Krasnosel’skii
fixed point theorem is often used also, see, for example, [3, 6–13, 16, 18, 20]. By using the
Schauder fixed point theorem (the Krasnosel’skii fixed point theorem does not applies
to this paper) and monotone conditions (see (H1)), not limit conditions, we obtain di-
rectly the global positive solution of BVP (1.1). Perturbation and operator approximation
method are used to resolve the singularity. Moreover, some compactness criterion (see
Proposition 2.1) will help us to resolve the new problem that is how to prove the com-
pletely continuity of an operator (see (3.1)) defined on the infinite time scale R+. These
are the differences between this paper and papers [2, 3, 6–16, 18, 20, 21].

We organize this paper as follows. In Section 2, starting with some preliminary results,
we then state our main result (see Theorem 2.2), an existence theorem of positive solu-
tions of BVP (1.1). Section 3 concentrates on the proof of Theorem 2.2. An example is
given to illustrate Theorem 2.2 in Section 4.

2. Preliminaries and main result

We will first present some properties of the Green’s function for the following homoge-
neous BVP:

xΔΔ(t)− k2x
(
σ(t)

)= 0, t ∈R+,

x(0)= 0, lim
t→∞x(t)= 0.

(2.1)
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The Green function for BVP (2.1) is given as follows:

G(t,s)= 1
2k

⎧
⎨

⎩

e−kσ(s)
(
ekt − e−kt

)
, 0≤ t ≤ s,

e−kt
(
ekσ(s)− e−kσ(s)

)
, 0≤ σ(s)≤ t.

(2.2)

Obviously,

G(t,s)≥ 0, (t,s)∈R+×R+. (2.3)

e−μtG(t,s)≤ e−kσ(s)G
(
σ(s),s

)
, μ≥ k, (t,s)∈R+×R+. (2.4)

Define

E :=
{
x ∈ C

(
R+) : sup

t∈R+

{∣∣x(t)
∣
∣e−λ

∗t} <∞
}

, (2.5)

where

λ∗ > k is given. (2.6)

It is easy to testify that E is a Banach space equipped with the following norm:

‖x‖ := sup
t∈R+

{∣∣x(t)
∣
∣e−λ

∗t}. (2.7)

The Schauder fixed point theorem will be used in this paper. So we need also the fol-
lowing modification of the compactness criterion.

Proposition 2.1 (cf. [22]). Let E1 be the space given by

E1 :=
{
x ∈ C

(
R+) : sup

t∈R+

{∣∣x(t)
∣
∣p(t)

}
<∞

}
(2.8)

equipped with the norm

‖x‖ := sup
t∈R+

{|x(t)
∣
∣p(t)

}
, (2.9)

where p :R+ → (0,∞) is a continuous function. LetΩ⊂ E1. If the functions x ∈Ω are almost
equicontinuous on R+ (i.e., they are equicontinuous in each interval [0,T], 0 < T <∞) and
uniformly bounded in the sense of the norm

‖x‖q := sup
t∈R+

{∣∣x(t)
∣
∣q(t)

}
, (2.10)

where the function q is positive and continuous on R+ and

lim
t→∞

p(t)
q(t)

= 0, (2.11)

then Ω is relatively compact in E1.
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Now, let us present the main result of this paper as follows.

Theorem 2.2. Assume the following conditions hold:
(H1) f (t,x) : R+× (0,∞)→ R+ is continuous ( f may be singular at x = 0) and f (t,x) is

decreasing in relative to x and satisfies also

sup
(t,x)∈R+×R+

f (t,x) <∞; (2.12)

(H2) m(·) : (0,∞)→ R+ is rd-continuous and may be singular at t = 0;
(H3)

∫∞
0 e−kσ(s)G(σ(s),s)m(s)
s <∞ hold all. Then, BVP (1.1) has at least one positive

solution.

3. Proof of Theorem 2.2

The idea of the proof is that we prove first that the following BVP (1.1)ε, the perturbation
of BVP (1.1), has at least one positive solution for any ε. Then we prove that the set
of those positive solutions has a convergent subsequence and its limit is just a positive
solution of BVP (1.1).

Definition 3.1. If x(t)∈ C2((0,∞))∩C(R+) satisfies
(1) x(t)= ε+

∫∞
0 G(t,s)m(s) f (s,x(σ(s)))Δs;

(2) xΔΔ(t)− k2x(σ(t)) + m(t) f (t,x(σ(t))) = 0 and x(t) > 0, t ∈ (0,∞), then call it a
positive solution of the following BVP (1.1)ε:

xΔΔ(t)− k2x
(
σ(t)

)
+m(t) f

(
t,x
(
σ(t)

))= 0,

x(0)= ε, lim
t→∞x(t)= ε,

(1.1)ε

with ε ∈ (0,1) a parameter.

