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1. Introduction

In this paper, we study a higher-order quasilinear equation with p-Laplacian

(
φp
(
u(n−1)))′ + g(t) f

(
t,u,u′, . . . ,u(n−2))= 0, 0 < t < 1, n≥ 3, (1.1)

subject to the following three-point boundary conditions:

ui(0)= 0, 0≤ i≤ n− 3,

αφp
(
u(n−2)(0)

)−βφp
(
u(n−1)(η)

)= 0,

γφp
(
u(n−2)(1)

)− δφp
(
u(n−1)(1)

)= 0,

(1.2)

where φp(s) is a p-Laplacian operator, that is, φp(s)= |s|p−2s, p > 1, η ∈ (0,1) is a given
constant, α > 0, γ > 0, β ≥ 0, δ ≥ 0, g : [0,1]→ [0,∞) has countable many singularities on
(0,1/2).

In recent years, because of the wide mathematical and physical backgrounds [7, 8], the
existence of positive solutions for nonlinear boundary value problems with p-Laplacian
received wide attention. Especially, when p = 2, the existence of positive solutions for
nonlinear singular boundary value problems has been obtained (see [5, 6, 10]); when p �=
2 and the nonlinearities are continuous, many results of the existence of positive solutions
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2 Positive solutions of a three-point BVP

have been obtained [1–4, 9] by using comparison results, topological degree theorem,
respectively. Recently, on the existence of positive solutions of multipoint boundary value
problems for second-order ordinary differential equation, some authors have obtained
the existence results (see [5–8, 10]). However, all of the above-mentioned references dealt
with the case of the nonlinearity without singularities. For the singular case of multi-
point boundary value problems, to our acknowledge, no one has studied the existence of
positive solutions in this case.

Very recently, Kaufmann and Kosmatov [3] established the result of countably many
positive solutions for the two-point boundary value problems with infinitely many sin-
gularities of the following form:

u′′(t) + a(t) f
(
u(t)

)= 0, 0 < t < 1,

u′(0)= 0, u(1)= 0,
(1.3)

where a∈ Lp[0,1], p ≥ 1, and a(t) can have countably singularities on [0,1/2).
Lian and Ge in [4] investigated the following boundary value problem:

(
φp
(
u(n−1)))′ + g(t) f

(
t,u,u′, . . . ,u(n−2))= 0, 0 < t < 1,

ui(0)= 0, 0≤ i≤ n− 3,

αu(n−2)(0)−βu(n−1)(0)= 0,

γu(n−2)(1)− δu(n−1)(1)= 0, n≥ 3,

(1.4)

where φp(s)= |s|p−2s, p > 1, α,β,γ,δ ≥ 0, αγ+αδ + γβ > 0 and obtained that the problem
has at least one positive solution by using the fixed point theorem of the compression and
expansion of norm in the cone.

Motivated by the results mentioned above, in this paper, we extend the results obtained
in [4] to the more general three-point boundary value problems (1.1)-(1.2) which are
generalization of problems (1.4). We would stress that the results presented in this paper
complement and improve those obtained in [3, 4], since we allow nonlinearity to have
infinitely many singularities and the boundary value conditions are more general. We
will show that the problems (1.1)-(1.2) have infinitely many solutions if g and f satisfy
some suitable conditions.

In the rest of the paper, we make the following assumptions:
(H1) f ∈ C([0,1]× [0,+∞)n−1, [0,+∞)),
(H2) g ∈ L1[0,1] is nonnegative and g(t) does not vanish identically on any subinterval

of [0,1],
(H3) there exists a sequence {ti}∞i=1 such that ti+1 < ti, t1 < 1/2, limi→∞ ti = t∗ ≥ 0,

limt→ti g(t)=∞ (i= 1,2, . . .), and

0 <
∫ 1

0
g(t)dt <∞. (1.5)
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It is easy to check that condition (H3) implies that

0 <
∫ 1

0
φq

(∫ s

0
g
(
s1
)
ds1

)

ds < +∞, (1.6)

where φq = φ−1
p and 1/p+ 1/q = 1.

