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Bursting dynamics of mappings is investigated in this paper. We first present stability
analysis of the mappings’ equilibria with various parameters. Then for three mappings P,
P̄, and ̂P with different parameters, we study their powers P4, P̄6, and ̂P4. We show that
the mappings thus obtained are chaotic by giving a rigorous verification of existence of
horseshoes in these mappings. Precisely, we prove that the mapping P̄6 is semiconjugate
to the 3-shift mapping; the mappings P4 and ̂P4 are semiconjugate to the 4-shift mapping.

Copyright © 2006 Y. Huang and X.-S. Yang. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Bursting is ubiquitous in physical and biological systems, especially in neural systems [3].
Studying networks of bursters in neural systems poses challenging mathematical prob-
lems. Even simulating such networks is a computational challenge, since thousands of
stiff nonlinear ordinary differential equations (ODEs) may be involved.

Bursting dynamics of mappings has recently been investigated by physicists [1, 5, 6, 2].
Using a discrete-time system, say xn+1 = f (xn), instead of a system of ODEs, provides one
with a number of theoretical and computational advantages. For example, it is possible to
explore collective behavior of millions of coupled discrete-time bursters with only modest
computational effort.

In order to study the phenomenon of bursting, a simple discrete-time model of spiking
neurons was proposed in [3], which is of the following form:

I:
vn+1 = 0.04vn2 + 6vn + 140−un + I ,

un+1 = 0.004vn + 0.98un,

if vn ≥ 30mV , then

⎧

⎨

⎩

vn←− c,

un+1←− un +d.

(1.1)
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In this paper, we study a more general mapping as follows.
Let l = 0.04, n= 6, Ī = 41, (1.1) can be rewritten as follows:

II:
vn+1 = 0.04vn2 + 6vn + 41−un,

un+1 = avn + bun,
(1.2)

if vn ≥ 30mV , then

⎧

⎨

⎩

vn←− c,

un+1←− un +d.
(1.3)

Depending on the values of the parameters, this mapping can produce a variety of
bursting patterns [3]. In addition, this simple model can reproduce 20 most fundamental
neuron-computational properties of biological spiking neurons summarized in [3].

2. The stability of equilibria with various parameters

We first study in this section the stability of equilibria of (1.2) for different parameters.
Equation (1.2) has two equilibria, let A and B denote them. Let the modules of the

eigenvalues of A be m11 and m12, the modules of the eigenvalues of B be m21 and m22.
m11, m12, m21, and m22 vary with the parameters a and b as shown in Figure 2.1, mi, j =
mi, j(a,b), i, j = 1,2. Denote by M the plane z = 1 in Figure 2.1. With the reference plane
M, it can be concluded that A is a saddle point when a and b vary from 0 to 0.99, re-
spectively, and B may be a saddle point, a stable equilibrium, or an unstable equilibrium
when a and b varies from 0 to 0.99.

Typical values for c and d are c = −56, d = −16. When a = 0.24 and b = 0.6, let
P denote the mapping II. The mapping P has two saddle points (−10.2786,−6.1672)
and (−99.7214,−59.8328). When a= 0.64 and b = 0.2, let P̄ denote the mapping II, the
mapping P̄ has a saddle point (−10.8917,−8.7134) and a stable equilibrium (−94.1083,
−75.2866).

In the next section, we recall a result on horseshoes theory developed in [8, 9], which
is essential for rigorous verification of existence of chaos in the systems discussed in this
paper.

3. Review of a topological horseshoe theorem

Let X be a metric space, D is a compact subset of X , and f : D→ X is mapping satisfying
the assumption that there exist m mutually disjoint subsets D1, . . . , and Dm of D, the
restriction of f to each Di, that is, f |Di is continuous.

Definition 3.1. Let γ be a compact subset of D, such that for each 1≤ i≤m, γi = γ∩Di

is nonempty and compact, then γ is called a connection with respect to D1, . . . ,Dm−1

and Dm.
Let F be a family of connections γ’s with respect to D1, . . . ,Dm−1 and Dm satisfying the

following property:

γ ∈ F =⇒ f
(

γi
)∈ F. (3.1)

Then F is said to be an f -connected family with respect to D1, . . . ,Dm−1 and Dm.



Y. Huang and X.-S. Yang 3

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a b

z
M

m11

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a) m11 as a function of the parameters a
and b.

0
0.2

0.4
0.6

0.8
1

0
0.2 0.4

0.6
0.8 1b

a

z M

m12

0
5

10
15
20

(b) m12 as a function of the parameters a
and b.

1
0.8

0.6
0.4

0.2
0

0 0.2 0.4 0.6 0.8 1

a

b

z
M

m21

0

5

10

15

(c) m21 as a function of the parameters a
and b.