Proof of Theorem 2.2. The rather long proof will be divided into three steps.

Step 1. We show that BVP (1.1)ε has at least one positive solution for any ε∈ (0,1).
Let us first define an operator A as follows

(Ax)(t) := ε+
∫∞

0
G(t,s)m(s) f

(
s,x
(
σ(s)

))
Δs, t ∈R+, x ∈Dε, (3.1)

where

Dε := {x ∈ E; 0 < ε ≤ x(t)≤ (Aε)(t), t ∈R+}. (3.2)

By conditions (H1)–(H3) and (2.4) we get, for any x ∈Dε and t ∈R+,

∣
∣Ax(t)

∣
∣e−λ

∗t = εe−λ
∗t +

∫∞

0
e−λ

∗tG(t,s)m(s) f
(
s,x
(
σ(s)

))
Δs

≤ ε+
∫∞

0
e−kσ(s)G

(
σ(s),s

)
m(s) f

(
s,x
(
σ(s)

))
Δs

≤ 1 + sup
(u,v)∈R+×R+

f (u,v)
∫∞

0
e−kσ(s)G

(
σ(s),s

)
m(s)Δs.

(3.3)
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Equation (3.3) implies that

sup
t∈R+

{∣∣Ax(t)
∣
∣e−λ

∗t}≤ 1 + sup
(u,xv)∈R+×R+

f (u,v)
∫∞

0
e−kσ(s)G

(
σ(s),s

)
m(s)Δs <∞. (3.4)

This implies that the operator A is well defined and Ax ∈ E,∀ x ∈Dε.
Clearly, fixed points of operator A in Dε are also positive solutions of BVP (1.1)ε. So

in order to use the well-known Schauder fixed point theorem to obtain fixed point of op-
erator A, now, let us concentrate on the proof that A : Dε →Dε is completely continuous.
Firstly, it is easy to see that A(Dε)⊂Dε. Secondly, we claim that A : Dε →Dε is completely
continuous. We can see also that the singularity of f at x = 0 has been removed success-
fully by using the perturbation. The singularity of m at t = 0 will be solved also by using
approximation method. For further details, there are two cases to be considered.

Case 1. If m(t)∈ C[0,∞) holds in (H2), let us prove that A is completely continuous. For
any x ∈Dε, t ∈R+ and λ∗1 such that

k < λ∗1 < λ∗, (3.5)

we see similarly from the proof of (3.3) that functions {Ax : x ∈Dε} are uniformly bound-
ed with respect to the norm

‖x‖λ∗1 := sup
t∈R+

{∣∣x(t)
∣
∣e−λ

∗
1 t
}
. (3.6)

Moreover, for any N ∈ (0,∞), the fact that

G(t,s)∈ C
(
[0,N]×R+), m(t)∈ C

(
[0,N]

)
, f (t,x)∈ C

(
[0,N]×Dε

)
(3.7)

and standard arguments tell us that {Ax : x ∈Dε} are equicontinuous in interval [0,N].
So {Ax : x ∈Dε} are almost equicontinuous on R+. Thus, if we set

p(t) := e−λ
∗t, q(t) := e−λ

∗
1 t, (3.8)

then Proposition 2.1 implies that {Ax : x ∈ Dε} is a precompact set in E. Hence, A is
completely continuous.

Case 2. We claim that the operator A given by (3.1) is completely continuous when m(t)
is singular at t = 0. Choose {ηn}∞n=1 ⊂ R+ such that ηn ↓ 0 as n→∞. Define operator
sequences {An} by

(
Anx

)
(t)= ε+

∫∞

ηn
G(t,s)m(s) f

(
s,x
(
σ(s)

))
Δs, x ∈Dε, t ∈R+, n≥ 1. (3.9)

It follows from the proof of Case 1 that

An : Dε −→Dε is completely continuous for each n≥ 1. (3.10)
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By condition (H1), (2.4), and (2.6), we have

∣
∣(Ax)(t)− (Anx

)
(t)
∣
∣e−λ

∗t =
∫ ηn

0
e−λ

∗tG(t,s)m(s) f
(
s,x
(
σ(s)

))
Δs

≤
∫ ηn

0
e−kσ(s)G

(
σ(s),s

)
m(s)Δs sup

(u,v)∈R+×R+

f (u,v),
(3.11)

and so

sup
t∈R+

{∣∣(Ax)(t)− (Anx
)
(t)
∣
∣e−λ

∗t}≤ sup
(u,v)∈R+×R+

f (u,v)
∫ ηn

0
e−kσ(s)G

(
σ(s),s

)
m(s)Δs.