2. Preliminaries and lemmas

We denote

B = {u∈ C(n−2)[0,1] : ui(0)= 0, 0≤ i≤ n− 3
}

,

K = {u∈ B : u(n−2)(t)≥ 0, u(n−2)(t) is concave function, t ∈ [0,1]
}

,
(2.1)

and the norm ‖u‖ =maxt∈[0,1] |u(n−2)(t)|. Set Kr = {u∈ K : ‖u‖ ≤ r}, then it is obvious
that K is a cone. Our main tool of this paper is the following fixed point theorem of cone
expansion and compression of norm type.

Lemma 2.1 [1]. Suppose E is a banach space, K ⊂ E is a cone, let Ω1, Ω2 be two bounded
open sets of E such that θ ∈Ω1, Ω1 ⊂Ω2. Let operator T : K ∩ (Ω2 \Ω1)→ K be completely
continuous. Suppose that one of the following two conditions holds:

(i) ‖Tx‖ ≤ ‖x‖, for all x ∈ K ∩ ∂Ω1, ‖Tx‖ ≥ ‖x‖, for all x ∈ K ∩ ∂Ω2,
(ii) ‖Tx‖ ≥ ‖x‖, for all x ∈ K ∩ ∂Ω1, ‖Tx‖ ≤ ‖x‖, for all x ∈ K ∩ ∂Ω2.

Then T has at least one fixed point in K ∩ (Ω2 \Ω1).

Now we define a mapping T : K → C(n−1)[0,1]∩B,

(Tu)(t)=
∫ t1

0

∫ s1

0
···

∫ sn−3

0
w
(
sn−2

)
dsn−2sn−3 ···ds1, (2.2)

where w(t) is given by

w(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φq

(
β

α

∫ δ

η
g(s) f

(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds
)

+
∫ t

0
φq

(∫ δ

s
g(r) f

(
r,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds, 0≤ t ≤ δ,

φq

(
δ

γ

∫ 1

δ
g(s) f

(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

)

+
∫ 1

t
φq

(∫ s

δ
g(r) f

(
r,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds, δ ≤ t ≤ 1,

(2.3)
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where δ is a solution of the equation y0(x)= y1(x), here

y0(x)= φq

(
β

α

∫ x

η
g(s) f

(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

)

+
∫ x

0
φq

(∫ x

s
g(r) f

(
r,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds,

y1(x)= φq

(
δ

γ

∫ 1

x
g(s) f

(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

)

+
∫ 1

x
φq

(∫ s

x
g(r) f

(
r,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds.

(2.4)

Obviously, y0(x) is a nondecreasing continuous function defined on [0,1] with y0(0) =
0 and y1(x) is a nonincreasing continuous function defined on [0,1] with y1(1) = 0.
Moveover, if δ1,δ2 ∈ [0,1] (δ1 < δ2) are solutions of the equation y0(x)= y1(x), then we
have

g(t) f
(
t,u(t),u′(t), . . . ,u(n−2)(t)

)≡ 0. (2.5)

As t ∈ [δ1,δ2], we choose δ ∈ [δ1,δ2] and can have

(Tu)(n−1)(t)=w′(t)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φq

(∫ δ

t
g(s) f

(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

)

≥ 0, 0≤ t ≤ δ,

−φq
(∫ t

δ
g(s) f

(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

)

≤ 0, δ ≤ t ≤ 1.

(2.6)

Obviously, we can obtain the following results:

αφp
(
w(0)

)−βφp
(
w′(η)

)= 0, γφp
(
w(1)

)
+ δφp

(
w′(1)

)= 0. (2.7)

Let

f0 = lim
un−1→0

max
0≤u1≤···≤un−2≤(1/θ)un−1, t∈[0,1]

f
(
t,u1,u2, . . . ,un−1

)

(
un−1

)p−1 ,

f∞ = lim
un−1→∞

min
0≤u1≤···≤un−2≤(1/θ)un−1, t∈[0,1]

f
(
t,u1,u2, . . . ,un−1

)

(
un−1

)p−1 ,

(2.8)

where θ ∈ (0,1/2) is a given constant. We can easily get the following lemmas.
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Lemma 2.2. Let u∈ K and θ ∈ (0,1/2). Then

u(n−2)(t)≥ θ‖u‖, t ∈ [θ,1− θ]. (2.9)

The proof of Lemma 2.2 is similar to the proof of lemma in [9], so we omit the details.