1

0.8

0.6

0.4

0.2

0

1 0.8 0.6 0.4 0.2 0

b

a

z

Mm22

0
20
40
60
80

(d) m22 as a function of the parameters a
and b.

Figure 2.1. The modules of the eigenvalues.

Theorem 3.2. Suppose that there exists an f -connected family F with respect to D1, . . . ,
Dm−1 and Dm. Then there exists a compact invariant set K ⊂D, such that f |K is semicon-
jugate to m-shift

For the proof of this theorem, see [9].
Here the “semiconjugate to the m-shift” is conventionally defined in the following

sense. If there exists a continuous and onto mapping

h : K −→
∑

m

, (3.2)

such that h ◦ f = σ ◦ h, then f is said to be semiconjugate to σ , where σ is the m-shift
(mapping) and

∑

m is the space of symbolic sequences to be defined below. Let Sm =
{1, . . . ,m} be the set of nonnegative successive integer from 1 to m. Let

∑

m be the collec-
tion of all one-infinite sequences with their elements of Sm, that is, every element s of

∑

m
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is of the following form:

s= {s1, . . . sm, . . .
}

, si ∈ Sm. (3.3)

Now consider another sequence s̄i ∈ Sm.
The distance between s and s̄ is defined as

d
(

s, s̄
)=

+∞
∑

i=1

1
2|i|

∣

∣si− s̄i
∣

∣

∣

∣si− s̄i
∣

∣+ 1
(3.4)

with the distance defined as (3.4),
∑

m is a metric space, and the m-shift mapping σ :
∑

m→
∑

m is defined as follows [7]:

σ(s)i = si+1, s= {s1, . . . sm, . . .
}

. (3.5)

For the concept of topological entropy, the reader can refer to [4]. We just recall the
result stated in Lemma 3.3, which will be used in this paper.

Lemma 3.3. Let X be a compact metric space, and f : X → X a continuous mapping. If there
exists an invariant set Λ⊂ X such that f |Λ is semiconjugate to the m-shift σ , then

h( f )≥ h(σ)= logm, (3.6)

where h( f ) denotes the entropy of the mapping f . In addition, for every positive integer k,

h
(

f k
)= kh( f ). (3.7)

A well-known fact is that if the entropy of continuous mapping is positive, then the map-
ping is chaotic [4].

4. Horseshoes for the mappings

4.1. Horseshoes for the iteration of the mapping p with two saddle points. Let P de-
note the mapping corresponding to the parameters a= 0.24 and b = 0.60, P has two sad-
dle points. With these parameters, we find a quadrangle D with its vertexes: (−114.2947,
−48.3442), (−41.7506,− 55.1067), (−46.2846,63.6224) and (−111.7742,−61.1316) by
careful computation. Figure 4.1 is the quadrangle D and its image under the fourth iter-
ation of the mapping P(that is P4). It can be seen from Figure 4.1 that there exist discon-
tinuous points. The resetting (1.3) is responsible for this phenomenon, because not all of
the points on the edge of D are reset at the same time.

Four disjoint quadrangles as defined in Definition 3.1 can been constructed, they are
d1, d2, d3, d4. The vertexes’ coordinates of d1, d2, d3, d4 are listed in Table 4.1. Their images
under the mapping P4 are shown in Figure 4.4.

In Figure 4.2, dli, are the left sides of di, dri are the right sides of di, i= 1,2,3,4. P4(dli)
and P4(drj) lie on the left side of dl1, i= 1,3, j = 2,4; P4(dli) and P4(drj) lie on the right
side of dr4, i= 2,4, j = 1,3.

It is easy to see from Figure 4.2 that every line l lying in D and connecting the side
dl1 and dr4 has nonempty connections with d1, d2, d3 and d4. Furthermore, P4(l∩ d1)
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Figure 4.1. The quadrangle D and its image under the mapping P4.

Table 4.1. The vertexes’ coordinates of d1, d2, d3, d4.

d1 (−105.9500,−49.1220) (−99.7860,−49.6970) (−93.1100,−61.8410) (−102.2800,−61.4930)

d2 (−97.9720,−49.8660) (−81.3220,−62.290) (−93.2570,−50.3050) (−92.1270,−61.8790)

d3 (−60.6120,−53.3480) (−56.9850,−53.6870) (−61.3470,−63.050) (−70.1880,−62.7130)

d4 (−53.3580,−54.0250) (−49.3680,−54.3970) (−51.8510,−63.4110) (−58.7280,−63.1490)

connects dl1 and dr4 from the above arguments, P4(l ∩ di) also connects dl1 and dr4,
i = 2,3,4. Therefore, it is easy to see, in view of Definition 3.1, that there exists a P4-
family with respect to these four subsets d1, d2, d3 and d4 for the mapping P4. It follows
from Theorem 3.2 that there exists an invariant set K1 of D, such that P4 restricted to
K1 is semiconjugated to 4-shift dynamics. Let h(P4) be the entropy of the mapping P4,
it can be concluded from Lemma 3.3 that h(P4)≥ h(σ)= log4, consequently the entropy
of the mapping P is not less than (1/2)log2. From above facts, it can be concluded that
the mapping P4 is chaotic.