(3.12)

Condition (H3) and the absolute continuity of integral imply that

lim
n→∞

∫ ηn

0
e−kσ(s)G

(
σ(s),s

)
m(s)Δs= 0. (3.13)

Equations (3.10), (3.12), and (3.13) justify that operator A is completely continuous.
Consequently, we know from the Schauder fixed point theorem that the operator A

has one fixed point in Dε. Without loss of generality, we write it as x(t,ε). Then we may
compute that

x(t,ε)= ε+
∫∞

0
G(t,s)m(s) f

(
s,x
(
σ(s),ε

))
Δs,

xΔΔ(t,ε)− k2x
(
σ(t),ε

)
+m(t) f

(
t,x
(
σ(t),ε

))= 0, x(t,ε) > 0, t ∈ (0,∞).
(3.14)

So x(t,ε) is a positive solution of BVP (1.1)ε.

Step 2. Let us show that if 1 > ε1 > ε2 > 0, then

0≤ x
(
t,ε1

)− x
(
t,ε2

)≤ ε1− ε2, ∀ t ∈R+. (3.15)

For any 1 > ε1 > ε2 > 0, we show first that

0≤ x
(
t,ε1

)− x
(
t,ε2

)
, ∀ t ∈R+. (3.16)

If not, then either

x
(
t,ε1

)
< x
(
t,ε2

)
, ∀ t ∈R+, (3.17)

or

x
(
t,ε1

)
< x
(
t,ε2

)
, t ∈ S1, x

(
t,ε1

)≥ x
(
t,ε2

)
, t ∈ S2, (3.18)

holds, where S1 and S2 are some nonempty subsets of R+. If (3.17) holds, then for any
t ∈R+, we have from (3.14) that

ε1 +
∫∞

0
G(t,s)m(s) f

(
s,x
(
σ(s),ε1

))
Δs < ε2 +

∫∞

0
G(t,s)m(s) f

(
s,x
(
σ(s),ε2

))
Δs. (3.19)
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Then (3.17), (3.19) and the monotone property of f imply that

0≤
∫∞

0
G(t,s)m(s)

[
f
(
s,x
(
σ(s),ε1

))− f
(
s,x
(
σ(s),ε2

))]
Δs < ε2− ε1 < 0, (3.20)

a contradiction. If (3.18) holds, we write W(t) := x(t,ε2)− x(t,ε1), t ∈R+. Then the con-
tinuity of W(t) and (3.18) tell us that there exists a nonempty and closed S3 ⊂ R+ such
that W(t) is sign-changing on S3. Therefore,

W(t) �≡ constant, t ∈ S3. (3.21)

Set

W
(
t0
)=max

t∈S3

W(t). (3.22)

Clearly, W(t0) > 0 and t0 is an extreme value point tells us that WΔ(t0) = 0. Then we
know from (1.7) that

W
(
σ
(
t0
))=W

(
t0
)

+WΔ
(
t0
)(
σ
(
t0
)− t0

)
> 0. (3.23)

Furthermore, (3.21) and (3.22) imply that t0 is not minimal value point. This gives

WΔΔ
(
t0
)≤ 0. (3.24)

On the other hand, (3.23) gives x(σ(t0),ε1)− x(σ(t0),ε2) < 0. So we know from the prop-
erty of f (t,x) that

f
(
t0,x

(
σ
(
t0
)
,ε1
))− f

(
t0,x

(
σ
(
t0
)
,ε2
))≥ 0. (3.25)

Hence

WΔΔ
(
t0
)= xΔΔ

(
t0,ε2

)− xΔΔ
(
t0,ε1

)

= k2W
(
σ
(
t0
))

+m
(
t0
)[
f
(
t0,x

(
σ
(
t0
)
,ε1
))− f

(
t0,x

(
σ
(
t0
)
,ε2
))]

≥ k2W
(
σ
(
t0
))
.

(3.26)

Clearly, (3.23) implies that (3.24) contradicts (3.26). So (3.18) does not holds. Conse-
quently, (3.16) holds.

From (3.16), we know

f
(
t,x
(
t,ε1

))− f
(
t,x
(
t,ε2

))≤ 0, ∀ t ∈R+. (3.27)

Thus, for any t ∈R+, we have

x
(
t,ε1

)− x
(
t,ε2

)= ε1− ε2 +
∫∞

0
G(t,s)m(s)

[
f
(
t,x
(
t,ε1

))− f
(
t,x
(
t,ε2

))]
Δs≤ ε1− ε2.