Lemma 2.3 [4]. Let (H1), (H2), (H3) hold. Then T : K → K is completely continuous.

Lemma 2.4. Suppose condition (H3) holds. Then the function

A(t)=
∫ t

t1
φq

(∫ t

s
g
(
s1
)
ds1

)

ds+
∫ 1−t1

t
φq

(∫ s

t
g
(
s1
)
ds1

)

ds, t ∈ [t1,1− t1], (2.10)

is positive continuous functions on [t1,1− t1], therefore, A(t) has minimum on [t1,1− t1],
and hence it is supposed that there exists L > 0 such that A≥ L, t ∈ [t1,1− t1].

Proof. At first, it is easily seen that A(t) is continuous on [t1,1− t1]. Next, let

A1(t)=
∫ t

t1
φq

(∫ t

s
g(s1)ds1

)

ds, A2(t)=
∫ 1−t1

t
φq

(∫ s

t
g(s1)ds1

)

ds. (2.11)

Then, from condition (H3), we have that the function A1(t) is strictly monotone increas-
ing on [t1,1− t1] and A1(t1) = 0, and that the function A2(t) is strictly monotone de-
creasing on [t1,1− t1] and A2(1− t1) = 0, which implies L =mint∈[t1,1−t1]A(t) > 0. The
proof is complete. �

Lemma 2.5. Suppose that conditions (H1), (H2) hold. Then the solution u(t) of problem
(1.1), (1.2) satisfies

u(t)≤ u′(t)≤ ··· ≤ u(n−3)(t), t ∈ [0,1], (2.12)

and for θ ∈ (0,1/2) in Lemma 2.2,

u(n−3)(t)≤ 1
θ
u(n−2)(t), t ∈ [θ,1− θ]. (2.13)

Proof. If u(t) is the solution of problem (1.1), (1.2), then u(n−2)(t) is a concave function,
and ui(t)≥ 0, i= 0,1, . . . ,n− 2, t ∈ [0,1]. Thus we have

ui(t)=
∫ t

0
u(i+1)(s)ds≤ tu(i+1)(t)≤ u(i+1)(t), i= 0,1, . . . ,n− 4, (2.14)

that is, u(t)≤ u′(t)≤ ··· ≤ u(n−3)(t), t ∈ [0,1]. Next, by Lemma 2.2, for t ∈ [θ,1− θ], we
have u(n−2)(t)≥ θ‖u(n−2)‖. Then by u(n−3)(t)= ∫ t0 u(n−2)(s)ds≤ ‖u(n−2)‖, we have

u(n−3)(t)≤ 1
θ
u(n−2)(t), t ∈ [θ,1− θ]. (2.15)

The proof is complete. �
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3. The main result

In this section, we present our main results, and also provide an example of family of
functions a(t) that satifies condition (H3). For convenience, we set

θ∗ = 2
L

, θ∗ = 1
(
1 +φq(β/α)

)
φq
(∫ 1

0 g(r)dr
) . (3.1)

Theorem 3.1. Suppose conditions (H1), (H2), (H3) hold. Let {θk}∞k=1 be such that θk ∈
(tk+1, tk) (k = 1,2, . . .), let {rk}∞k=1 and {Rk}∞k=1 be such that

Rk+1 < θkrk < rk < mrk < Rk, k = 1,2, . . . , (3.2)

and for each natural number k, assume that f satisfy
(A1) f (t,u1,u2, . . . ,un−1)≥ (mrk)p−1, for θkrk ≤ un−1 ≤ rk, where m∈ (θ∗,∞),
(A2) f (t,u1,u2, . . . ,un−1)≤ (MRk)p−1, for 0≤ un−1 ≤ Rk, where M ∈ (0,θ∗).