Because K1 is an invariant set, every point in K1 cannot skip out of the quadrangle D
under iteration of the mapping P. Then, the resetting has nothing to do with the points
in K1.

4.2. Horseshoes for the iteration of the mapping P̄ with a saddle point and a stable
equilibrium. Let P̄ denote the mapping corresponding to the parameters a = 0.64 and
b = 0.2, the mapping P̄ has a saddle point and a stable equilibrium. With these pa-
rameters, we find a quadrangle D̄ with its vertexes (−81.4747,−72.2222), (−39.4470,
−84.9708), (−41.2903,−91.8713), and (−83.3180,−83.5673) by means of careful com-
putation.

Figure 4.3 is the quadrangle D̄ and its image under the sixth iteration of the mapping
P̄, that is P̄6. The image of D̄ under P̄6 has discontinuous part because that not all of the
points on the edge of D̄ are reset at the same time. Three disjoint quadrangles as defined
in Definition 3.1 can also been constructed, they are h1, h2, h3. The vertexes’ coordinates
of h1, h2, h3 are listed in Table 4.2.

In Figure 4.4, hli, are the left sides of hi, hri are the right sides of hi, i= 1,2,3. P̄6(hl1),
P̄6(hr2) and P̄6(hr3) lie on the left side of hl1, P̄6(hr1), P̄6(hl2) and P̄6(hl3) lie on the right
side of hr3.



6 Horseshoe in a class of planar mappings

−130 −120 −110 −100 −90 −80 −70 −60 −50 −40 −30
−64
−62
−60
−58
−56
−54
−52
−50
−48

dl1
dr1

dr1
dr2

d1 d2P4(dl1)

dl3

dl4
dr3

dr4

d3
d4

P4(dr1)

(a) The four disjoint subsets of D and the image of d1

under the mapping P4.

−140 −120 −100 −86 −60 −40 −20
−64
−62
−60
−58
−56
−54
−52
−50
−48
−46

P4(dr2)

P4(dl2)

(b) The four disjoint subsets of D and the image of d2

under the mapping P4.

−140 −120 −100 −80 −60 −40 −20
−64
−62
−60
−58
−56
−54
−52
−50
−48

P4(dl3)

P4(dr3)

(c) The four disjoint subsets of D and the image of d3

under the mapping P4.

−140 −120 −100 −80 −60 −40 −20
−64
−62
−60
−58
−56
−54
−52
−50
−48

P4(dr4) P4(dl4)

(d) The four disjoint subsets of D and the image of d4

under the mapping P4.

Figure 4.2. The four disjoint subsets of D and their images under the mapping P4.

It is easy to see from Figure 4.4 that every line l lying in D̄ and connecting the side hl1
and hr3 has nonempty connections with h1, h2, and h3. Furthermore, P̄6(l∩hi) connects
hl1 and hr3 from the above arguments, i= 1,2,3. In view of Definition 3.1, there exists a
P̄6-family with respect to these three subsets h1, h2, and h3 for the mapping P̄6. It follows
from Theorem 3.2 that there exists an invariant set K2 of D̄, such that P̄6 restricted to K2
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Figure 4.3. The quadrangle D̄ and its image under the mapping P̄6.

Table 4.2. The vertexes’ coordinates of h1, h2, h3.

h1 (−61.9320,−78.1500) (−59.6200,−78.8510) (−65.2460,−87.1380) (−67.9780,−86.5980)

h2 (−58.5700,−79.1700) (−62.0940,−87.7610) (−57.9390,−79.3610) (−62.7240,−87.6360)

h3 (−41.3380,−84.3970) (−39.4470,−84.9708) (−41.2903,−91.8713) (−44.8630,−91.1650)

is semiconjugated to 3-shift dynamics. Let h(P̄6) be the entropy of the mapping P̄6, it can
be concluded from Lemma 3.3 that h(P̄6)≥ h(σ)= log3, consequently the entropy of the
mapping P̄ is not less than (1/6)log3. The entropy of the mapping P̄ is positive, then it
can be concluded that the mapping P̄6 is chaotic.

Because K2 is an invariant set, every point in K2 cannot skip out of the quadrangle D̄
under iteration of the mapping P̄. Then, the resetting has nothing to do with the points
in K2.