(3.28)

Hence the right-hand side of the inequality (3.15) also holds.
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Step 3. Steps 1 and 2 imply that there exist one sequence {εj : j = 1,2,3, . . .} and one func-
tion, without loss of generality, we denote it by x(t,0), such that

lim
j→∞

x
(
t,εj
)= x(t,0), t ∈R+, (3.29)

uniformly. Let

Fj(t,s)=G(t,s)m(s) f
(
s,x
(
σ(s),εj

))
, (t,s)∈R+×R+, j = 1,2,3, . . . ,

F(t,s)=G(t,s)m(s) sup
(u,v)∈R+×R+

f (u,v), (t,s)∈R+×R+. (3.30)

Then
∣
∣Fj(t,s)

∣
∣≤ F(t,s), j = 1,2,3, . . . , (t,s)∈R+×R+. (3.31)

Moreover, (2.4) implies that
∥
∥
∥
∥

∫∞

0
F(t,s)Δs

∥
∥
∥
∥= sup

t∈R+

∣
∣
∣
∣e
−λ∗t

∫∞

0
F(t,s)Δs

∣
∣
∣
∣

≤ sup
t∈R+

∫∞

0
e−kσ(s)G

(
σ(s),s

)
m(s)Δs sup

(u,v)∈R+×R+

f (u,v)

<∞.

(3.32)

Now, by using control convergence theorem and (3.29), (3.31), and (3.32), we know that

x(t,0)=
∫∞

0
G(t,s)m(s) f

(
s,x
(
σ(s),0

))
Δs, t ∈R+,

x(0)= 0, lim
t→∞x(t)= 0.

(3.33)

Thus x(t,0) is a positive solution of BVP (1.1). This ends the proof. �

4. An example

We present the following example to illustrate our main result Theorem 2.2.

Example 4.1. Set

T= {0,1,2,3, . . .}. (4.1)

Consider the following BVP:

xΔΔ(t)− x
(
σ(t)

)
+

1
et − e−t

f (t,x)= 0, t ∈R+,

x(0)= 0, lim
t→∞x(t)= 0,

(4.2)

where

f (t,x)=
⎧
⎨

⎩

0, (t,x)∈R+×{0},
e−x, (t,x)∈R+× (0,∞).

(4.3)
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We may claim that BVP (4.2) has at least one positive solution x ∈ C(R+). To say this
assertion, what should we do is to validate all conditions of Theorem 2.2.

Write

m(t) := 1
et − e−t

. (4.4)

Clearly, m(t)∈ Crd(0,∞). However, m(t) is singular at t = 0. Hence BVP (4.2) is a singu-
lar BVP on R+. This is just the condition (H2) in Theorem 2.2. Moreover, (4.3) implies
that f satisfies the condition (H1) in Theorem 2.2. Now let us prove that the condition
(H3) in Theorem 2.2 holds here. The Green function of the corresponding homogeneous
problem of BVP (4.2) is given by

G(t,s)= 1
2

⎧
⎨

⎩

e−σ(s)
(
et − e−t

)
, t ≤ s,

e−t
(
eσ(s)− e−σ(s)

)
, σ(s)≤ t.

(4.5)

Then, for any n0 ∈ {1,2,3, . . .}, we compute

∫∞

0
e−σ(s)G

(
σ(s),s

)
m(s)Δs= 1

2

∫∞

0
e−2s−2

[
es+1− e−s−1

]

es− e−s
Δs

= 1
2

{∫ n0

0
e−2s−2

[
es+1− e−s−1

]

es− e−s
Δs+

∫∞

n0

e−2s−2

[
es+1− e−s−1

]

es− e−s
Δs

}

= 1
2

(
I1 + I2

)
.

(4.6)

Set

f1(s) := e−2s−2

[
es+1− e−s−1

]

es− e−s
, f2(s) := 1

2
e−s−1, t ∈R+. (4.7)

Then we have for any s∈ (0,∞),

f1(s)≤ e−2s−2 e
2s+2− 1
es− e−s

≤ e−2s−2 e2s+1e

es− e−s
≤ 1

2
√
e2s+1e

= 1
2
e−s−1 = f2(s). (4.8)

Formulas (1.9) and (1.10) help us to obtain that
∫ n0

0
f2(s)Δs= 1

2

∑

s∈[0,n0−1]

e−s−1 = 1− e−n0

2(e− 1)
<

1
e− 1

.

∫∞

n0

f2(s)Δs= 1
2

lim
A→∞

∫ A

n0

e−s−1Δs= e−n0

2(e− 1)
<

1
e− 1

.

(4.9)

Then (4.6), (4.8), and (4.9), Proposition 1.6 and its exact analogues for the improper
integrals of second kind imply that improper integrals I1 and I2 are convergent, and so
∫∞

0
e−σ(s)G

(
σ(s),s

)
m(s)Δs≤ 1

2

(
I1 + I2

)≤ 1
2

{∫ n0

0
f2(s)Δs+

∫∞

n0

f2(s)Δs
}
≤ 1

e− 1
.

(4.10)
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Hence the condition (H3) of Theorem 2.2 is fulfilled. So Theorem 2.2 gives us the desired
conclusion.
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