Then, the boundary value problem (1.1), (1.2) has infinitely many solutions {uk}∞k=1 such
that

rk ≤ ‖uk‖ ≤ Rk, k = 1,2, . . . . (3.3)

Proof. From (2.6), we have (Tu)(n−2)(δ) =maxt∈[0,1](Tu)(n−2)(t) = ‖Tu‖. Because t0 <
tk+1 < θk < tk < 1/2, k = 1,2, . . . , for any k ∈N, u∈ K , by Lemma 2.2, we have

u(n−2)(t)≥ θk‖u‖, t ∈ [θk,1− θk]. (3.4)

We define two open subset sequences {Ω1,k}∞k=1 and {Ω2,k}∞k=1 of B,

Ω1,k =
{
u∈ K : ‖u‖ < rk

}
, k = 1,2, . . . , Ω2,k =

{
u∈ K : ‖u‖ < Rk

}
, k = 1,2, . . . .

(3.5)

For a fixed k and u∈ ∂Ω1,k, by (3.4), we have

rk = ‖u‖ ≥ u(n−2)(t)≥ θk‖u‖ = θkrk, t ∈ [θk,1− θk]. (3.6)

For t ∈ [t1,1− t1]⊆ [θk,1− θk], we will discuss it from three cases.
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(i) If δ ∈ [t1,1− t1], then for u∈ ∂Ω1,k, by (A1) and Lemma 2.3, we have

2‖Tu‖ = 2(Tu)(n−2)(δ)

≥
∫ δ

0
φq

(∫ δ

s
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds

+
∫ 1

δ
φq

(∫ s

δ
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds

≥
∫ δ

t1
φq

(∫ δ

s
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds

+
∫ 1−t1

δ
φq

(∫ s

δ
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds

≥mrkA(δ)≥mrkL
(
t1
)
> 2rk = 2‖u‖.

(3.7)

(ii) If δ ∈ (1− t1,1], thus for u∈ ∂Ω1,k, by (A1) and Lemma 2.3, we have

‖Tu‖ = (Tu)(n−2)(δ)

≥φq
(
β

α

∫ δ

η
g(r) f

(
t,u(r),u′(r), . . .u(n−2)(r)

)
dr

)

+
∫ δ

0
φq

(∫ δ

s
g(r) f

(
t,u(r),u′(r), . . .u(n−2)(r)

)
dr

)

ds

≥
∫ 1−t1

t1
φq

(∫ 1−t1

s
g(r) f

(
t,u(r),u′(r), . . .u(n−2)(r)

)
dr

)

ds

≥mrkA
(
1− t1

)≥mrkL > 2rk > rk = ‖u‖.

(3.8)

(iii) If δ ∈ (0, t1), then for u∈ ∂Ω1,k, by (A1) and Lemma 2.3, we have

‖Tu‖ = (Tu)(n−2)(δ)

≥ φq

(
δ

γ

∫ 1

δ
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

+
∫ 1

δ
φq

(∫ δ

s
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds

≥ φq

(
δ

γ

∫ 1−t1

t1
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

+
∫ 1−t1

t1
φq

(∫ s

t1
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds

≥
∫ 1−t1

t1
φq

(∫ s

t1
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds

≥mrkA
(
t1
)≥mrkL > 2rk > rk = ‖u‖.

(3.9)
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Therefore, no matter under which condition, we all have

‖Tu‖ ≥ ‖u‖, ∀u∈ ∂Ω1,k. (3.10)

On the other hand, when u∈ ∂Ω2,k, we have u(t)≤ ‖u‖ = Rk, and by (A2), we know

‖Tu‖ = (Tu)(n−2)(δ)

= φq

(
β

α

∫ δ

η
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

+
∫ δ

0
φq

(∫ δ

s
g(r) f

(
t,u(r),u′(r), . . . ,u(n−2)(r)

)
dr

)

ds

≤
[

1 +φq

(
β

α

)]

MRkφq

(∫ 1

0
g(r)dr

)

= Rk = ‖u‖.