4.3. Horseshoes for the iteration of the mapping I. The mapping I in [3] is a typical
mapping with two saddle points. The mapping can produce a variety of bursting pat-
terns, including those corresponding to IB (intrinsically bursting) and CH (chattering)
neocortical neurons. A discussion on chaotic property in this mapping is given in this
section.

Let ̂P denote the mapping with I = −99. As the parameters in (1.1), the mapping ̂P
has two saddle points. With these parameters, we find a quadrangle ̂D with its vertexes
(−47.902,−9.2532), (−28.4005,−9.2532), (−23.3627,−21.6558), and (−53.424,−21.709)
by means of careful computation.

Figure 4.5 is the image of the quadrangle ̂D and its image under the fourth iteration
of the mapping ̂P, that is ̂P4. It can be seen from Figure 4.5 that there exist discontinuous
points. The reason is the same as that in Section 4.1: the resetting (1.3) is responsible for
this phenomenon. Four disjoint quadrangles as defined in Definition 3.1 can also been
constructed, they are k1, k2, k3, k4. The vertexes’ coordinates of k1, k2, k3, k4 are listed
in Table 4.3. Their images under the fourth iteration of the mapping ̂P are shown in
Figure 4.6.

In Figure 4.6, the four quadrangles are k1, k2, k3, k4 from left to right in turn. kli is the
left side of ki, kri is the right side of ki, i= 1,2,3,4. ̂P4(kli) and ̂P4(krj) lie on the left side

of kl1, i= 2,4, j = 1,3; ̂P4(kli) and ̂P4(krj) lie on the right side of kr4, i= 1,3, j = 2,4.
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Figure 4.4. The three disjoint subsets of D̄ and their image under the mapping P̄6.

Table 4.3. The vertexes’ coordinates of k1, k2, k3, k4.

k1 (−45.172,−9.2532) (−44.879,−9.2532) (−48.915,−21.701) (−49.366,−21.702)

k2 (−42.734,−9.2532) (−42.149,−9.2532) (−45.608,−21.695) (−46.51,−21.697)

k3 (−37.079,−9.2532) (−36.396,−9.2532) (−39.596,−21.685) (−40.648,−21.686)

k4 (−33.568,−9.2532) (−33.178,−9.2532) (−35.688,−21.678) (−36.289,−21.679)

With the same analysis of the fourth paragraph in Sections 4.1 and 4.2, it can be con-
cluded that there exists a ̂P4-family with respect to these four subsets d1, d2, d3 and
d4 for the mapping ̂P4, and an invariant set K3 of ̂D, such that ̂P4 restricted to K3 is
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Figure 4.5. The quadrangle ̂D and its image under the mapping ̂P4.

−100 −80 −60 −40 −20 0 20 40
−22

−20

−18

−16

−14

−12

−10

−8

̂P4
(kr1)

̂P4
(kl1)

(a) The image of k1 under the map-
ping ̂P4.

−90 −70 −50 −30 −10 10
−22

−20

−18

−16

−14

−12

−10

−8

̂P4
(kl2)

̂P4
(kr2)

(b) The image of k2 under the map-
ping ̂P4.

−80 −60 −40 −20 0 20
−22

−20

−18

−16

−14

−12

−10

−8

̂P4
(kr3)

̂P4
(kl3)

(c) The image of k3 under the map-
ping ̂P4.

−90 −70 −50 −30 −10 10
−22

−20

−18

−16

−14

−12

−10

−8

̂P4
(kl4)

̂P4
(kr4)

(d) The image of k4 under the map-
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Figure 4.6. The four disjoint subsets of ̂D and their images under the mapping ̂P4.

semiconjugated to 4-shift dynamics. Let h( ̂P4) be the entropy of the mapping ̂P4, it can
be concluded from Lemma 3.3 that h( ̂P4)≥ h(σ)= log4, consequently the entropy of the
mapping ̂P is not less than (1/2)log2. From above facts, it can be concluded that the
mapping ̂P4 is chaotic.
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Because K3 is an invariant set, every point in K3 cannot skip out of the quadrangle ̂D
under iteration of the mapping ̂P. Then, the resetting has nothing to do with the points
in K3.

5. Conclusion

Studying networks of bursters in neural systems poses challenging mathematical prob-
lems. A bursting dynamics of mappings has been investigated in this paper. Based on
the stability analysis of the system’s equilibria with various parameters, we study three
mappings of the system, that is P4, P̄6 and ̂P4. We show that the mappings are chaotic
by giving a rigorous verification for existence of horseshoes in these mappings. We prove
that the mapping P̄6 is semiconjugate to the 3-shift mapping, the mapping P4 and ̂P4 are
semiconjugate to the 4-shift mapping. Then, the mappings P4, P̄6, and ̂P4 are chaotic.
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