(3.11)

Thus

‖Tu‖ ≤ ‖u‖, ∀u∈ ∂Ω2,k. (3.12)

For 0 ∈Ω1,k ⊂Ω1,k ⊂Ω2,k, by (3.10), (3.12), and Lemma 2.1, operator T has a fixed
point uk ∈ (Ω2,k \Ω1,k), and rk ≤ ‖uk‖ ≤ Rk. By the randomness of k, we know that The-
orem 3.1 holds. This completes the proof of Theorem 3.1. �

Theorem 3.2. Suppose conditions (H1), (H2), (H3) hold. Let {θk}∞k=1 be such that θk ∈
(tk+1, tk) (k = 1,2, . . .). Let {rk}∞k=1 and {Rk}∞k=1 be such that

Rk+1 < θkrk < rk < mrk < Rk, k = 1,2, . . . . (3.13)

For each natural number k, assume that f satisfies
(A3) f∞ = λ∈ ((2θ∗/θk)p−1,∞),
(A4) f0 = ϕ∈ [0,(θ∗/4)p−1).

Then, the boundary value problem (1.1), (1.2) has infinitely many solutions {uk}∞k=1 such
that

rk ≤
∥
∥uk

∥
∥≤ Rk, k = 1,2, . . . . (3.14)

Proof. First, by f0 = ϕ∈ [0,(θ∗/4)p−1), for ε = (θ∗/4)p−1−ϕ, there exists an adequately
small positive number ρ such that, as 0≤ un−1 ≤ ρ, un−1 �= 0, we have

f (t,u1,u2, . . . ,un−1)≤ (ϕ+ ε)
(
un−1

)p−1 ≤
(
θ∗
4

)p−1

ρp−1 =
(
θ∗
4
ρ
)p−1

. (3.15)

Then let Rk = ρ, M = θ∗/4∈ (0,θ∗), thus by (3.15),

f
(
t,u1,u2, . . . ,un−1

)≤ (MRk
)p−1

, 0≤ un−1 ≤ Rk. (3.16)

So condition (A2) holds.
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Next, by condition f∞ = λ ∈ ((2θ∗/θ)p−1,∞), for ε = λ− (2θ∗/θ)p−1, there exists an
adequately big positive number rk �= Rk such that, as un−1 ≥ θrk, we have

f
(
t,u1,u2, . . . ,un−1

)≥ (λ− ε)
(
un−1

)p−1 ≥
(

2θ∗

θk

)p−1(
θkrk

)p−1 = (2θ∗rk
)p−1

. (3.17)

Let m = 2θ∗ > θ∗, then by (3.17), condition (A1) holds. Therefore, by Theorem 3.1, we
know that the result of Theorem 3.2 holds. The proof of Theorem 3.2 is complete. �

Theorem 3.3. Suppose conditions (H1), (H2), (H3) hold. Let {θk}∞k=1 be such that θk ∈
(tk+1, tk) (k = 1,2, . . .). Let {rk}∞k=1 and {Rk}∞k=1 be such that

Rk+1 < θkrk < rk < mrk < Rk, k = 1,2, . . . . (3.18)

For each natural number k, assume that f satisfies
(A5) f0 = ϕ∈ ((2θ∗/θk)p−1,∞),
(A6) f∞ = λ∈ [0,(θ∗/4)p−1).

Then, the boundary value problem (1.1), (1.2) has infinitely many solutions {uk}∞k=1 such
that

rk ≤
∥
∥uk

∥
∥≤ Rk, k = 1,2, . . . . (3.19)

Proof. First, by condition f0 = ϕ∈ ((2θ∗/θk)p−1,∞), for ε = ϕ− (2θ∗/θk)p−1, there exists
an adequately small positive number rk such that, as 0≤ un−1 ≤ rk, un−1 �= 0, we have

f
(
t,u1,u2, . . . ,un−1

)≥ (ϕ− ε)
(
un−1

)p−1 =
(

2θ∗

θk

)p−1(
un−1

)p−1
, (3.20)

thus when θkrk ≤ un−1 ≤ rk, we have

f
(
t,u1,u2, . . . ,un−1

)≥
(

2θ∗

θk

)p−1(
θkrk

)p−1 = (2θ∗rk
)p−1

. (3.21)

Let m= 2θ∗ > θ∗, so by (3.21), condition (A1) holds.
Next, by condition f∞ = λ∈ [0,(θ∗/4)p−1), for ε = (θ∗/4)p−1− λ, there exists an ade-

quately small positive number ρ �= rk such that, as un−1 ≥ ρ, we have

f
(
t,u1,u2, . . . ,un−1

)≤ (λ+ ε)
(
un−1

)p−1 ≤
(
θ∗
4

)p−1(
un−1

)p−1
. (3.22)
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If f is unboundary, by the continuation of f on [0,1]× [0,∞)n−1, there exist constant
Rk( �= rk)≥ρ, and a point (t0,u01,u02, . . . ,u0(n−1))∈[0,1]×[0,∞)n−1 such that ρ≤u0(n−1) ≤
Rk and f (t,u1,u2, . . . ,un−1)≤ f (t0,u01,u02, . . . ,u0(n−1)), 0≤un−1≤Rk. Thus, by ρ≤u0(n−1) ≤
Rk, we know

f
(
t,u1,u2, . . . ,un−1

)≤ f
(
t0,u01,u02, . . . ,u0(n−1)

)

≤
(
θ∗
4

)p−1(
u0(n−1)

)p−1 ≤
(
θ∗
4
Rk

)p−1

.
(3.23)

Let M = θ∗/4 ∈ (0,θ∗), we have f (t,u1,u2, . . . ,un−1) ≤ (MRk)p−1, 0 ≤ un−1 ≤ Rk. If f is

bounded, we suppose f (t,u1,u2, . . . ,un−1)≤M
p−1

, un−1 ∈ [0,∞), and there exists an ad-
equately big positive number Rk > 4/θ∗M. Then letting M = θ∗/4∈ (0,θ∗), we have

f
(
t,u1,u2, . . . ,un−1

)≤M
p−1 ≤

(
θ∗
4
Rk

)p−1

= (MRk)p−1, 0≤ un−1 ≤ Rk. (3.24)

So, condition (A2) holds. Therefore, by Theorem 3.1, we know that the result of Theo-
rem 3.3 holds. The proof of Theorem 3.3 is complete. �

Remark 3.4. We can check that there exists a function g(t) satisfying condition (A2). In
fact, let

Δ=√2
(
π2

3
− 9

4

)
, t0 = 5

16
, tn = t0−

n−1∑

i=1

1
(i+ 2)4

, n= 1,2, . . . . (3.25)

Consider function g(t) : [0,1]→ (0,+∞), given by g(t)=∑∞
n=1 gn(t), t ∈ [0,1], where

gn(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n(n+ 1)

(
tn+1 + tn

) , 0≤ t <
tn+1 + tn

2
,

1

Δ
(
tn− t

)1/2 ,
tn+1 + tn

2
≤ t < tn,

1

Δ
(
t− tn

)1/2 , tn ≤ t ≤ tn+1 + tn
2

,

2
n(n+ 1)

(
2− tn− tn−1

) ,
tn−1 + tn

2
< t ≤ 1.

(3.26)

It is easy to know t1 = 1/4 < 1/2, tn− tn+1 = 1/(n+ 2)4 (n= 1,2, . . .), and

t∗ = lim
n→∞ tn =

5
16
−

∞∑

i=1

1
(i+ 2)4

= 22
16
− π4

90
>

1
5

, (3.27)
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where
∑∞

n=1 1/n4 = π4/90. From
∑∞

n=1(1/n2)= π2/6, we have

∞∑

n=1

∫ 1

0
gn(t)dt =

∞∑

n=1

2
n(n+ 1)

+
1
Δ

∞∑

n=1

[∫ tn

(tn+1+tn)/2

1
(
tn− t

)1/2 dt+
∫ (tn−tn−1)/2

tn

1
(t− tn)1/2

dt

]

= 2 +

√
2
Δ

∞∑

n=1

[
(
tn− tn+1

)1/2
+
(
tn−1− tn

)1/2
]

= 2 +

√
2
Δ

∞∑

n=1

[
1

(n+ 2)2
+

1
(n+ 1)2

]

= 2 +

√
2
Δ

∞∑

n=1

[(
π2

6
− 5

4

)
+
(
π2

6
− 1

)]

= 2 +

√
2
Δ

[
π2

3
− 9

4

]

= 3.

(3.28)

Therefore,

∫ 1

0
g(t)dt =

∫ 1

0

∞∑

n=1

gn(t)dt =
∞∑

n=1

∫ 1

0
gn(t)dt <∞. (3.29)

Then we know that g(t) satisfies condition (H2).
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